首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Newly synthesized eukaryotic membrane proteins must be integrated into the membrane of the endoplasmic reticulum with the correct topology to enable the subsequent acquisition of the correctly folded, functional conformation. Here, an analysis is presented of N-terminal glycosylation and steady-state membrane orientation of a series of truncation mutants of the seven-helix protein rhodopsin expressed in COS-1 cells. Mutants containing one, three, or five N-terminal transmembrane segments of rhodopsin, as well as mutants containing only the first transmembrane segment, but with hydrophilic extensions at the C-terminus were studied. The findings demonstrate that the C-terminal transmembrane segments play a crucial role in determining the final orientation of rhodopsin, and that the commitment to the correct orientation occurs only after the synthesis of at least three transmembrane segments. The experiments also suggest that the molecular machinery involved in the integration of a newly synthesized seven-helix membrane protein into the endoplasmic reticulum membrane is sensitive to the overall hydrophobicity of the sequence that follows the first transmembrane segment.  相似文献   

2.
We investigated the membrane topogenesis of glucose-6-phosphatase (G6Pase), a multispanning membrane protein, on the endoplasmic reticulum. In COS-7 cells, the first transmembrane segment (TM1) with weak hydrophobicity is inserted into the membrane in the N-terminus-out/C-terminus-cytoplasm orientation. The following TM2 is inserted depending on TM3. TM3 has the same orientation as TM1. In contrast to data from living cells, the full-length molecule and N-terminal fusion constructs were not inserted into the membrane in a cell-free system. Addition of a signal recognition particle did not improve G6Pase insertion. When the 37-residue N-terminal segment was deleted, however, TM2 and TM3 were correctly inserted. We concluded that the three N-terminal TM segments are inserted into the membrane dependent on the two signal-anchor sequences of TM1 and TM3. TM1 is likely to be an unconventional signal sequence that barely functions in vitro. The 37-residue N-terminal segment inhibits the signal function of the following TM3 in cell-free systems.  相似文献   

3.
Uracil permease is a multispanning protein of the Saccharomyces cerevisiae plasma membrane which is encoded by the FUR4 gene and produced in limited amounts. It has a long N-terminal hydrophilic segment, which is followed by 10 to 12 putative transmembrane segments, and a hydrophilic C terminus. The protein carries seven potential N-linked glycosylation sites, three of which are in its N-terminal segment. Overexpression of this permease and specific antibodies were used to show that uracil permease undergoes neither N-linked glycosylation nor proteolytic processing. Uracil permease N-terminal segments of increasing lengths were fused to a reporter glycoprotein, acid phosphatase. The in vitro and in vivo fates of the resulting hybrid proteins were analyzed to identify the first signal anchor sequence of the permease and demonstrate the cytosolic orientation of its N-terminal hydrophilic sequence. In vivo insertion of the hybrid protein bearing the first signal anchor sequence of uracil permease into the endoplasmic reticulum membrane was severely blocked in sec61 and sec62 translocation mutants.  相似文献   

4.
Towards a comparative anatomy of N-terminal topogenic protein sequences   总被引:24,自引:0,他引:24  
A comparative study of three kinds of eukaryotic N-terminal topogenic sequences, viz signal peptides, N-terminal transmembrane anchors, and mitochondrial targeting sequences, suggests: that the sign of the N-terminal charge might influence the orientation of an N-terminal hydrophobic segment relative to the membrane and give rise to N-terminally anchored proteins with their main mass exposed either on the cytosolic or extra-cytosolic side of the membrane; and that N-terminal transmembrane segments in mitochondrial targeting sequences have a relatively low overall hydrophobicity, probably in order to avoid being recognized by the endoplasmic reticulum export machinery.  相似文献   

