共查询到20条相似文献,搜索用时 0 毫秒
1.
Ma P Yuille HM Blessie V Göhring N Iglói Z Nishiguchi K Nakayama J Henderson PJ Phillips-Jones MK 《Molecular membrane biology》2008,25(6-7):449-473
Two-component signal transduction systems are the main mechanism by which bacteria sense and respond to their environment, and their membrane-located histidine protein kinases generally constitute the sensory components of these systems. Relatively little is known about their fundamental mechanisms and precise nature of the molecular signals sensed, because of the technical challenges of producing sufficient quantities of these hydrophobic membrane proteins. This study evaluated the heterologous production, purification and activities of the 16 intact membrane sensor kinases of Enterococcus faecalis. Following the cloning of the genes into expression plasmid pTTQ18His, all but one kinase was expressed successfully in Escherichia coli inner membranes. Purification of the hexa-histidine 'tagged' recombinant proteins was achieved for 13, and all but one were verified as intact. Thirteen intact kinases possessed autophosphorylation activity with no added signal when assayed in membrane vesicles or as purified proteins. Signal testing of two functionally-characterized kinases, FsrC and VicK, was successful examplifying the potential use of in vitro activity assays of intact proteins for systematic signal identification. Intact FsrC exhibited an approximately 10-fold increase in activity in response to a two-fold molar excess of synthetic GBAP pheromone, whilst glutathione, and possibly redox potential, were identified for the first time as direct modulators of VicK activity in vitro. The impact of DTT on VicK phosphorylation resulted in increased levels of phosphorylated VicR, the downstream response regulator, thereby confirming the potential of this in vitro approach for investigations of modulator effects on the entire signal transduction process of two-component systems. 相似文献
2.
《Bioscience, biotechnology, and biochemistry》2013,77(10):2322-2325
An 11-residue peptide lactone, termed the gelatinase biosynthesis-activating pheromone (GBAP), triggers the production of the pathogenicity-related extracellular proteases, gelatinase and serine protease, in Enterococcus faecalis. In this study, we synthesized GBAP and its analogs and examined their gelatinase biosynthesis-inducing activity. This study on the structure-activity relationship shows that a lactone ring was indispensable for the activity. 相似文献
3.
Abstract Low-affinity penicillin binding proteins are particular membrane proteins, in several Gram-positive bacteria, which are involved in β-lactam antibiotic resistance. The structural gene for the low-affinity penicillin binding protein 5 (PBP5) of Enterococcus faecalis was cloned and sequenced. From the sequence of the 3378 bp, a 2040 bp coding region was identified. From biochemical analysis it emerges that E. faecalis PBP5 is a type II membrane protein with an uncleaved N-terminal and is composed of 679 amino acids with a molecular weight of 74055. This protein showed 48 and 33% of identity with Enterococcus hirae PBP5 and Staphylococcus aureus PBP2a, both low-affinity PBPs involved in β-lactam resistance. Anti-PBP5 antibodies cross-reacted with a membrane protein present in other species of enterococci, but the entire gene fragment cloned hybridized only with DNAs of E. faecalis strains, thus suggesting that genes coding for low-affinity PBPs of enterococci are not stictly homologous. In this experiment digoxigenin-labelled E. faecalis DNA was used. 相似文献
4.
《Molecular membrane biology》2013,30(2):26-35
AbstractOrthologous proteins do not necessarily share the same function in all species and those sharing the same function might employ a modified catalytic mechanism. Thus, comparative analysis of homologous or orthologous proteins from different organisms can provide detailed information on the function and the mechanism of an entire protein family. The sensor kinase ETR1 from Arabidopsis thaliana has been well characterized by genetic, physiological and biochemical studies. However, as further model plants are coming into focus for plant hormone research, a general protocol for isolation and purification of orthologous ETR1 proteins seems instrumental for a detailed molecular analysis of this protein family. In this study, we describe the native purification of recombinant ETR1 from Arabidopsis thaliana by mild solubilization with the zwitter-ionic detergent Fos-Choline-14 and single-step purification by immobilized metal ion affinity chromatography. The same protocol was successfully applied for the purification of the orthologous proteins from the moss Physcomitrella patens subsp. patens and the tomato Lycopersicon esculentum. The successful transfer of the purification protocol to proteins of the same family which share sequence identity of 63–80% only suggests that this protocol presents a general purification strategy which is likely to apply also to the purification of other members of the sensor histidine kinase family. 相似文献
5.
