首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane fusion is an essential step of the internalization process of the enveloped animal viruses. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. In a previous work, we identified a specific sequence in VSV G protein, comprising the residues 145 to 164, directly involved in membrane interaction and fusion. Unlike fusion peptides from other viruses, this sequence is very hydrophilic, containing six charged residues, but it was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Using a carboxyl-modifying agent, dicyclohexylcarbodiimide (DCCD), and several synthetic mutant peptides, we demonstrated that the negative charges of peptide acidic residues, especially Asp153 and Glu158, participate in the formation of a hydrophobic domain at pH 6.0, which is necessary to the peptide-induced membrane fusion. The formation of the hydrophobic region and the membrane fusion itself were dependent on peptide concentration in a higher than linear fashion, suggesting the involvement of peptide oligomerization. His148 was also necessary to hydrophobicity and fusion, suggesting that peptide oligomerization occurs through intermolecular electrostatic interactions between the positively-charged His and a negatively-charged acidic residue of two peptide molecules. Oligomerization of hydrophilic peptides creates a hydrophobic region that is essential for the interaction with the membrane that results in fusion.  相似文献   

2.
The entry of enveloped animal viruses into their host cells always depends on membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion between the viral envelope and the endosomal membrane at the acidic environment of this compartment. In this work, we evaluated VSV interactions with membranes of different phospholipid compositions, at neutral and acidic pH, using atomic force microscopy (AFM) operating in the force spectroscopy mode, isothermal calorimetry (ITC) and molecular dynamics simulation. We found that the binding forces differed dramatically depending on the membrane phospholipid composition, revealing a high specificity of G protein binding to membranes containing phosphatidylserine (PS). In a previous work, we showed that the sequence corresponding amino acid 164 of VSV G protein was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Here, we used this sequence to explore VSV–PS interaction using ITC. We found that peptide binding to membranes was exothermic, suggesting the participation of electrostatic interactions. Peptide–membrane interaction at pH 7.5 was shown to be specific to PS and dependent on the presence of His residues in the fusion peptide. The application of the simplified continuum Gouy–Chapman theory to our system predicted a pH of 5.0 at membrane surface, suggesting that the His residues should be protonated when located close to the membrane. Molecular dynamics simulations suggested that the peptide interacts with the lipid bilayer through its N-terminal residues, especially Val145 and His148. Fabiana A.Carneiro and Pedro A. Lapido-Loureiro contributed equally to this work An erratum to this article can be found at  相似文献   

3.
Entry of enveloped animal viruses into their host cells always depends on a step of membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. VSV-induced membrane fusion occurs at a very narrow pH range, between 6.2 and 5.8, suggesting that His protonation is required for this process. To investigate the role of His in VSV fusion, we chemically modified these residues using diethylpyrocarbonate (DEPC). We found that DEPC treatment inhibited membrane fusion mediated by VSV in a concentration-dependent manner and that the complete inhibition of fusion was fully reversed by incubation of modified virus with hydroxylamine. Fluorescence measurements showed that VSV modification with DEPC abolished pH-induced conformational changes in G protein, suggesting that His protonation drives G protein interaction with the target membrane at acidic pH. Mass spectrometry analysis of tryptic fragments of modified G protein allowed the identification of the putative active His residues. Using synthetic peptides, we showed that the modification of His-148 and His-149 by DEPC, as well as the substitution of these residues by Ala, completely inhibited peptide-induced fusion, suggesting the direct participation of these His in VSV fusion.  相似文献   