5.
We have studied the membrane insertion of ProW, an Escherichia coli inner membrane protein with seven transmembrane segments and a large periplasmic N-terminal tail, into endoplasmic reticulum (ER)-derived dog pancreas microsomes. Strikingly, significant levels of N-tail translocation is seen only when a minimum of four of the transmembrane segments are present; for constructs with fewer transmembrane segments, the N-tail remains mostly nontranslocated and the majority of the molecules adopt an "inverted" topology where normally nontranslocated parts are translocated and vice versa. N-tail translocation can also be promoted by shortening of the N-tail and by the addition of positively charged residues immediately downstream of the first trasnmembrane segment. We conclude that as many as four consecutive transmembrane segments may be collectively involved in determining membrane protein topology in the ER and that the effects of downstream sequence determinants may vary depending on the size and charge of the N-tail. We also provide evidence to suggest that the ProW N-tail is translocated across the ER membrane in a C-to-N-terminal direction.  相似文献   

6.
We have isolated an expressible full-length cDNA clone encoding murine ERp99, an abundant, conserved transmembrane glycoprotein of the endoplasmic reticulum membrane. ERp99 is synthesized as a 92,475-kDa precursor containing 802 amino acids. It possesses a signal peptide of 21 amino acids which is cleaved cotranslationally. Analysis of the amino acid sequence deduced from the nucleotide sequence of the cDNA clone led us to propose a model for the orientation of ERp99 in the endoplasmic reticulum membrane. In this model, ERp99 possesses one membrane-spanning, stop transfer segment in the N-terminal region. The protein chain passes through the membrane only once, and approximately 75% of the protein remains on the cytoplasmic side of the ER membrane. Comparison of the ERp99 sequence to the sequence of other proteins revealed that ERp99 has extensive homology with the 90-kDa heat shock protein of Saccharomyces cerevisiae (hsp90) and the 83-kDa heat shock protein of Drosophila melanogaster. In addition, the N terminus of mature ERp99 is identical to that of the 94-kDa glucose regulated protein (GRP94) of mammalian cells.  相似文献   

7.
8.
To better define the mechanism of membrane protein insertion into the membrane of the endoplasmic reticulum, we measured the kinetics of translocation across microsomal membranes of the N-terminal lumenal tail and the lumenal domain following the second transmembrane segment (TM2) in the multispanning mouse protein Cig30. In the wild-type protein, the N-terminal tail translocates across the membrane before the downstream lumenal domain. Addition of positively charged residues to the N-terminal tail dramatically slows down its translocation and allows the downstream lumenal domain to translocate at the same time as or even before the N-tail. When TM2 is deleted, or when the loop between TM1 and TM2 is lengthened, addition of positively charged residues to the N-terminal tail causes TM1 to adopt an orientation with its N-terminal end in the cytoplasm. We suggest that the topology of the TM1-TM2 region of Cig30 depends on a competition between TM1 and TM2 such that the transmembrane segment that inserts first into the ER membrane determines the final topology.  相似文献   

9.
Wang J  Bongianni JK  Napoli JL 《Biochemistry》2001,40(42):12533-12540
We determined the orientation of the SDR (short-chain dehydrogenase/reductase) rat RoDH1 (retinol dehydrogenase type 1) in the endoplasmic reticulum to provide insight into its function in retinol metabolism, and to resolve whether retinoid-metabolizing SDRs differ from several other SDRs by requiring a C-terminal segment for the membrane orientation. In contrast to several soluble SDRs, the membrane-associated RoDH1 has hydrophobic extensions N- and C-terminal to the SDR core. Confocal microscopy and/or proteinase K protection assays of RoDH1, RoDH1 mutants, and RoDH1-green fluorescent protein fusion proteins showed that the N-terminal segment anchors RoDH1 to the endoplasmic reticulum membrane facing the cytosol. The C-terminal hydrophobic segment increases the relative proportion of RoDH1 associated with the endoplasmic reticulum, but has no affect on orientation. Deletion of either or both extensions causes nearly total loss of enzyme activity, possibly through altering the nature of RoDH1 association with membranes, or destabilizing the enzyme, but does not alter the expression of RoDH1 or convert it into a soluble protein. The latter suggests that the SDR core of RoDH1 has marked external hydrophobicity that causes nonspecific membrane association.  相似文献   