Virulence in Staphylococcus aureus is regulated via agr-dependent quorum sensing in which an autoinducing peptide (AIP) activates AgrC, a histidine protein kinase. AIPs are usually thiolactones containing seven to nine amino acid residues in which the thiol of the central cysteine is linked to the α-carboxyl of the C-terminal amino acid residue. The staphylococcal agr locus has diverged such that the AIPs of the four different S. aureus agr groups self-activate but cross-inhibit. Consequently, although the agr system is conserved among the staphylococci, it has undergone significant evolutionary divergence whereby to retain functionality, any changes in the AIP-encoding gene (agrD) that modifies AIP structure must be accompanied by corresponding changes in the AgrC receptor. Since AIP-1 and AIP-4 only differ by a single amino acid, we compared the transmembrane topology of AgrC1 and AgrC4 to identify amino acid residues involved in AIP recognition. As only two of the three predicted extracellular loops exhibited amino acid differences, site-specific mutagenesis was used to exchange the key AgrC1 and AgrC4 amino acid residues in each loop either singly or in combination. A novel lux-based agrP3 reporter gene fusion was constructed to evaluate the response of the mutated AgrC receptors. The data obtained revealed that while differential recognition of AIP-1 and AIP-4 depends primarily on three amino acid residues in loop 2, loop 1 is essential for receptor activation by the cognate AIP. Furthermore, a single mutation in the AgrC1 loop 2 resulted in conversion of (Ala5)AIP-1 from a potent antagonist to an activator, essentially resulting in the forced evolution of a new AIP group. Taken together, our data indicate that loop 2 constitutes the predicted hydrophobic pocket that binds the AIP thiolactone ring while the exocyclic amino acid tail interacts with loop 1 to facilitate receptor activation. 相似文献
6.
Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis 总被引:8,自引:0,他引:8
Azo dyes represent a major class of synthetic colorants that are ubiquitous in foods and consumer products. Enterococcus faecalis is a predominant member of the human gastrointestinal microflora. Strain ATCC 19433 grew in the presence of azo dyes and metabolized them to colorless products. A gene encoding a putative FMN-dependent aerobic azoreductase that shares 34% identity with azoreductase (AcpD) of Escherichia coli has been identified in this strain. The gene in E. faecalis, designated as azoA, encoded a protein of 208 amino acids with a calculated isoelectric point of 4.8. AzoA was heterologously overexpressed in E. coli with a strong band of 23 kDa on SDS-PAGE. The purified recombinant enzyme was a homodimer with a molecular weight of 43 kDa, probably containing one molecule of FMN per dimer. AzoA required FMN and NADH, but not NADPH, as a preferred electron donor for its activity. The apparent Km values for both NADH and 2-[4-(dimethylamino)phenylazo]benzoic acid (Methyl red) substrates were 0.14 and 0.024 mM, respectively. The apparent Vmax was 86.2 microM/min/mg protein. The enzyme was not only able to decolorize Methyl red, but was also able to convert sulfonated azo dyes Orange II, Amaranth, Ponceau BS, and Ponceau S. AzoA is the first aerobic azoreductase to be identified and characterized from human intestinal gram-positive bacteria. 相似文献
7.
John C. Walker 《Plant molecular biology》1994,26(5):1599-1609
Cell surface receptors located in the plasma membrane have a prominent role in the initiation of cellular signalling. Recent evidence strongly suggests that plant cells carry cell surface receptors with intrinsic protein kinase activity. The plant receptor-like protein kinases (RLKs) are structurally related to the polypeptide growth factor receptors of animals which consist of a large extracytoplasmic domain, a single membrane spanning segment and a cytoplasmic domain of the protein kinase gene family. Most of the animal growth factor receptor protein kinases are tyrosine kinases; however, the plant RLKs all appear to be serine/threonine protein kinases. Based on structural similarities in their extracellular domains the RLKs fall into three categories: the S-domain class, related to the self-incompatibility locus glycoproteins of Brassica; the leucine-rich repeat class, containing a tandemly repeated motif that has been found in numerous proteins from a variety of eukaryotes; and a third class that has epidermal growth factor-like repeats. Distinct members of these putative receptors have been found in both monocytyledonous plants such as maize and in members of the dicotyledonous Brassicaceae. The diversity among plant RLKs, reflected in their structural and functional properties, has opened up a broad new area of investigation into cellular signalling in plants with far-reaching implications for the mechanisms by which plant cells perceive and respond to extracellular signals. 相似文献
8.
9.