4.
The glycoprotein (G) of vesicular stomatitis virus (VSV) is responsible for binding of virus to cells and for mediating virus entry following endocytosis by inducing fusion of the viral envelope with the endosomal membrane. The fusion peptide of G is internal (residues 116 to 137) and exhibits characteristics similar to those of other internal fusion peptides, but recent studies have implicated the region adjacent to the transmembrane domain as also being important for G-mediated membrane fusion. Sequence alignment of the membrane-proximal region of G from several different vesiculoviruses revealed that this domain is highly conserved, suggesting that it is important for G function. Mutational analysis was used to show that this region is not essential for G protein oligomerization, transport to the cell surface, or incorporation into virus particles but that it is essential for acid-induced membrane fusion activity and for virus infectivity. Deletion of the 13 membrane-proximal amino acids (N449 to W461) dramatically reduced cell-cell fusion activity and reduced virus infectivity approximately 100-fold, but mutation of conserved aromatic residues (W457, F458, and W461) either singly or together had only modest effects on cell-cell fusion activity; recombinant virus encoding these mutants replicated as efficiently as wild-type (WT) VSV. Insertion of heterologous sequences in the juxtamembrane region completely abolished membrane fusion activity and virus infectivity, as did deletion of residues F440 to N449. The insertion mutants showed some changes in pH-dependent conformational changes and in virus binding, which could partially explain the defects in membrane fusion activity, but all the other mutants were similar to WT G with respect to conformational changes and virus binding. These data support the hypothesis that the membrane-proximal domain contributes to G-mediated membrane fusion activity, yet the conserved aromatic residues are not essential for membrane fusion or virus infectivity.  相似文献   

5.
Membrane fusion is the key step in the entry of enveloped animal viruses into their host cells. Fusion of vesicular stomatitis virus with membranes occurs at acidic pH and is mediated by its envelope glycoprotein, the G protein. To study the structural transitions induced by acidic pH on G protein, we have extracted the protein from purified virus by incubation with nonionic detergent. At pH 6.0, purified G protein was able to mediate fusion of either phospholipid vesicles or Vero cells in culture. Intrinsic fluorescence studies revealed that changes in the environment of Trp residues occurred as pH decreases. In the absence of lipidic membranes, acidification led to G protein aggregation, whereas protein-protein interactions were substituted by protein-lipid interactions in the presence of liposomes. 1,1'-Bis(4-aniline-5-naphthalene sulfonate) (bis-ANS) binding was utilized to probe the degree of exposure of hydrophobic regions of G protein during acidification. Bis-ANS binding was maximal at pH 6.2, suggesting that a hydrophobic segment is exposed to the medium at this pH. At pH 6.0, a dramatic decrease in bis-ANS binding was observed, probably due to loss of tridimensional structure during the conformational rearrangement. This hypothesis was confirmed by circular dichroism analysis at different pH values, which showed a great decrease in alpha-helix content at pH values close to 6.0, suggesting that a reorganization of G protein secondary structure occurs during the fusion reaction. Our results indicate that G protein undergoes dramatic structural changes at acidic pH and acquires a conformational state able to interact with the target membrane.  相似文献   

6.
We studied fusion induced by a 20-amino acid peptide derived from the amino-terminal segment of hemagglutinin of influenza virus A/PR/8/34 [Murata, M., Sugahara, Y., Takahashi, S., & Ohnishi, S. (1987) J. Biochem. (Tokyo) 102, 957-962]. To extend the study, we have prepared several water-soluble amphiphilic peptides derived from the HA peptide; the anionic peptides D4, E5, and E5L contain four and five acidic residues and the cationic peptide K5 has five Lys residues in place of the five Glu residues in E5. Fusion of egg phosphatidylcholine large unilamellar vesicles induced by these peptides is assayed by two different fluorescence methods, lipid mixing and internal content mixing. Fusion is rapid in the initial stage (12-15% within 20 s) and remains nearly the same or slightly increasing afterward. The anionic peptides cause fusion at acidic pH lower than 6.0-6.5, and the cationic peptide causes fusion at alkaline pH higher than 9.0. Leakage and vesiculation of vesicles are also measured. These peptides are bound and associated with vesicles as shown by Ficoll discontinuous gradients and by the blue shift of tryptophan fluorescence. They take an alpha-helical structure in the presence of vesicles. They become more hydrophobic in the pH regions for fusion. When the suspension is made acidic or alkaline, the vesicles aggregate, as shown by the increase in light scattering. The fusion mechanism suggests that the amphiphilic peptides become more hydrophobic by neutralization due to protonation of the carboxyl groups or deprotonation of the lysyl amino groups, aggregate the vesicles together, and interact strongly with lipid bilayers to cause fusion. At higher peptide concentrations, E5 and E5L cause fusion transiently at acidic pH followed by vesiculation.  相似文献   

