首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of acetylcholine on the incorporation of P32 into the individual phosphatides in slices of various structures of the nervous system has been studied. There was a marked stimulation of P32 incorporation into phosphoinositide and phosphatidic acid, but not into phosphatidyl choline and phosphatidyl ethanolamine, in the cat stellate and celiac ganglia in vitro. Acetylcholine stimulated P32 incorporation into certain phosphatides, primarily phosphoinositide and phosphatidic acid, in several structures of the cat and guinea pig brain; there was little or no effect of acetylcholine on phosphatide turnover in the inferior corpora quadrigsemina and cerebellar cortex. The suggestion is made that the phospholipid effect can best be explained as being concerned with the active transport of sodium ions out of the cell across the postsynaptic membrane of cholinergic neurons in response to acetylcholine.  相似文献   

2.
The effect of Ca2+ and putative neurotransmitters on formation of cyclic AMP and cyclic GMP has been studied in incubated slices of brain tissue. Cyclic AMP levels in cerebellar slices after about 90 min of incubation ranged from 10 pmol/mg protein in rabbit, to 25 in guinea pig, to 50 in mouse and 200 in rat. Cyclic GMP levels in the same four species showed no correlation with cyclic AMP levels and were, respectively, 1.3, 20, 5 and 30 pmol/mg protein. The absence of calcium during the prolonged incubation of cerebellar slices had little effect on final levels of cyclic AMP, while markedly decreasing final levels of cyclic GMP. Reintroduction of Ca2+ resulted in a rapid increase in cerebellar levels of cyclic GMP which was most pronounced for guinea pig where levels increased nearly 7-fold within 5 min. Prolonged incubation of guinea pig cerebral cortical slices in calcium-free medium greatly elevated cyclic AMP levels apparently through enhanced formation of adenosine, while having little effect on final levels of cyclic GMP. Norepinephrine and adenosine elicited accumulations of cyclic AMP and cyclic GMP in both guinea pig cerebral cortical and cerebellar slices. Glutamate, γ-aminobutyrate, glycine, carbachol, and phenylephrine at concentrations of 1 mM or less had little or noe effect on cyclic nucleotide levels in guinea pig cerebellar slices. Prostaglandin E1 and histamine slightly increased cerebellar levels of cyclic AMP. Isoproterenol increased both cyclic AMP and cyclic GMP. The accumulation of cyclic AMP and cyclic GMP elicited by norepinephrine in cerebellar slices appeared, baed on dose vs. response curves, agonist-antaganonist relationships and calcium dependency, to involve in both cases activation of a similar set of ß-adrenergic receptors. In cerebellar slices accumulations of cyclic AMP and cyclic GMP elicted by norepinephrine and by a depolarizing agent, veratridine, were strongly dependent on the presence of calcium. The stimulatory effects of adenosine on cyclic AMP and cyclic GMP formation were antagonized by theophylline. The lack of correlations between levels of cyclic AMP and cyclic GMP under the various conditions suggested independent activation of cyclic AMP- and cyclic GMP-generating systems in guinea pig cerebellar slices by interactions with Ca2+, norephinephrine and adenosine.  相似文献   

3.
—The accumulation of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) was studied in cell-free homogenates of guinea pig brain. Homogenates, prepared in Krebs-Ringer buffer, responded markedly to the addition of neurohormones with an increased rate of cyclic AMP synthesis; preparations from cerebellum, cerebral cortex, and hippocampus responded to a degree approximating that achieved with slices of these areas of guinea pig brain. Adenylatc cyclase activity was seen only when cyclic AMP was measured by a [3H]adenine prelabelling technique or when total cyclic AMP was measured by radioimmunoassay; [32P]ATP did not serve as a substrate for this preparation of the enzyme. The adenylate cyclase was paniculate and required a Krebs Ringer buffer; use of tris, or tris with Mg2+ and Ca2+, resulted in a preparation totally devoid of hormonal stimulation. Digestion by purified beef heart cyclic nucleotide phosphodiesterase, Dowex chromatography, solubility in Ba(OH)2-ZnSO4 mixtures, and two thin layer chromatographic systems demonstrated that the product of the hormonally stimulated adenylate cyclase preparation was cyclic AMP. The selectivity of hormonal stimulation and the adrenergic character of the hormonal receptors from different brain areas were maintained in the cell-free preparation. However, simultaneous stimulation with two different neurohormones resulted in additive responses, rather than in the potentiation observed in preparations of slices of brain.  相似文献   