Yaowen Zhang Wenfeng Ma Zhidan Zhang Fangyuan Liu Jie Wang Yulong Yin 《Archives of animal nutrition》2019,73(3):208-221
This study was conducted to determine the effects of diet supplementation of laying hens with Enterococcus faecalis (EF) on egg production, egg quality and caecal microbiota. A total of 360 Hy-Line Brown laying hens (72 weeks old) were divided into three groups with four replicates of 30 birds each. The laying hens were fed with the basal diet (Control), the basal diet + 3.75 · 108 cfu EF/kg (Group I) or the basal diet + 7.5 · 108 cfu EF/kg (Group II). The experiment lasted for 45 d. Eggs and caecal samples were collected at the end of the experiment. Results showed that dietary supplementation with EF did not affect the average daily egg weight, cracked egg rate, mortality and egg quality. However, EF supplementation caused a significantly increased laying rate and decreased feed/egg ratio (p < 0.05). The differences in caecal microbiota between Group II and the Control were significant. The relative abundance of Verrucomicrobia and Cyanobacteria at the phylum level, Rikenellaceae, Christensenellaceae and Veillonellaceae at the family level, and the Faecalibacterium, Christensenellaceae R-7 group and Eubacterium coprostanoligenes group at the genus level changed significantly in Group II compared with the Control (p < 0.05). In conclusion, the tested dietary supplementations with EF improved product performance and affected the caecal microbial community structure of laying hens during the late laying period. 相似文献
10.
地中海拟无枝菌酸菌U32中amrC/amkC基因的序列分析及在大肠杆 … 总被引:2,自引:0,他引:2
从力复霉素SV产生菌--地中海拟无枝菌酸菌(Amycolatopsis mediterranei)U32的硝酸盐同化基因簇的上游克隆了一个2.6kb的EcoRI-XhoI DNA片段并测定其序列。序列分析表明,该DNA片段编码两个完整的开放阅读框架(ORF),ORF2的起始密码子GTG与ORF1的终止密码子TGA在TG处重叠。ORF1编码一个含224个氨基酸的多肽,它同放线菌中典型的应答调节蛋白包 相似文献
11.
Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex 总被引:1,自引:0,他引:1
Held K Pascaud F Eckert C Gajdanowicz P Hashimoto K Corratgé-Faillie C Offenborn JN Lacombe B Dreyer I Thibaud JB Kudla J 《Cell research》2011,21(7):1116-1130
Potassium (K(+)) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K(+) channels remain poorly understood. Here, we show that the calcium (Ca(2+)) sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM) targeting of the K(+) channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering phenotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca(2+)-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca(2+) sensor modulates K(+) channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM. 相似文献
12.
Several earlier studies have implicated platelet activation with the pathogenesis of thrombotic stroke. In this report we have studied the changes in membrane physical microenvironment and signal transduction in the platelets obtained from the patients with thrombotic stroke. Aggregation induced by the synthetic agonist thrombin receptor-activating peptide was significantly enhanced (p < 0.001) in the platelets obtained from the patients. Steady-state fluorescence anisotropy measurements using diphenylhexatriene reflected a significant increase in membrane microviscosity from 3.315 (± 0.103) in the control to 4.600 (± 0.119) in the stroke. Proteins of relative mobilities of 131, 100, 47 and 38 kDa were found to remain phosphorylated on tyrosine in the resting platelets obtained from thrombotic stroke patients while they were not phosphorylated in the control counterparts. Besides, calpain, a calcium dependent thiol protease present in the platelets, was found to remain active in this disease as reflected from the proteolysis of calpain substrates. Taken together, these data indicated abnormal circulating platelets in the patients of thrombotic stroke, which could contribute to the etiopathogenesis of this disease. 相似文献
13.
Expression, purification from inclusion bodies, and crystal characterization of a transition state analog complex of arginine kinase: a model for studying phosphagen kinases. 总被引:1,自引:0,他引:1
下载免费PDF全文

G. Zhou G. Parthasarathy T. Somasundaram A. Ables L. Roy S. J. Strong W. R. Ellington M. S. Chapman 《Protein science : a publication of the Protein Society》1997,6(2):444-449
Phosphagen kinases catalyze the reversible transfer of a phosphoryl group between guanidino phosphate compounds and ADP, thereby regenerating ATP during bursts of cellular activity. Large quantities of highly pure arginine kinase (EC 2.7.3.3), the phosphagen kinase present in arthropods, have been isolated from E. coli, into which the cDNA for the horseshoe crab enzyme had been cloned. Purification involves size exclusion and anion exchange chromatographies applied in the denatured and refolded states. The recombinant enzyme has been crystallized as a transition state analog complex. Near complete native diffraction data have been collected to 1.86 A resolution. Substitution of a recombinant source for a natural one, improvement in the purification, and data collection at cryo temperatures have all yielded significant improvements in diffraction. 相似文献
14.
