首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
We compared the interactions of purines and purine analogues with representative fungal and bacterial members of the widespread Nucleobase-Ascorbate Transporter (NAT) family. These are: UapA, a well-studied xanthine-uric acid transporter of A. nidulans, Xut1, a novel transporter from C. albicans, described for the first time in this work, and YgfO, a recently characterized xanthine transporter from E. coli. Using transport inhibition experiments with 64 different purines and purine-related analogues, we describe a kinetic approach to build models on how NAT proteins interact with their substrates. UapA, Xut1 and YgfO appear to bind several substrates via interactions with both the pyrimidine and imidazol rings. Fungal homologues interact with the pyrimidine ring of xanthine and xanthine analogues via H-bonds, principally with N1-H and =O6, and to a lower extent with =O2. The E. coli homologue interacts principally with N3-H and =O2, and less strongly with N1-H and =O6. The basic interaction with the imidazol ring appears to be via a H-bond with N9. Interestingly, while all three homologues recognize xanthines with similar high affinities, interaction with uric acid or/and oxypurinol is transporter-specific. UapA recognizes uric acid with high affinity, principally via three H-bonds with =O2, =O6 and =O8. Xut1 has a 13-fold reduced affinity for uric acid, based on a different set of interactions involving =O8, and probably H atoms from positions N1, N3, N7 or N9. YgfO does not recognize uric acid at all. Both Xut1 and UapA recognize oxypurinol, but use different interactions reflected in a nearly 26-fold difference in their affinities for this drug, while YgfO interacts with this analogue very inefficiently.  相似文献   

2.
The coding potential of the genome of E. coli K-12 includes YgfO and YicE, two members of the evolutionarily conserved NAT/NCS2 transporter family that are highly homologous to each other (45% residue identity) and closely related to UapA of Aspergillus nidulans, a most extensively studied microbial member of this family. YgfO and yicE were cloned from the genome, over-expressed extrachromosomally and assayed for uptake of [(3)H]xanthine and other nucleobases, in E. coli K-12, under conditions of negligible activity of the corresponding endogenous systems. Alternative, essentially equivalent functional versions of YgfO and YicE were engineered by C-terminal tagging with an epitope from the E. coli lactose permease and a biotin-acceptor domain from Klebsiella pneumoniae. Both YgfO and YicE were shown to be present in the plasma membrane of E. coli and function as specific, high-affinity transporters for xanthine (K(m) 4.2-4.6 microM for YgfO, or 2.9-3.8 microM for YicE), in a proton motive force-dependent manner; they display no detectable transport of uracil, hypoxanthine, or uric acid at external concentrations of up to 0.1 mM. Both YgfO and YicE are inefficient in recognizing uric acid or xanthine analogues modified at position 8 of the purine ring (8-methylxanthine, 8-azaxanthine, oxypurinol, allopurinol), which distinguishes them from their fungal homologues UapA and Xut1.  相似文献   

3.
The coding potential of the genome of E. coli K-12 includes YgfO and YicE, two members of the evolutionarily conserved NAT/NCS2 transporter family that are highly homologous to each other (45% residue identity) and closely related to UapA of Aspergillus nidulans, a most extensively studied microbial member of this family. YgfO and yicE were cloned from the genome, over-expressed extrachromosomally and assayed for uptake of [3H]xanthine and other nucleobases, in E. coli K-12, under conditions of negligible activity of the corresponding endogenous systems. Alternative, essentially equivalent functional versions of YgfO and YicE were engineered by C-terminal tagging with an epitope from the E. coli lactose permease and a biotin-acceptor domain from Klebsiella pneumoniae. Both YgfO and YicE were shown to be present in the plasma membrane of E. coli and function as specific, high-affinity transporters for xanthine (Km 4.2–4.6 µM for YgfO, or 2.9–3.8 µM for YicE), in a proton motive force-dependent manner; they display no detectable transport of uracil, hypoxanthine, or uric acid at external concentrations of up to 0.1 mM. Both YgfO and YicE are inefficient in recognizing uric acid or xanthine analogues modified at position 8 of the purine ring (8-methylxanthine, 8-azaxanthine, oxypurinol, allopurinol), which distinguishes them from their fungal homologues UapA and Xut1.  相似文献   