4.
Incubation of slices of the salt gland of the albatross with acetylcholine, which is the physiological secretogogue for this tissue, led to a 13-fold increase in the rate of incorporation of P32 into phosphatidic acid and a 3-fold increase in the incorporation of P32 and inositol-2-H3 into phosphoinositide. The incorporation of P32 into phosphatidyl choline and phosphatidyl ethanolamine was increased relatively slightly or not at all. Respiration was doubled. The "phospholipid effect" occurred in the microsome fraction, which is known to contain fragments of the endoplasmic reticulum. The enzymes, diglyceride kinase and phosphatidic acid phosphatase, which catalyze the stimulated turnover of phosphatidic acid in brain cortex, were also found in highest concentration in the microsome fraction. The phosphatides which respond to acetylcholine are bound to protein in the membrane. On the basis of these findings it appears that phosphatidic acid and possibly phosphoinositide participate in sodium transport. A scheme, termed the phosphatidic acid cycle, is presented as a working hypothesis, in which the turnover of phosphatidic acid in the membrane, catalyzed by diglyceride kinase and phosphatidic acid phosphatase, functions as a sodium pump.  相似文献   

5.
In dispersed mucosal cells prepared from rabbit and guinea pig stomach, the secretion of intrinsic factor was constant (0.3–0.4%/min) for at least 30 min incubation at 37°C. Histamine or isobutyl methylxanthine increased cyclic AMP and intrinsic factor secretion in both cell preparations. Isobutyl methylxanthine potentiated and cimetidine competitively inhibited (Ki=5·10?7 M) both effects of histamine. Dibutyryl cyclic AMP (1.0 mM), also caused a 3-fold increase in intrinsic factor secretion. These results suggest that in rabbit and guinea pig histamine interacts with H2-receptors to increase cyclic AMP which mediates the rise in the rate of intrinsic factor secretion.  相似文献   

6.
The effects of norepinephrine, other catecholamines, α- and β- adrenergic receptor blocking agents and acetylcholine on the incorporation of 32Pi into phospholipids of the iris muscle of the rabbit were studied in vitro. There was a marked stimulation of 32Pi into phosphatidic acid (PhA), phosphatidyl inositol (PhI) and to a much lesser extent phosphatidyl choline but not into phosphatidyl ethanolamine. The increase in the 32P labeling of PhA and PhI in the presence of norepinephrine or acetylcholine, which ranged from 2- to 6-fold, was found to be time- and concerntration-dependent. Under our experimental conditions, several adrenergic drugs, including DL-propranolol, phentolamine, isoproterenol, phenylephrine, but not sotalol, increased markedly (nearly up to 5-fold) the 32Pi incorporation into PhA and PhI of the iris. In contrast, phenoxybenzamine, an α-receptor blocker, blocked completely the stimulatory effects of norepinephrine on phospholipid synthesis. The stimulation of phospholipid synthesis by acetylcholine was completely abolished by atropine. Incorporation of 32Pi into PhA and PhI was significantly increased in the presence of serotonin, dopamine, epinephrine or histamine. Addition of γ-aminobutyric acid or cyclic AMP was ineffective. These observations suggest that in the iris muscle of the rabbit, which is innervated by cholinergic and adrenergic fibers, the phospholipid effect is probably a membrane effect that is not associated with synaptic transmission.  相似文献   

7.
The effects of time and cyclic AMP concentration on cyclic AMP uptake and membrane phosphorylation were studied using intact human erythrocytes. The rate of uptake of cyclic [3H]AMP was nearly linear with respect to cyclic AMP concentration. The amount taken up was small compared to the extracellular cyclic AMP concentration, but was sufficient to significantly increase the intracellular cyclic AMP concentration. Incubation with cyclic AMP resulted in increased incorporation of 32Pi into several phosphorylated membrane peptides of the intact erythrocytes. Although cyclic AMP altered the distribution of radioactivity among the membrane components, the total amount of incorporation was not increased. The effect of cyclic AMP on phosphorylation of membrane peptides was observed with extracellular cyclic AMP concentrations as low as 1 μm and was most pronounced in incubations of 1 to 4 h. These results indicate that cyclic AMP can enter erythrocytes in sufficient amounts to alter the activity of cyclic AMP-dependent protein kinases, or to alter the rate of turnover of certain phosphorylated membrane peptides.  相似文献   

