首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic hypertension is associated with alterations in lipid metabolism, membrane lipid composition and membrane-protein function. 2-Hydroxyoleic acid (2OHOA) is a new antihypertensive molecule that regulates the structure of model membranes and their interaction with certain peripheral signalling proteins in vitro. While the effect of 2OHOA on elevated blood pressure is thought to arise through its influence on signalling proteins, its effects on membrane lipid composition remain to be assessed. 2OHOA administration altered the lipid membrane composition of hypertensive and normotensive rat plasma membranes, and increased the fluidity of reconstituted liver membranes from hypertensive rats. In spontaneously hypertensive rats (SHR), treatment with 2OHOA increased the cholesterol and sphingomyelin content while decreasing that of phosphatidylserine-phosphatidylinositol lipids. In addition, monounsaturated fatty acid levels increased as well as the propensity of reconstituted membranes to form HII-phases. These data suggest that 2OHOA regulates lipid metabolism that is altered in hypertensive animals, and that it affects the structural properties of liver plasma membranes in SHR. These changes in the structural properties of the plasma membrane may modulate the activity of signalling proteins that associate with the cell membrane such as the Galphaq/11 protein and hence, signal transduction.  相似文献   

2.
We studied the interactions of the hypotensive drug, 2-hydroxyoleic acid (2OHOA), with model membranes using the techniques of DSC, 31P NMR and X-ray diffraction. We demonstrate that 2OHOA alters the thermotropic behaviour of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE), thereby promoting the formation of hexagonal phases (HII), despite stabilizing the lamellar phase (Lα). The lattice parameters of lamellar and non-lamellar structures were not altered by the presence of 2OHOA. The molecular bases underlying the alterations in membrane structure provoked by 2OHOA were analysed by comparing the effects produced by 2OHOA with the closely related fatty acids (FAs), oleic acid (OA) and elaidic acid (EA). The capacity of C-18 FAs to induce HII-phase formation followed the order OA>2OHOA>EA. Furthermore, while 2OHOA stabilized the Lα phase, OA destabilized it. The net negative charge of 2OHOA at physiological pH (~7.4) influenced its effect on membrane structure. By analysing the molecular architecture of 2OHOA in DEPE monolayers, interactions between the carboxylate groups of 2OHOA and the amine groups of DEPE were observed, as well as between the 2-hydroxyl group of the FA and the carbonyl oxygen of the phospholipid acyl chain. These structural characteristics provoked an increase in the P-to-N and P-to-P distances of neighbouring phospholipid headgroups in the presence of 2OHOA, with respect to those observed with OA and EA. The higher headgroup area at the lipid–water interface in presence of 2OHOA could account for the differential effect of this drug on the phase behaviour of DEPE membranes.  相似文献   

3.
We studied the interactions of the hypotensive drug, 2-hydroxyoleic acid (2OHOA), with model membranes using the techniques of DSC, 31P NMR and X-ray diffraction. We demonstrate that 2OHOA alters the thermotropic behaviour of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE), thereby promoting the formation of hexagonal phases (H(II)), despite stabilizing the lamellar phase (Lalpha). The lattice parameters of lamellar and non-lamellar structures were not altered by the presence of 2OHOA. The molecular bases underlying the alterations in membrane structure provoked by 2OHOA were analysed by comparing the effects produced by 2OHOA with the closely related fatty acids (FAs), oleic acid (OA) and elaidic acid (EA). The capacity of C-18 FAs to induce H(II)-phase formation followed the order OA > 2OHOA > EA. Furthermore, while 2OHOA stabilized the Lalpha phase, OA destabilized it. The net negative charge of 2OHOA at physiological pH (approximately 7.4) influenced its effect on membrane structure. By analysing the molecular architecture of 2OHOA in DEPE monolayers, interactions between the carboxylate groups of 2OHOA and the amine groups of DEPE were observed, as well as between the 2-hydroxyl group of the FA and the carbonyl oxygen of the phospholipid acyl chain. These structural characteristics provoked an increase in the P-to-N and P-to-P distances of neighbouring phospholipid headgroups in the presence of 2OHOA, with respect to those observed with OA and EA. The higher headgroup area at the lipid-water interface in presence of 2OHOA could account for the differential effect of this drug on the phase behaviour of DEPE membranes.  相似文献   