4.
Earlier, we identified mutations in the first transmembrane segment (TMS1) of UapA, a uric acid-xanthine transporter in Aspergillus nidulans, that affect its turnover and subcellular localization. Here, we use one of these mutations (H86D) and a novel mutation (I74D) as well as genetic suppressors of them, to show that TMS1 is a key domain for proper folding, trafficking and turnover. Kinetic analysis of mutants further revealed that partial misfolding and deficient trafficking of UapA does not affect its affinity for xanthine transport, but reduces that of uric acid and confers a degree of promiscuity towards the binding of other purines. This result strengthens the idea that subtle interactions among domains not directly involved in substrate binding refine the selectivity of UapA. Characterization of second-site suppressors of H86D revealed a genetic interaction of TMS1 with TMS3, the latter segment shown for the first time to be important for UapA function. Systematic mutational analysis of polar and conserved residues in TMS3 showed that Ser154 is crucial for UapA transport activity. Our results are in agreement with a topological model of UapA built on the recently published structure of UraA, a bacterial homolog of UapA.  相似文献   

5.
In Aspergillus nidulans UapA is a H+-driven transporter specific for xanthine, uric acid and several analogues. Here, genetic and physiological evidence is provided showing that allopurinol is a high-affinity, low-capacity, substrate for UapA. Surprisingly however, transport kinetic measurements showed that, uniquely among all recognized UapA substrates, allopurinol is transported by apparent facilitated diffusion and exhibits a paradoxical effect on the transport of physiological substrates. Specifically, excess xanthine or other UapA substrates inhibit allopurinol uptake, as expected, but the presence of excess allopurinol results in a concentration-dependent enhancement of xanthine binding and transport. Flexible docking approaches failed to detect allopurinol binding in the major UapA substrate binding site, which was recently identified by mutational analysis and substrate docking using all other UapA substrates. These results and genetic evidence suggest that the allopurinol translocation pathway is distinct from, but probably overlapping with, that of physiological UapA substrates. Furthermore, although the stimulating effect of allopurinol on xanthine transport could, in principle, be rationalized by a cryptic allopurinol-specific allosteric site, evidence was obtained supporting that accelerated influx of xanthine is triggered through exchange with cytoplasmically accumulated allopurinol. Our results are in line with recently accumulating evidence revealing atypical and complex mechanisms underlying transport systems.  相似文献   

6.
7.
8.
Transmembrane helix XII of UapA, the major fungal homolog of the nucleobase-ascorbate transporter (NAT/NCS2) family, has been proposed to contain an aromatic residue acting as a purine-selectivity filter, distinct from the binding site. To analyze the role of helix XII more systematically, we employed Cys-scanning mutagenesis of the Escherichia coli xanthine-specific homolog YgfO. Using a functional mutant devoid of Cys residues (C-less), each amino acid residue in sequence 419ILPASIYVLVENPICAGGLTAILLNIILPGGY450 (the putative helix XII is underlined) was replaced individually with Cys. Of the 32 single-Cys mutants, 25 accumulate xanthine to 80-130% of the steady state observed with C-less YgfO, six (P421C, S423C, I424C, Y425C, L427C, G436C) accumulate to low levels (15-40%), and I432C is inactive. Immunoblot analysis shows that P421C and I432C display low expression in the membrane. Extensive mutagenesis reveals that replacement of Ile-432 with equally or more bulky side chains abolishes active transport without affecting expression, whereas replacement with smaller side chains allows activity but impairs affinity for the analogues 1-methyl and 6-thioxanthine. Only three of the single-Cys mutants of helix XII (V426C, N430C, and N443C) are sensitive to inactivation by N-ethylmaleimide. N430C is highly sensitive, with an IC50 of 10 microm, and is completely protected against inactivation in the presence of 2-thioxanthine, a high affinity substrate analogue. Other xanthine analogues are poorly bound by N430C, whereas replacement of Asn-430 with Thr inactivates the permease. The findings suggest that Ile-432 and Asn-430 of helix XII are crucial for purine uptake and affinity, and Asn-430 is probably at the vicinity of the binding site.  相似文献   