8.
Phosphorylation of rabbit muscle glycogen synthase by cyclic AMP-dependent protein kinase results in the incorporation of 32P into two major tryptic peptides (P-1 and P-2) which are identified by isoelectric focusing on polyacrylamide gel. When 32P-labeled synthase is incubated with rabbit muscle phosphoprotein phosphatase both P-1 and P-2 are hydrolyzed. Incubation of 32P-labeled synthase with human placental alkaline phosphatase results in a specific hydrolysis of P-1. Measurement of the increase in synthase activity ratio accompanied by the dephosphorylation of P-1 with human placental alkaline phosphatase and, subsequently, of P-2 with phosphoprotein phosphatase shows that both P-1 and P-2 affect the glucose-6-P dependency of the synthase.  相似文献   

9.
Synthesis of PGF by bovine uterus and guinea pig lung microsomes and that of TXB2 by human platelet and rat spleen microsomes were stimulated by spermine. PGE2 synthesis by bovine seminal vesicle and porcine lung microsomes, and 6-keto-PGF synthesis by bovine seminal vesicle and uterus microsomes were inhibited by spermine. When phospholipid-free prostaglandin synthetase from bovine seminal vesicle was used instead of microsomes, the inhibition of PGE2 synthesis by spermine disappeared. The inhibition of PGE2 synthesis by spermine gradually appeared with an increase of phospholipid added. Among phospholipids tested, phosphatidylcholine was the most effective for the inhibition of PGE2 synthesis by spermine.  相似文献   

10.
Cultures of cloned neuroblastoma cells (N1E) in stationary phase and cloned glioma cells (C21) in confluency showed substantial differences in phospholipid composition. As a percentage of lipid P, N1E contained more phosphatidylcholine, less ethanolamine phosphoglycerides and much less sphingomyelin than C21. When incubated with 32Pi both cell lines incorporated comparable amounts of radioactivity into total phospholipids. In NIE, phosphatidylcholine contained much more and phosphatidylinositol and phosphatidic acid somewhat less label as compared to C21. The presence in the incubation medium of either norepinephrine or carbamylcholine failed to elicit stimulation of 32P incorporation into any phospholipid class.  相似文献   

11.
An active guanylate cyclase system was detected in isolated choroid plexus of rabbits by sodium azide (6 × 10?5 mol/l) which increased cGMP levels tenfold within 15 min. Inhibition of cGMP phosphodiesterase by sodium azide was excluded. cGMP accumulation was also raised dose-dependently by carbamylcholine, a cholinergic agonist. Pretreatment of chroid plexus with atropine (10?7 mol/l) reduced the effect of carbamylcholine (5 × 10?5 mol/l) by 80%. Both carbamylcholine and sodium azide induced accumulation of cGMP also in the incubation medium, indicating rapid extrusion of the nucleotide from choroid plexus cells. The effect of carbamylcholine could be mimicked by the calcium ionophore A 23187. Incubation in calcium-free medium abolished cGMP accumulation by carbamylcholine and A 23187 but not by sodium azide, indicating a different mechanism of action. Sodium azide, carbamylcholine and A 23187 had no effect on cyclic AMP levels. Withdrawal of calcium led to an enhanced efflux of both cAMP and cGMP. Since a cholinergic innervation of stroma and epithelial cells has been described, we hypothesize that cGMP and calcium may be involved in cholinergic transmission regulating blood flow or transport processes of the choroid plexus.  相似文献   

12.
Synopsis Incubation of glutaraldehyde-fixed, non-frozen tissue slices of mouse seminal vesicle, ventral prostate and small intestine in the media described by Hugon & Borgers (1966) and by Mayaharaet al. (1967) for the cytochemical demonstration of alkaline phosphatase resulted in the deposition of lead along smooth muscle mitochondrial membranes but not along epithelial mitochondrial membranes. Control studies using boiled tissues; media lacking substrate; inhibitors such as L-cysteine, EDTA,N-ethyl maleimide andp-chloromercuribenzoate; and tissues incubated in full media after fixation, embedding and sectioning, showed that the reaction in muscle mitochondria was non-enzymatic. It was concluded that the phospholipid component of muscle mitochondrial membranes differed from that of epithelial mitochondrial membranes.  相似文献   