7.
Entry of enveloped animal viruses into their host cells always depends on a step of membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. In a previous work, we identified a specific sequence in the VSV G protein, comprising the residues 145-164, directly involved in membrane interaction and fusion. In the present work we studied the interaction of pep[145-164] with membranes using NMR to solve the structure of the peptide in two membrane-mimetic systems: SDS micelles and liposomes composed of phosphatidylcholine and phosphatidylserine (PC:PS vesicles). The presence of medium-range NOEs showed that the peptide has a tendency to form N- and C-terminal helical segments in the presence of SDS micelles. Analysis of the chemical shift index indicated helix-coil equilibrium for the C-terminal helix under all conditions studied. At pH 7.0, the N-terminal helix also displayed a helix-coil equilibrium when pep[145-164] was free in solution or in the presence of PC:PS. Remarkably, at the fusogenic pH, the region of the N-terminal helix in the presence of SDS or PC:PS presented a third conformational species that was in equilibrium with the helix and random coil. The N-terminal helix content decreases pH and the minor beta-structured conformation becomes more prevalent at the fusogenic pH. These data point to a beta-conformation as the fusogenic active structure-which is in agreement with the X-ray structure, which shows a beta-hairpin for the region corresponding to pep[145-164].  相似文献   

8.
Infection by enveloped viruses initially involves membrane fusion between viral and host cell membranes. The fusion peptide plays a crucial role in triggering this reaction. To clarify how the fusion peptide exerts this specific function, we carried out biophysical studies of three fusion peptide analogs of influenza virus hemagglutinin HA2, namely E5, G13L, and L17A. E5 exhibits an activity similar to the native fusion peptide, whereas G13L and L17A, which are two point mutants of the E5 analog, possess much less fusion activity. Our CD data showed that the conformations of these three analogs in SDS micelles are pH-dependent, with higher alpha-helical contents at acidic pH. Tryptophan fluorescence emission experiments indicated that these three analogs insert deeper into lipid bilayers at acidic pH. The three-dimensional structure of the E5 analog in SDS micelles at pH 4.0 revealed that two segments, Leu(2)-Glu(11) and Trp(14)-Ile(18), form amphipathic helical conformations, with Gly(12)-Gly(13) forming a hinge. The hydrophobic residues in the N- and C-terminal helices form a hydrophobic cluster. At neutral pH, however, the C-terminal helix of Trp(14)-Ile(18) reduces dramatically, and the hydrophobic core observed at acidic pH is severely disrupted. We suggest that the disruption of the C-terminal helix renders the E5 analog fusion-inactive at neutral pH. Furthermore, the decrease of the hinge and the reduction of fusion activity in G13L reveal the importance of the hinge in fusion activity. Also, the decrease in the C-terminal helix and the reduction of fusion activity in L17A demonstrates the importance of the C-terminal helix in fusion activity. Based on these biophysical studies, we propose a model that illustrates the structural change of the HA2 fusion peptide analog and explains how the analog interacts with the lipid bilayer at different pH values.  相似文献   

9.
Dengue fever is one of the most widespread tropical diseases in the world. The disease is caused by a virus member of the Flaviviridae family, a group of enveloped positive sense single-stranded RNA viruses. Dengue virus infection is mediated by virus glycoprotein E, which binds to the cell surface. After uptake by endocytosis, this protein induces the fusion between viral envelope and endosomal membrane at the acidic environment of the endosomal compartment. In this work, we evaluated by steady-state and time-resolved fluorescence spectroscopy the interaction between the peptide believed to be the dengue virus fusion peptide and large unilamellar vesicles, studying the extent of partition, fusion capacity and depth of insertion in membranes. The roles of the bilayer composition (neutral and anionic phospholipids), ionic strength and pH of the medium were also studied. Our results indicate that dengue virus fusion peptide has a high affinity to vesicles composed of anionic lipids and that the interaction is mainly electrostatic. Both partition coefficient and fusion index are enhanced by negatively charged phospholipids. The location determined by differential fluorescence quenching using lipophilic probes demonstrated that the peptide is in an intermediate depth in the hemilayers, in-between the bilayer core and its surface. Ultimately, these data provide novel insights on the interaction between dengue virus fusion peptide and its target membranes, namely, the role of oligomerization and specific types of membranes.  相似文献   