Arvizu F Aguilera A Salgado LM 《Differentiation; research in biological diversity》2006,74(6):305-312
The development of the hydra's head and its hypostome has been studied at the molecular level. Many genes have been cloned from hydra as potential candidates that control the development of its head. Much work was performed on the mechanisms controlling expression of these genes in the position-dependent manner. Moreover, there have been data to support the involvement of three main signaling pathways that involve PKC, SRC, and PI3K kinases in the regulation of the head formation and in the expression of several head-specific genes. In this report, we present data supporting the participation of these three signaling pathways on the development of the hypostome. We used grafting experiments and inhibitors of the specific kinases to show the participation of these enzymes in hypostome formation. From our results, we postulate that these signal transduction pathways regulate the very early stages of the head development, most likely at the point when the cells start to differentiate to form the head organizer. 相似文献
15.
16.
Potter CA Ward A Laguri C Williamson MP Henderson PJ Phillips-Jones MK 《Journal of molecular biology》2002,320(2):201-213
The global redox switch between aerobic and anaerobic growth in Rhodobacter sphaeroides is controlled by the RegA/RegB two-component system, in which RegB is the integral membrane histidine protein kinase, and RegA is the cytosolic response regulator. Despite the global regulatory importance of this system and its many homologues, there have been no reported examples to date of heterologous expression of full-length RegB or any histidine protein kinases. Here, we report the amplified expression of full-length functional His-tagged RegB in Escherichia coli, its purification, and characterisation of its properties. Both the membrane-bound and purified solubilised RegB protein demonstrate autophosphorylation activity, and the purified protein autophosphorylates at the same rate under both aerobic and anaerobic conditions confirming that an additional regulator is required to control/inhibit autophosphorylation. The intact protein has similar activity to previously characterised soluble forms, but is dephosphorylated more rapidly than the soluble form (half-life ca 30 minutes) demonstrating that the transmembrane segment present in the full-length RegB may be an important regulator of RegB activity. Phosphotransfer from RegB to RegA (overexpressed and purified from E. coli) by RegB is very rapid, as has been reported for the soluble domain. Dephosphorylation of active RegA by full-length RegB has a rate similar to that observed previously for soluble RegB. 相似文献
17.
18.
19.
The membrane-bound atrial natriuretic peptide receptor (GCA) catalyzes the formation of cGMP from GTP in response to natriuretic peptide hormones. Previous structural studies have focused on the extra-cellular hormone binding domain of this receptor whereas its intra-cellular domain has not yet been amenable to such studies. We report here the baculovirus expression and purification of the GCA intra-cellular domain construct GCAID comprising the complete intra-cellular region which includes the kinase-homology domain, coiled-coil region, and catalytic cyclase domain. The intra-cellular domain was enzymatically characterized in terms of guanylyl cyclase activity and the effects of ATP, manganese, and Triton X-100. Our results indicate that the activity of the intra-cellular domain of the ANP receptor is about 2 fold less active compared to a truncated cyclase domain construct lacking the kinase-like domain that was also expressed and purified. In addition, unlike the full length receptor, the intra-cellular domain could not be activated by Triton X-100/Mn2+ or its activity stimulated by ATP. These data therefore indicate that the major part of the transition from the basal state to the fully, ANP/ATP-dependent, activated state as well its stimulation/enhancement by Triton X-100/Mn2+ requires the full length receptor. These receptor insights could aid in the development of novel therapeutics as the GCA receptor is a key drug target for cardiovascular diseases. 相似文献
20.
Expression,purification, and characterization of arginine kinase from the sea cucumber Stichopus japonicus 总被引:3,自引:0,他引:3
The arginine kinase gene of sea cucumber Stichopus japonicus was cloned and inserted into the prokaryotic expression plasmid pET-21b. The protein was expressed in a soluble and functional form in Escherichia coli and purified by Blue Sepharose CL-6B, DEAE-32, and Sephadex G-100 chromotography with a final yield of 83 mgL(-1) of LB medium. The specific activity, electrophoretic mobility, and isoelectric focusing were all identical with those of arginine kinase that was purified from sea cucumber muscle. The fluorescence emission spectrum of arginine kinase had a maximum fluorescence at a wavelength of 330 nm upon excitation at 295 nm. These results are the first report of this purified protein. 相似文献