4.
Phospholipase A2 (PLA2)-induced effects on the membrane organization, fluidity properties and surface charge density of pea chloroplasts were investigated. It was observed that lipolytic treatment with PLA2 altered the chloroplast structure having as a result a swelling of thylakoids and a total destruction of normal granal structure. In spite of this, the thylakoid membranes remained in close contact. At the same time, a slight decrease of surface charge density was registered, thus explaining the adhesion of swelled membranes. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) was measured during PLA2 treatment. A pronounced decrease of DPH fluorescence polarization was found, indicating that phospholipase treatment resulted in considerable disordering and/or fluidization of the thylakoid membranes. The increased fluidity could be attributed to the destabilizing effect of the products of enzymatic hydrolysis of the phospholipids (free fatty acids, lysophospholipids) on the bilayer structure of thylakoids membranes.Abbreviations 9-AA 9-aminoacridine - BSA bovine serium albumin - DCMU 3-/3,4-dichlorophenyl-1,1-dimethyl/urea - DPH 1,6-diphenyl-1,3,5-hexatriene - EDTA ethylenediaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - LHC light harvesting chlorophyll a/b-protein complex of PS II - MES 2/N-morpholine/ethanesulfonic acid - PLA2 phospholipase A2 - PS I, PS II photosystem I and photosystem II, respectively - S lipid structural order parameter - THF tetrahydrofuran - TRICINE N-/tris/hydroxymethyl/methyl/glicine  相似文献   

5.
The effect of regucalcin, a regulatory protein of Ca2+ signaling, on guanosine-5-triphosphatase (GTPase) activity in isolated rat liver plasma membranes was investigated. GTPase activity was significantly increased by the addition of Ca2+ (25–100 M) in the enzyme reaction mixture. Such an increase was not seen by other metals (Mg, Co, Zn, Cu, Ni, and Mn) with 50 M. The activatory effect of calcium (50 M) was significantly decreased by calmodulin (2.5 and 5 g/ml), indicating that it does not depend on calmodulin. The presence of regucalcin (0.1–0.5 M) in the enzyme reaction mixture caused a significant increase in GTPase activity. This increase was not significantly enhanced by calcium (50 M). GTPase activity was significantly increased by dithiothreitol (DTT; 5 mM), a protecting reagent of thiol (SH)-groups, while it was decreased by N-ethylmaleimide (NEM; 5 mM), a modifying reagent of SH-groups. The effect of calcium or regucalcin in increasing GTPase activity was not seen in the presence of NEM. Also, the activatory effect of calcium or regucalcin on GTPase was not seen in the presence of vanadate, an inhibitor of protein phosphorylation, which could inhibit GTPase activity. Moreover, the effect of regucalcin was not seen in the presence of digitonin (0.01%), a solubilizing reagent of membranous lipids, while the effect of calcium was not inhibited by digitonin. The present study demonstrates that regucalcin has an activatory effect on GTPase activity independently of Ca2+ in rat liver plasma membranes.  相似文献   

6.
Head plasma membranes were isolated from the sperm-rich fraction of boar semen and from sperm-rich semen that had been subjected to three commercial preservation processes: Ex tended for fresh insemination (extended), prepared for freezing but not frozen (cooled), and stored frozen for 3-5 weeks (frozen-thawed). Fluorescence polarization was used to determine fluidity of the membranes of all samples for 160 min at 25°C and also for membranes from the sperm-rich and extended semen during cooling and reheating (25 to 5 to 40°C, 0.4°C/min). Head plasma membranes from extended semen were initially more fluid than from other sources (P < 0.05). Fluidity of head membranes from all sources decreased at 25°C, but the rate of decrease was significantly lower for membranes from cooled and lower again for membranes from frozen-thawed semen. Cooling to 5°C reduced the rate of fluidity change for plasma membranes from the spernvrich fraction, while heating over 30°C caused a signifi cantly greater decrease. The presence of Ca++ (10 mM) lowered the fluidity of the head plasma membranes from sperm-rich and extended semen over time at 25°C but did not affect the membranes from the cooled or frozen-thawed semen. The change in head plasma membrane fluidity at 25°C may reflect the dynamic nature of spermatozoa membranes prior to fertilization. Extenders, preservation processes and temperature changes have a strong influence on head plasma membrane fluidity and therefore the molecular organization of this membrane.  相似文献   