10.
Vesicular stomatitis virus glycoprotein G (VSV‐G) belongs to a new class of viral fusion proteins (Class III). The structure of VSV‐G has been solved in two different conformations and fusion is known to be triggered by low pH. To investigate Class III fusion mechanisms, molecular dynamics simulations were performed on the VSV‐G prefusion structure in two different protonation states: at physiological pH (pH 7) and low pH present in the endosome (pH 5). Domain IV containing the fusion loops, which need to interact with the target membrane, exhibits the highest mobility. Energetic analyses revealed weakened interaction between Domain IV and the protein core at pH 5, which can be attributed to two pairs of structurally neighboring conserved and differentially protonated residues in the Domain IV–core interface. Energetic calculations also demonstrated that the interaction between the subunits in the core of the trimeric VSV‐G is strengthened at pH 5, mainly due to newly formed interactions between the C‐terminal loop of Domain II and the N‐terminus of the adjacent subunit. A pair of interacting residues in this interface that is affected by differential protonation was shown to be the main effectors of this phenomenon. The results of this study thus enhance the mechanistic understanding of the effects of protonation changes in VSV‐G. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.  相似文献   

12.
Vesicular stomatitis virus (VSV) infection depends on the fusion of viral and cellular membranes, which is mediated by virus spike glycoprotein G at the acidic environment of the endosomal compartment. VSV G protein does not contain a hydrophobic amino acid sequence similar to the fusion peptides found among other viral glycoproteins, suggesting that membrane recognition occurs through an alternative mechanism. Here we studied the interaction between VSV G protein and liposomes of different phospholipid composition by force spectroscopy, isothermal titration calorimetry (ITC), and fluorescence spectroscopy. Force spectroscopy experiments revealed the requirement for negatively charged phospholipids for VSV binding to membranes, suggesting that this interaction is electrostatic in nature. In addition, ITC experiments showed that VSV binding to liposomes is an enthalpically driven process. Fluorescence data also showed the lack of VSV interaction with the vesicles as well as inhibition of VSV-induced membrane fusion at high ionic strength. Intrinsic fluorescence measurements showed that the extent of G protein conformational changes depends on the presence of phosphatidylserine (PS) on the target membrane. Although the increase in PS content did not change the binding profile, the rate of the fusion reaction was remarkably increased when the PS content was increased from 25 to 75%. On the basis of these data, we suggest that G protein binding to the target membrane essentially depends on electrostatic interactions, probably between positive charges on the protein surface and negatively charged phospholipids in the cellular membrane. In addition, the fusion is exothermic, indicating no entropic constraints to this process.  相似文献   

13.
H Riedel  C Kondor-Koch    H Garoff 《The EMBO journal》1984,3(7):1477-1483
Vesicular stomatitis virus (VSV) enters the host cell by the receptor-mediated endocytotic pathway. This brings the virus particle into acidic vesicles inside the cell where infection occurs through a fusion event between the viral and the host vesicle membrane. In this work we have shown that the VSV glycoprotein (G) carries the fusion activity of this virus. The G protein was expressed on the surface of baby hamster kidney 21 cells from cloned cDNA which had been engineered into an expression vector and introduced into cell nuclei with the aid of a glass microneedle. A short (60 s) treatment with acid (pH less than or equal to 6.0) medium induced fusion of cells having G protein on their surface. For efficient G protein expression and cell-cell fusion we had to trim the 5' end of the G cDNA and to use as promoter the long terminal repeat of the mouse Moloney sarcoma virus.  相似文献   