10.
Surfactant protein C (SP-C) is a lung-specific protein that is synthesized as a 21-kDa integral membrane propeptide (pro-SP-C) and proteolytically processed to a 3.7-kDa secretory product. Previous studies have shown that palmitoylation of pro-SP-C is dependent on two N-terminal juxtamembrane positively charged residues. We hypothesized that these residues influence modification of pro-SP-C by directing transmembrane orientation. Double substitution mutation of these juxtaposed residues from positive to neutral charged species resulted in complete reversal of transmembrane orientation of pro-SP-C and total abrogation of post-translational processing. Mutation of a single residue resulted in mixed orientation. Protein trafficking studies in A549 cells showed that while the double mutant was retained in the endoplasmic reticulum, single mutants produced a mixed pattern of both endoplasmic reticulum (double mutant-like) and vesicular (wild type-like) expression. Our study demonstrates the crucial role juxtamembrane positively charged residues play in establishing membrane topology and their influence on the trafficking and processing of pro-SP-C. Moreover this study provides a likely precedent for a mechanism in disorders associated with mutations in the membrane-flanking region of integral membrane proteins.  相似文献   

11.
Polypeptides synthesized by membrane-bound ribosomes are cotranslationally integrated into the endoplasmic reticulum membrane. Transmembrane segments are positioned in the membrane via two distinct modes. In the autonomous mode, hydrophobic segments are integrated into the membrane based on the characteristics of the segment. In the heteronomous mode, a segment that is not inserted into the membrane by itself is forced into a transmembrane disposition by other segments. This unexpected insertion is achieved by a signal-anchor sequence with N(exo)/C(cyto) topology that translocates the preceding segment. Structural and functional diversities of transmembrane segments in multispanning proteins are acquired via this mode. Such a heteronomous positioning of polypeptide segments might occur not only in the integration process of membrane proteins but also in the general folding processes of soluble proteins.  相似文献   

12.
H M Li  L J Chen 《The Plant cell》1996,8(11):2117-2126
Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule.  相似文献   

13.
Higy M  Junne T  Spiess M 《Biochemistry》2004,43(40):12716-12722
Most eukaryotic membrane proteins are cotranslationally integrated into the endoplasmic reticulum membrane by the Sec61 translocation complex. They are targeted to the translocon by hydrophobic signal sequences, which induce the translocation of either their N- or their C-terminal sequence. Signal sequence orientation is largely determined by charged residues flanking the apolar sequence (the positive-inside rule), folding properties of the N-terminal segment, and the hydrophobicity of the signal. Recent in vivo experiments suggest that N-terminal signals initially insert into the translocon head-on to yield a translocated N-terminus. Driven by a local electrical potential, the signal may invert its orientation and translocate the C-terminal sequence. Increased hydrophobicity slows down inversion by stabilizing the initial bound state. In vitro cross-linking studies indicate that signals rapidly contact lipids upon entering the translocon. Together with the recent crystal structure of the homologous SecYEbeta translocation complex of Methanococcus jannaschii, which did not reveal an obvious hydrophobic binding site for signals within the pore, a model emerges in which the translocon allows the lateral partitioning of hydrophobic segments between the aqueous pore and the lipid membrane. Signals may return into the pore for reorientation until translation is terminated. Subsequent transmembrane segments in multispanning proteins behave similarly and contribute to the overall topology of the protein.  相似文献   