13.
The role of protein phosphorylation in the regulation of thyroid function by carbamylcholine was investigated using dog thyroid slices incubated in the presence of [32P]phosphate and two-dimensional electrophoresis. In these intact cells, carbachol increased the phosphorylation of three polypeptides with Mr values of 21 500, 24 000 and 29 000. Maximal [32P]phosphate incorporation occurred within 5 min of addition of carbamylcholine for 10 min increased the phosphorylation of 11 polypeptides whcih were identical to those observed previously after 2 h of hormone action (Lecocq, R., Lamy, F. and Dumont, J.E. (1979) Eur. J. Biochem. 102, 147–152). All three polypeptides whose phosphorylation is increased by carbamylcholine were different from those whose phosphorylation is increased by thyrotropin. Under our experimental conditions, the calcium ionophore A23187 did not stimulate significantly [32P]phosphate incorporation in these three polypeptides. In conclusion, our results show that carbamylcholine and thyrotropin, which have some antagonist and some similar effects on dog thyroid, do not act through the phosphorylation of the same proteins. Although we have, in our previous chapter, established that in a rise in intracellular cyclic AMP could accout for the effect of thyrotropin on protein phosphorylation, the nature of the intracellular mediator of carbamylcholilne action on this parameter is still uncertain.  相似文献   

14.
Carbamylcholine, caerulein and cholecystokinin octapeptide rapidly increased the cyclic GMP concentration and amylase secretion in isolated guinea pig pancreatic slices. The cyclic GMP concentration was increased eight-fold over the basal concentration in 30 s, with concomitant increase in the rate of amylase secretion. The tissue concentration of cyclic GMP then rapidly declined to a plateau value of approx. 16% of the peak level within 10 min and was maintained at that concentration for the duration of the experiment. We have shown earlier (Kapoor, C.L. and Krishna, G. (1977) Science 196, 1003–1005) that the decrease of tissue cyclic GMP was due mainly to the secretion of cyclic GMP into the medium. The cyclic AMP concentration in the tissue was not changed, nor was it secreted into the medium.There was a correlation between the concentration response to various agents for the increase in cyclic GMP concentration and amylase secretion in pancreatic slices. Carbamylcholine increased both the cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 1.5 μM concentration. Caerulein and cholecystokinin octapeptide were 5000 times more potent than carbamylcholine in increasing cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 0.3 nM concentration. Atropine, which completely inhibited the increase in cyclic GMP and amylase secretion induced by carbamylcholine, did not block the effects of caerulein or cholecystokinin octapeptide. These results suggest that various secretagogues induced amylase secretion by increasing the cyclic GMP concentration, but the mechanism by which cyclic GMP caused amylase secretion remains to be elucidated.  相似文献   

15.
Carbamylcholine, caerulein and cholecystokinin octapeptide rapidly increased the cyclic GMP concentration and amylase secretion in isolated guinea pig pancreatic slices. The cyclic GMP concentration was increased eight-fold over the basal concentration in 30 s, with concomitant increase in the rate of amylase secretion. The tissue concentration of cyclic GMP then rapidly declined to a plateau value of approx. 16% of the peak level within 10 min and was maintained at that concentration for the duration of the experiment. We have shown earlier (Kapoor, CL. and Krishna, G. (1977) Science 196, 1003--1005) that the decrease of tissue cyclic GMP was due mainly to the secretion of cyclic GMP into the medium. The cyclic AMP concentration in the tissue was not changed, nor was it secreted into the medium. There was a correlation between the concentration response to various agents for the increase in cyclic GMP concentration and amylase secretion in pancreatic slices. Carbamylcholine increased both the cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 1.5 micrometer concentration. Caerulein and cholecystokinin octapeptide were 5000 times more potent than carbamylcholine in increasing cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 0.3 nM concentration. Atropine, which completely inhibited the increase in cyclic GMP and amylase secretion induced by carbamylcholine, did not block the effects of caerulein or cholecystokinin octapeptide. These results suggest that various secretagogues induced amylase secretion by increasing the cyclic GMP concentration, but the mechanism by which cyclic GMP caused amylase secretion remains to be elucidated.  相似文献   

16.
The effects of dibutyryl cyclic adenosine 3′ : 5′-monophosphate and ATP on isotope incorporation into phospholipids and the release of β-glucuronidase into the extracellular medium were studied in polymorphonuclear leukocytes from guinea pig peritoneal exudates. Exogenous dibutyryl cyclic adenosine 3′ : 5′-monophosphate (0.1–1.0 mM) reduced β-glucoronidase release induced by cytochalasin B in the absence of inert particles. It selectively inhibited 32Pi incorporation into phosphatidic acid and the phosphoinositides and the incorporation of myo-[2-3H]inositol into the phosphoinositides. Added ATP (0.1–1.0 mM), but not other nucleotides, was found to potentiate β-glucuronidase release provoked by cytochasin B, but it impaired the labeling of the phosphoinositides by myo-[2-3H]inositol. The mechanism of the inhibition of the isotope incorporation into these acidic phospholipids by the two nucleotides has not been defined. Dibutyryl cyclic adenosine 3′ : 5′-monophosphate at 2–4 mM concentration was not found to appreciably alter the incorporation of [γ-32P]ATP into phosphatidic acid, phosphatidylinositol, diphosphoinositide, and triphosphoinositide.  相似文献   