14.
Peptide III is a 20-residue synthetic model peptide based on the fusion peptide of influenza virus A/PR/8/34 strain and takes a secondary structure similar to the original peptide. While conserving the amphiphilic helical nature, 20 peptides to modify the bulkiness of side chains of peptide III were synthesized, and acid-induced membrane destabilization was assessed by aqueous content leakage from large unilamellar vesicles. Substitutions on the hydrophobic side decreased activity but showed less effect on the hydrophilic side, which confirmed the importance of the hydrophobic side for interaction with the membrane. Interestingly, substitution at the 13th Gly residue enhanced the amphiphilic helical nature but severely reduced activity. Correlation between alpha-helical content at acidic pH and the activity was not recognized, suggesting rather that the importance of this site was due to helix termination by glycine which allows N-terminal and C-terminal halves to behave as different secondary structural units.  相似文献   

15.
Vesicular stomatitis virus (VSV), a prototype of the Rhabdoviridae family, contains a single surface glycoprotein (G) that is responsible for attachment to cells and mediates membrane fusion. Working with the Indiana serotype of VSV, we employed a reverse genetic approach to produce fully authentic recombinant viral particles bearing lethal mutations in the G gene. By altering the hydrophobicity of the two fusion loops within G, we produced a panel of mutants, W72A, Y73A, Y116A, and A117F, that were nonfusogenic. Propagation of viruses bearing those lethal mutations in G completely depended on complementation by expression of the glycoprotein from the heterologous New Jersey serotype of VSV. The nonfusogenic G proteins oligomerize and are transported normally to the cell surface but fail to mediate acid pH-triggered membrane fusion. The nonfusogenic G proteins also interfered with the ability of wild-type G to mediate fusion, either by formation of mixed trimers or by inhibition of trimer function during fusion. Passage of one recombinant virus, A117F, identified a second site suppressor of the fusion block, E76K. When analyzed in the absence of the A117F substitution, E76K rendered G more sensitive to acid pH-triggered fusion, suggesting that this compensatory mutation is destabilizing. Our work provides a set of authentic recombinant VSV particles bearing lethal mutations in G, confirms that the hydrophobic fusion loops of VSV G protein are critical for membrane fusion, and underscores the importance of the sequence elements surrounding the hydrophobic tips of the fusion loops in driving fusion. This study has implications for understanding dominant targets for inhibition of G-mediated fusion. Moreover, the recombinant viral particles generated here will likely be useful in dissecting the mechanism of G-catalyzed fusion as well as study steps of viral assembly.  相似文献   

16.
We report the biotechnical production of peptides of approximately 35–50 amino acids in length containing one intramolecular disulfide bridge, using a recombinant fusion tail approach. This method fills the technological gap when either (a) chemical synthesis fails due to known problematic peptide sequences or (b) if simple recombinant expression is unsuccessful due to degradation. The fusion tail described here serves several purposes: (i) it enables high expression levels inEscherichia colito be achieved; (ii) it renders the fusion protein fairly soluble; (iii) it contains a histidine affinity tag for easy purification on Ni-chelate resins, which also serves as a catalyst for the oxygen-dependent formation of the disulfide bridge; and (iv) it suppresses the formation of concatamers during the oxidation process through steric hindrance. The purified fusion protein is then immobilized on a reversed phase column for two purposes: (i) chemical cleavage of the fusion tail by cyanogen bromide and (ii) subsequent purification of the peptide. A very hydrophilic fusion partner is required so that immobilization on the reversed phase column always occurs due to the peptide. Sensitive hydrophobic residues are thereby protected from the cleavage reagent while the cleaved hydrophilic fusion tail is easily separated from the hydrophobic peptide. The method is exemplified by eight peptides representing an immunodominant epitope of the human immunodeficiency virus, but may be useful for a significant variety of similar peptides.  相似文献   

17.
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever—a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit—a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.  相似文献   