14.
During protein integration into the endoplasmic reticulum, the N-terminal domain preceding the type I signal-anchor sequence is translocated through a translocon. By fusing a streptavidin-binding peptide tag to the N terminus, we created integration intermediates of multispanning membrane proteins. In a cell-free system, N-terminal domain (N-domain) translocation was arrested by streptavidin and resumed by biotin. Even when N-domain translocation was arrested, the second hydrophobic segment mediated translocation of the downstream hydrophilic segment. In one of the defined intermediates, two hydrophilic segments and two hydrophobic segments formed a transmembrane disposition in a productive state. Both of the translocating hydrophilic segments were crosslinked with a translocon subunit, Sec61α. We conclude that two translocating hydrophilic segment in a single membrane protein can span the membrane during multispanning topogenesis flanking the translocon. Furthermore, even after six successive hydrophobic segments entered the translocon, N-domain translocation could be induced to restart from an arrested state. These observations indicate the remarkably flexible nature of the translocon.  相似文献   

15.
Calcium-activated chloride channel (CLCA) proteins were first described as a family of plasma membrane Cl(-) channels that could be activated by calcium. Genetic and electrophysiological studies have supported this view. The human CLCA2 protein is expressed as a 943-amino-acid precursor whose N-terminal signal sequence is removed followed by internal cleavage near amino acid position 680. Earlier investigations of transmembrane geometry suggested five membrane passes. However, analysis by the more recently derived simple modular architecture research tool algorithm predicts that a C-terminal 22-amino-acid hydrophobic segment comprises the only transmembrane pass. To resolve this question, we raised an antibody against hCLCA2 and investigated the synthesis, localization, maturation, and topology of the protein. Cell surface biotinylation and endoglycosidase H analysis revealed a 128-kDa precursor confined to the endoplasmic reticulum and a maturely glycosylated 141-kDa precursor at the cell surface by 48 h post-transfection. By 72 h, 109-kDa N-terminal and 35-kDa C-terminal cleavage products were detected at the cell surface but not in the endoplasmic reticulum. Surprisingly, however, the 109-kDa product was spontaneously shed into the medium or removed by acid washes, whereas the precursor and 35-kDa product were retained by the membrane. Two other CLCA family members, bCLCA2 and hCLCA1, also demonstrated preferential release of the N-terminal product. Transfer of the hCLCA2 C-terminal hydrophobic segment to a secreted form of green fluorescent protein was sufficient to target that protein to the plasma membrane. Together, these data indicate that hCLCA2 is mostly extracellular with only a single transmembrane segment followed by a short cytoplasmic tail and is itself unlikely to form a channel.  相似文献   

16.
Many plasma membrane proteins are anchored to the membrane via a C-terminal glycosylphosphatidylinositol (GPI) moiety. The GPI anchor is attached to the protein in the endoplasmic reticulum by transamidation, a reaction in which a C-terminal GPI-attachment signal is cleaved off concomitantly with addition of the GPI moiety. GPI-attachment signals are poorly conserved on the sequence level but are all composed of a polar segment that includes the GPI-attachment site followed by a hydrophobic segment located at the very C terminus of the protein. Here, we show that efficient GPI modification requires that the hydrophobicity of the C-terminal segment is "marginal": less hydrophobic than type II transmembrane anchors and more hydrophobic than the most hydrophobic segments found in secreted proteins. We further show that the GPI-attachment signal can be modified by the transamidase irrespective of whether it is first released into the lumen of the endoplasmic reticulum or is retained in the endoplasmic reticulum membrane.  相似文献   

17.
The small (S), middle (M) and large (L) envelope proteins of the hepatitis B virus (HBV) are initially synthesized as multispanning membrane proteins of the endoplasmic reticulum membrane. We now demonstrate that all envelope proteins synthesized in transfected cells or in a cell-free system adopt more than one transmembrane orientation. The L protein disposes its N-terminal preS domain both to the cytoplasmic and the luminal side of the membrane. This unusual topology does not depend on interaction with the viral nucleocapsid, but is preserved in secreted empty envelope particles. Pulse-chase analysis suggests a novel process of post-translational translocation leading to the non-uniform topology. Analysis of L deletion mutants indicates that the block to co-translational translocation can be attributed to a specific sequence within preS, suggesting that translocation of L may be regulated. Additional topological heterogeneity is displayed in the S region of the envelope proteins and in the S protein itself, as assayed in a cell-free system. S proteins integrated into microsomal membranes exhibit both a luminal and a cytoplasmic orientation of the internal hydrophilic region carrying the major antigenic determinants. This may explain the unusual partial glycosylation of the HBV envelope proteins.  相似文献   