7.
Head plasma membranes (HPM) isolated from cryopreserved boar spermatozoa show an excessive fluidization, which might be involved in the loss of fertility. The current study assessed the ability of cold shock (5 degrees C) and phospholipase A2 (PA2) to duplicate these effects on membrane structure and to affect 45Ca2+ uptake and gross morphological characteristics of whole, fresh boar-sperm. The HPM from cold-shocked sperm showed a significantly greater rate of fluidization over time than did HPM from control sperm. Addition of PA2 (bee or snake venom, 0.1 or 10.0 ng/ml) to HPM from control sperm caused fluidization similar to cold shocking, but to a lesser degree (P less than 0.05). Cold-shocked intact sperm exhibited severe acrosomal disruption, loss of motility, and increased 45Ca2+ uptake relative to control sperm. Addition of PA2 (bee or snake venom, 0.1, 1.0., 10.0, and 1,000 ng/ml) to control sperm had no effect on gross morphology or motility while maintaining or increasing sperm extrusion of 45Ca2+. Therefore, although PA2 can, to some extent, duplicate the effects of cold shock on HPM molecular organization, its lipid hydrolytic action is insufficient to cause all the gross disruptions of severe thermal shock. Both PA2 and cold shock disrupted HPM structure, but only cold shock increased 45Ca2+ uptake, suggesting that cold shock may be increasing 45Ca2+ uptake in areas other than the head. Cold shock disrupts sperm on three levels; membrane molecular organization, intracellular Ca2+ regulation, and gross morphology/motility.  相似文献   

8.
Plasma membranes isolated from a cell-wall-less mutant of Neurospora crassa grown at 37 and 15°C display large differences in lipid compositions. A free sterol-to-phospholipid ratio of 0.8 was found in 37°C membranes, while 15°C plasma membranes exhibited a ratio of nearly 2.0. Membranes formed under both growth conditions were found to contain glycosphingolipids. Cultures grown at the low temperature, however, were found to contain 6-fold higher levels of glycosphingolipids and a corresponding 2-fold reduction of phospholipid levels. The high glycosphingolipid content at 15°C compensates for the reduced levels of phospholipids in such a way that sterol/polar lipid ratios are almost the same in plasma membranes under the two growth conditions. Temperature-dependent changes in plasma-membrane phospholipid and glycosphingolipid species were also observed. Phosphatidylethanolamine levels were sharply reduced at 15°C, in addition to a moderate increase in levels of unsaturated phospholipid fatty acids. Glycosphingolipids contained high levels of long-chain hydroxy fatty acids, which constituted 75% of the total fraction at 37°C, but only 50% at 15°C. Compositional changes were also observed in the long-chain base component of glycosphingolipids with respect to growth temperature. Fluorescence polarization studies indicate that the observed lipid modifications in 15°C plasma membranes act to modulate bulk fluidity of the plasma-membrane lipids with respect to growth temperature. These studies suggest that coordinate modulation of glycosphingolipid, phospholipid and sterol content may be involved in regulation of plasma-membrane fluid properties during temperature acclimation.  相似文献   

9.
Plasma membranes from liver of control rats or from chemical-induced hepatoma were prepared. The basal activity of adenylate cyclase was increased significantly in the rat plasma membranes of DEN-induced hepatoma compared to normal tissue. The glucagon-induced response on the cellular effector systems via guanine nucleotide-binding regulatory proteins (G proteins) was inhibited in hepatoma plasma membranes. These findings suggest that in hepatoma membranes, unlike normal hepatic membranes, the response to hormonal stimuli through regulatory G proteins results in a loss of response to glucagon, as well as to GTP plus glucagon or to GTPγS. However, the activating effects of forskolin, which catalyses the formation of cyclic AMP from ATP acting on the catalytic subunit, were to some extent retained. The methyltransferase-I behaved in the opposite direction to the adenylate cyclase, showing a decreased activity in hepatoma plasma membranes compared to control membranes. In contrast, the activity of the ecto-5′-nucleotidase was significantly increased in hepatoma. These enzymatic changes have been found to influence the membrane fluidity and to be responsible for the ultrastructural modifications of hepatoma plasma membranes which are induced by chemical carcinogens.  相似文献   

10.
Conjugated linoleic acids (CLA) are known to exert several isomer-specific biological effects, but their mechanisms of action are unclear. In order to determine whether the physicochemical effects of CLA on membranes play a role in their isomer-specific effects, we synthesized phosphatidylcholines (PCs) with 16:0 at sn-1 position and one of four CLA isomers (trans 10 cis 12 (A), trans 9 trans 11 (B), cis 9 trans 11 (C), and cis 9 cis 11 (D)) at sn-2, and determined their biophysical properties in monolayers and bilayers. The surface areas of the PCs with the two natural CLA (A and C) were similar at all pressures, but they differed significantly in the presence of cholesterol, with PC-A condensing more than PC-C. Liposomes of PC-A similarly showed increased binding of cholesterol compared to PC-C liposomes. PC-A liposomes were less permeable to carboxyfluorescein compared to PC-C liposomes. The PC with two trans double bonds (B) showed the highest affinity to cholesterol and lowest permeability. The two natural CLA-PCs (A and C) stimulated lecithin-cholesterol acyltransferase activity by 2-fold, whereas the unnatural CLA-PCs (B and D) were inhibitory. These results suggest that the differences in the biophysical properties of CLA isomers A and C may partly contribute to the known differences in their biological effects.  相似文献   