18.
X Han  D A Steinhauer  S A Wharton  L K Tamm 《Biochemistry》1999,38(45):15052-15059
The amino-terminal region of the membrane-anchored subunit of influenza virus hemagglutinin, the fusion peptide, is crucial for membrane fusion of this virus. The peptide is extruded from the interior of the protein and inserted into the lipid bilayer of the target membrane upon induction of a conformational change in the protein by low pH. Although the effects of several mutations in this region on the fusion behavior and the biophysical properties of the corresponding peptides have been studied, the structural requirements for an active fusion peptide have still not been defined. To probe the sensitivity of the fusion peptide structure and function to small hydrophobic perturbations in the middle of the hydrophobic region, we have individually replaced the alanine residues in positions 5 and 7 with smaller (glycine) or bulkier (valine) hydrophobic residues and measured the extent of fusion mediated by these hemagglutinin constructs as well as some biophysical properties of the corresponding synthetic peptides in lipid bilayers. We find that position 5 tolerates a smaller and position 7 a larger hydrophobic side chain. All peptides contained segments of alpha-helical (33-45%) and beta-strand (13-16%) conformation as determined by CD and ATR-FTIR spectroscopy. The order parameters of the peptide helices and the lipid hydrocarbon chains were determined from measurements of the dichroism of the respective infrared absorption bands. Order parameters in the range of 0.0-0.6 were found for the helices of these peptides, which indicate that these peptides are most likely aligned with their alpha-helices at oblique angles to the membrane normal. Some (mostly fusogenic) peptides induced significant increases of the order parameter of the lipid hydrocarbon chains, suggesting that the lipid bilayer becomes more ordered in the presence of these peptides, possibly as a result of dehydration at the membrane surface.  相似文献   

19.
A twenty amino acid hydrophobic peptide with the same sequence as that of the HA2 N-terminal segment of influenza virus hemagglutinin was synthesized and studied as to its fusion activity. The peptide caused rapid and efficient fusion of egg yolk phosphatidylcholine sonicated vesicles at acidic pH but not at neutral pH. The threshold pH was ca. 6.2 and the maximum fusion occurred at pH 4.8, the half-maximal pH for fusion being 5.6. The pH dependence was similar to that of the parent virus. The fusion efficiency was dependent on the ration of lipid to peptide, increasing with decreasing ratio. The fusion can be rapidly switched on and off by adjusting the pH, to the acidic side and neutral, respectively. The peptide with an acetylated or succinylated N-terminus also showed low pH-induced fusion activity but the pH range was shifted by ca. 1 unit to the acidic side. The results indicate that the HA2 hydrophobic segment in the virus fusion protein is directly involved in the fusion reaction and protonation of the acidic residues in the segment is required for the activity.  相似文献   

20.
《Biophysical journal》2022,121(20):3811-3825
In this paper, we studied fusogenic peptides of class I-III fusion proteins, which are relevant to membrane fusion for certain enveloped viruses, in contact with model lipid membranes. We resolved the vertical structure and examined the adsorption or penetration behavior of the fusogenic peptides at phospholipid Langmuir monolayers with different initial surface pressures with x-ray reflectometry. We show that the fusion loops of tick-borne encephalitis virus (TBEV) glycoprotein E and vesicular stomatitis virus (VSV) G-protein are not able to insert deeply into model lipid membranes, as they adsorbed mainly underneath the headgroups with only limited penetration depths into the lipid films. In contrast, we observed that the hemagglutinin 2 fusion peptide (HA2-FP) and the VSV-transmembrane domain (VSV-TMD) can penetrate deeply into the membranes. However, in the case of VSV-TMD, the penetration was suppressed already at low surface pressures, whereas HA2-FP was able to insert even into highly compressed films. Membrane fusion is accompanied by drastic changes of the membrane curvature. To investigate how the peptides affect the curvature of model lipid membranes, we examined the effect of the fusogenic peptides on the equilibration of cubic monoolein structures after a phase transition from a lamellar state induced by an abrupt hydrostatic pressure reduction. We monitored this process in presence and absence of the peptides with small-angle x-ray scattering and found that HA2-FP and VSV-TMD drastically accelerate the equilibration, while the fusion loops of TBEV and VSV stabilize the swollen state of the lipid structures. In this work, we show that the class I fusion peptide of HA2 penetrates deeply into the hydrophobic region of membranes and is able to promote and accelerate the formation of negative curvature. In contrast, we found that the class II and III fusion loops of TBEV and VSV tend to counteract negative membrane curvature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号