18.
Protein glycosylation is one of the most common post-translational modifications in eukaryotes and affects various aspects of protein structure and function. To facilitate studies of protein glycosylation, we paired glycosylation site-specific stable isotope tagging of lectin affinity-captured N-linked glycopeptides with mass spectrometry and determined 1,465 N-glycosylated sites on 829 proteins expressed in Caenorhabditis elegans. The analysis shows the diversity of protein glycosylation in eukaryotes in terms of glycosylation sites and oligosaccharide structures attached to polypeptide chains and suggests the substrate specificity of oligosaccharyltransferase, a single multienzyme complex in C. elegans that incorporates an oligosaccharide moiety en bloc to newly synthesized polypeptides. In addition, topological analysis of 257 N-glycosylated proteins containing a putative single transmembrane segment that were identified based on the relative positions of glycosylation sites and transmembrane segments suggests that an atypical non-cotranslational mechanism translocates large N-terminal segments from the cytosol to the endoplasmic reticulum lumen in the absence of signal sequence function.  相似文献   

19.
The mouse prenylated Rab acceptor (mPRA1) is associated with the Golgi membrane at steady state and interacts with Rab proteins. It contains two internal hydrophobic domains (34 residues each) that have enough residues to form four transmembrane (TM) segments. In this study, we have determined the membrane topography of mPRA1 in both intact cells and isolated microsomes. The putative TM segments of mPRA1 were used to substitute for a known TM segment of a model membrane protein to determine whether the mPRA1 segments integrate into the membrane. Furthermore, N-linked glycosylation scanning methods were used to distinguish luminal domains from cytoplasmic domains of mPRA1. The data demonstrate that mPRA1 is a polytopic membrane protein containing four TM segments. These TM segments act cooperatively during the translocation and integration at the endoplasmic reticulum membrane. All hydrophilic domains are in the cytoplasm, including the N-terminal domain, the linker domain between the two hydrophobic domains, and the C-terminal domain. As a result, the bulk of mPRA1 is located in the cytoplasm, supporting its postulated role in regulating Rab membrane targeting and intracellular trafficking.  相似文献   

20.
Oxenoid K  Sönnichsen FD  Sanders CR 《Biochemistry》2002,41(42):12876-12882
Prokaryotic diacylglycerol kinase (DAGK) functions as a homotrimer of 13 kDa subunits, each of which has three transmembrane segments. This enzyme is conditionally essential to some bacteria and serves as a model system for studies of membrane protein biocatalysis, stability, folding, and misfolding. In this work, the detailed topology and secondary structure of DAGK's N-terminus up through the loop following the first transmembrane domain were probed by NMR spectroscopy. Secondary structure was mapped by measuring 13C NMR chemical shifts. Residue-to-residue topology was probed by measuring 19F NMR relaxation rates for site-specifically labeled samples in the presence and absence of polar and hydrophobic paramagnetic probes. Most of DAGK's N-terminal cytoplasmic and first transmembrane segments are alpha-helical. The first and second transmembrane helices are separated by a short loop from residues 48 to 52. The first transmembrane segment extends from residues 32 to 48. Most of the N-terminal cytoplasmic domain lies near the interface but does not extend deeply into the membrane. Finally, catalytic activities measured for the single cysteine mutants before and after chemical labeling suggest that the N-terminal cytoplasmic domain likely contains a number of critical active site residues. The results, therefore, suggest that DAGK's active site lies very near to the water/bilayer interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号