11.
Plasma membranes isolated from the fast-growing, maximal-deviation, Morris hepatoma 3924A exhibit remarkable changes in lipid composition, lipid peroxidation and to some extent in the physical state with respect to rat liver plasmalemmas. A correlation appears to exit between the lower phospholipid: protein ratio, higher cholesterol: phospholipid ratio, lower rate of lipid peroxidation and decrease in fluidity in tumor plasma membranes.  相似文献   

12.
The oxidation of NADH by mouse liver plasma membranes was shown to be accompanied by the formation of H2O2. The rate of H2O2 formation was less than one-tenth the rate of oxygen uptake and much slower than the rate of reduction of artificial electron acceptors. The optimum pH for this reaction was 7.0 and theK m value for NADH was found to be 3×10–6 M. The H2O2-generating system of plasma membranes was inhibited by quinacrine and azide, thus distinguishing it from similar activities in endoplasmic reticulum and mitochondria. Both NADH and NADPH served as substrates for plasma membrane H2O2 generation. Superoxide dismutase and adriamycin inhibited the reaction. Vanadate, known to stimulate the oxidation of NADH by plasma membranes, did not increase the formation of H2O2. In view of the growing evidence that H2O2 can be involved in metabolic control, the formation of H2O2 by a plasma membrane NAD(P)H oxidase system may be pertinent to control sites at the plasma membrane.  相似文献   

13.
Abstract

The high antioxidant capacity of chlorogenic acid (CGA) in respect to biological systems is commonly known, though the molecular mechanism underlying that activity is not known. The aim of the study was to determine that mechanism at the molecular and cell level, in particular with regard to the erythrocyte and the lipid phase of its membrane. The effect of CGA on erythrocytes and lipid membranes was studied using microscopic, spectrophotometric and electric methods. The biological activity of the acid was determined on the basis of changes in the physical parameters of the membrane, in particular its osmotic resistance and shapes of erythrocytes, polar head packing order and fluidity of erythrocyte membrane as well as capacity and resistivity of black lipid membrane (BLM). The study showed that CGA becomes localized mainly in the outer part of membrane, does not induce hemolysis or change the osmotic resistance of erythrocytes, and induces formation of echinocytes. The values of generalized polarization and fluorescence anisotropy indicate that CGA alters the hydrophilic region of the membrane, practically without changing the fluidity in the hydrophobic region. The assay of electric parameters showed that CGA causes decreased capacity and resistivity of black lipid membranes. The overall result is that CGA takes position mainly in the hydrophilic region of the membrane, modifying its properties. Such localization allows the acid to reduce free radicals in the immediate vicinity of the cell and hinders their diffusion into the membrane interior.  相似文献   

14.
To investigate which component of the plasma membrane of the hamster egg plays the central role in the sperm–egg fusion, the egg membrane was treated with a variety of proteolytic, carbohydrate-hydrolyzing, lipid-hydrolyzing, and other enzymes. The only enzyme that markedly effected the ability of the egg membrane to fuse with spermatozoa was phospholipase C. The lipid moieties of the egg plasma membrane (and possibly of the sperm membrane) must be of primary importance in sperm–egg fusion at fertilization.  相似文献   

15.
Changes in the conformation of spinach thylakoid membranes were monitored in 5-doxyl stearic acid (SAL)-treated thylakoid membranes in the presence of various anions (Cl, Br, I, NO2 , SO4 2−, PO4 3−). The presence of anions made the thylakoid membrane more fluid. The extent of change in membrane fluidity differed with different anion and was reversible.  相似文献   