17.
Control guinea pig cardiac myofibrils were isolated in the presence of Triton X-100. Experimental myofibrils, prepared in the presence of Triton X-100, NaF, cyclic AMP and ATP, possessed a reduced myofibrillar ATPase activity. When myofibrils isolated under control conditions were incubated for two hours at 25°C with NaF, ATP and cyclic AMP, the ATPase activity was also decreased; however, the ATPase activity was not reduced as much as that of myofibrils isolated under experimental conditions. Incubation of myofibrils with E. coli aklaline phosphatase and guinea pig heart phosphoprotein phosphatase resulted in an increase in ATPase activity and a decrease in phosphoprotein phosphate. Thus there appeared to be an inverse relationship between myofibrillar ATPase activity and phosphoprotein phosphate content. The results indicated that a protein kinase is associated with the Triton X-100 purified myofibrils and supports the notion that intact myofibrils can exist in at least two catalytic forms.  相似文献   

18.
Cortical slices from rat brain were used to study carbachol-stimulated inositol phospholipid hydrolysis. Omission of calcium during incubation of slices with [3H]inositol increased its incorporation into receptor-coupled phospholipids. Carbachol-stimulated hydrolysis of [3H]inositol phospholipids in slices was dose-dependent, was affected by the concentrations of calcium and lithium present and resulted in the accumulation of mostly [3H]inositol-l-phosphate. Incubation of slices withN-ethylmaleimide or a phorbol ester reduced the response to carbachol. Membranes prepared from cortical slices labeled with [3H]inositol retained the receptor-stimulated inositol phospholipid hydrolysis reaction. The basal rate of inositol phospholipid hydrolysis was higher than in slices and addition of carbachol further stimulated the process. Addition of GTP stimulated inositol phospholipid hydrolysis, suggesting the presence of a guanine nucleotide-binding protein coupled to phospholipase C. Carbachol and GTP-stimulated inositol phospholipid hydrolysis in membranes was detectable following a 3 min assay period. In contrast to slices, increased levels of inositol bisphosphate and inositol trisphosphate were detected following incubation of membranes with carbachol. These results demonstrate that agonist-responsive receptors are present in cortical membranes, that the receptors may be coupled to phosphatidylinositol 4,5-bisphosphate, rather than phosphatidylinositol, hydrolysis and that a guanine nucleotide-binding protein may mediate the coupling of receptor activation to inositol phospholipid hydrolysis in brain.  相似文献   

19.
Effect of adrenaline on 32P incorporation into rat fat-cell phospholipids   总被引:3,自引:3,他引:0  
1. The phospholipid composition of fat-cells prepared from rat epididymal fat-pad was determined. 2. The incorporation of [32P]Pi into the phospholipids of fat-cells incubated in glucose-free medium and the effect of adrenaline and of α- and β-adrenergic blocking agents, were studied. 3. Incorporation of [32P]Pi into fat-cell phospholipid increased with time; incubation with adrenaline resulted in increased incorporation that was related to the concentration of adrenaline. 4. The pattern of incorporation of [32P]Pi into the individual phospholipids of fat-cells after incubation for 1h was determined; adrenaline (5.4μm) resulted in increased incorporation into phosphatidylcholine. 5. Incubation of fat-cells with propranolol (34μm) and adrenaline (5.4μm) resulted in abolition of adrenaline-stimulated lipolysis; there was a decrease in the specific radioactivity of phosphatidylcholine and an increase in the specific radioactivity of phosphatidylethanolamine, phosphatidic acid, phosphatidylinositol and cardiolipin compared with cells incubated with adrenaline alone. 6. Incubation of fat-cells with phenoxybenzamine (0.1mm) and adrenaline (5.4μm) resulted in stimulation of lipolysis, and in diminished specific radioactivities of phosphatidylcholine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol and choline plasmalogen compared with cells stimulated with adrenaline alone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号