16.
The cationic local anaesthetics carbocaine and unpercaine were found to increase the fluoride-stimulated adenylate cyclase up to a maximum level; above this maximum level further increases in drug concentration inhibited the enzyme. At concentrations where this activity was stimulated, a fatty acid spin label detected an increase in bilayer fluidity, which, it is suggested, is responsible for the activation of the enzyme. A solubilized enzyme was unaffected by the drugs, a finding consistent with this proposal. These cationic drugs began to inhibit the glucagon-stimulated activity at concentrations where they activated the fluoride-stimulated activity. It is suggested that this is due to their effect on the coupling interaction between the receptor and catalytic unit. The anionic drugs, phenobarbital, pentobarbital, and salicylic acid, all inhibited the fluoride-stimulated enzyme. This may be due in part to a direct effect on the protein and in part to the interaction of the drugs with the bilayer. The drugs had small inhibitory effects on the lubrol-solubilized enzyme. The glucagon-stimulated enzyme was initially inhibited by the anionic drugs at low concentrations, then activated, and finally inhibited with increasing drug concentration. The reasons for such changes are complex, but there was no evidence from electron spin resonance studies to suggest that the elevations in activity were due to increases in bilayer fluidity.  相似文献   

17.
Several studies in animals and humans have shown that copper metabolism could be affected by inflammation or by corticosteroids. The relative importance of these two factors, often imbedded in clinical practice, was assessed by investigating the effects of acute prednisolone administration (30 mg/kg, ip) on healthy and adjuvant arthritis rats. Plasma copper levels were significantly higher in arthritic rats compared to healthy animals, whereas there was a slight, but nonsignificant increase in liver copper. Acute prednisolone administration in healthy rats resulted in a significant increase in plasma copper (10–15%) as early as 4 h after corticosteroid administration, which was maintained for 12 h. In arthritic rats, the response was much higher (25–40%), but somewhat delayed and shorter. Liver copper was not clearly modified by prednisolone treatment in both groups. This time-controlled study showed that acute prednisolone administration increased plasma copper in both healthy and arthritic rats, but in different ways, indicating that inflammation and corticosteroids may act synergistically.  相似文献   

18.
The effect of benzyl viologen (a stimulator of free radical production in cells) on lipid composition, fluidity and enzymes involved in both polyunsaturated fatty acid biosynthesis and cholesterol metabolism was studied in liver microsomal membrane of adult rats. In viologen-treated animals, a significant decrease in the levels of free cholesterol and cholesteryl esters, accompanied to a decrease at the free cholesterol/phospholipid ratio, were observed. The levels of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and acyl-coenzyme A : cholesterol acyltransferase (ACAT) were also lower in viologen-treated rats than in controls. Linoleic and arachidonic acids were both severely lower while docosatetraenoic, docosapentaenoic and docosahexaenoic acids were significantly higher as compared with controls. Furthermore, a decrease in monounsaturated/saturated ratio was found. In addition, the treatment evoked a depression in the fatty acid desaturation complex, with a diminish of 9, 9, and 5 desaturase activities in microsomal membrane.It was concluded that changes in phospholipid microsomal fatty acid and cholesterol content could be directly responsible for changes in membrane fluidity and function, and that extensive yield of docosahexaenoic acid may serve to maintain the physical characteristics of particular domains against oxidative stress caused by benzyl viologen treatment.  相似文献   

19.
Investigations have been carried out on the influence of membrane lipid composition and physical state on acyl-CoA: 1-acyl-glycerol-3-phosphoethanolamine O-acyltransferase activity in rat liver plasma membranes. The lipid composition of the membranes was modified either by way of lipid transfer proteins or by partial delipidation with exogenous phospholipases and subsequent enrichment of the membranes with different phospholipids. The results indicated that membrane rigidification by enrichment of the membranes with DPPC or SM reduced the transfer of oleic and palmitic acid to lysophosphatidylethanolamine, whereas all phospholipids inducing membrane fluidization lead to acyltransferase activation. The eventual role of membrane fluidity in the deacylation-reacylation cycle is discussed.  相似文献   

20.
Summary The specific binding of [3H]cortisol to plasma membranes purified from mouse liver, studied by the ultrafiltration method, shows the existence of specific binding sites for cortisol. The kinetic parameters of this binding areK D=4.4nm andB max=685 fmol/mg protein in presence of 1 m of corticosterone. With respect to the binding of 4nm [3H]cortisol to the membrane, the affinities of the steroids decreased in the following order: deoxycorticosterone>corticosterone>progesterone>cortisol >prednisolone>testosterone>20-hydroxyprogesterone >cortisone. Estradiol, dexamethasone, ouabain and triamcinolone acetonide do not have affinity for this binding site. Neither Ca2+ nor Mg2+ affected the binding of [3H]cortisol to the plasma membranes. Likewise, the presence of agonists and antagonists of alpha and beta-adrenergic receptors did not modify the binding of [3H]cortisol. The results suggest that the plasma membrane binding site characterized is more specific for corticoids and is different from nuclear glucocorticoid and progesterone receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号