9.
UapA, a member of the NAT/NCS2 family, is a high affinity, high capacity, uric acid-xanthine/H+ symporter in Aspergillus nidulans. Determinants critical for substrate binding and transport lie in a highly conserved signature motif downstream from TMS8 and within TMS12. Here we examine the role of TMS1 in UapA biogenesis and function. First, using a mutational analysis, we studied the role of a short motif (Q85H86), conserved in all NATs. Q85 mutants were cryosensitive, decreasing (Q85L, Q85N, Q85E) or abolishing (Q85T) the capacity for purine transport, without affecting physiological substrate binding or expression in the plasma membrane. All H86 mutants showed nearly normal substrate binding affinities but most (H86A, H86K, H86D) were cryosensitive, a phenotype associated with partial ER retention and/or targeting of UapA in small vacuoles. Only mutant H86N showed nearly wild-type function, suggesting that His or Asn residues might act as H donors in interactions affecting UapA topology. Thus, residues Q85 and H86 seem to affect the flexibility of UapA, in a way that affects either transport catalysis per se (Q85), or expression in the plasma membrane (H86). We then examined the role of a transmembrane Leu Repeat (LR) motif present in TMS1 of UapA, but not in other NATs. Mutations replacing Leu with Ala residues altered differentially the binding affinities of xanthine and uric acid, in a temperature-sensitive manner. This result strongly suggested that the presence of L77, L84 and L91 affects the flexibility of UapA substrate binding site, in a way that is necessary for high affinity uric acid transport. A possible role of the LR motif in intramolecular interactions or in UapA dimerization is discussed.  相似文献   

10.
A reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet detection has been developed for the analysis of purines in urinary calculi. The method using gradient of methanol concentration and pH was able to separate 16 compounds: uric acid, 2,8-dihydroxyadenine, xanthine, hypoxanthine, allopurinol and oxypurinol as well as 10 methyl derivatives of uric acid or xanthine (1-, 3-, 7- and 9-methyluric acid, 1,3-, 1,7- and 3,7-dimethyluric acid, 1-, 3- and 7-methylxanthine). Limits of detection for individual compounds ranged from 0.006 to 0.035 mg purine/g of the stone weight and precision (CV%) was 0.5-2.4%. The method enabled us to detect in human uric acid stones admixtures of nine other purine derivatives: natural metabolites (hypoxanthine, xanthine, 2,8-dihydroxyadenine) and methylated purines (1-, 3- and 7-methyluric acid, 1,3-dimethyluric acid, 3- and 7-methylxanthine) originating from the metabolism of methylxanthines (caffeine, theophylline and theobromine). The method allows simultaneous quantitation of all known purine constituents of urinary stones, including methylated purines, and may be used as a reference one for diagnosing disorders of purine metabolism and research on the pathogenesis of urolithiasis.  相似文献   

11.
UapA, a highly specific uric acid-xanthine transporter in Aspergillus nidulans, is a member of a large family of nucleobase-ascorbate transporters conserved in all domains of life. We have investigated structure-function relationships in UapA, by studying chimeric transporters and missense mutations, and showed that specific polar or charged amino acid residues (E412, E414, Q449, N450, T457) on either side of an amphipathic alpha-helical transmembrane segment (TMS10) are critical for purine binding and transport. Here, the mutant Q449E, having no uric acid-xanthine transport activity at 25 degrees C, was used to isolate second-site revertants that restore function. Seven of them were found to have acquired the capacity to transport novel substrates (hypoxanthine and adenine) in addition to uric acid and xanthine. All seven revertants were found to carry the mutation F569S within the last transmembrane segment (TMS14) of UapA. Further kinetic analysis of a selected suppressor showed that UapA-Q449E/F569S transports with high affinity (K(M) values of 4-10 microM) xanthine, hypoxanthine and uracil. Uptake competition experiments suggested that UapA-Q449E/F569S also binds guanine, 6-thioguanine, adenosine or ascorbic acid. A strain carrying mutation F569S by itself conserves high-capacity, high-affinity (K(M) values of 1.5-15 microM), transport activity for purine-uracil transport. Compared to UapA-Q449E/F569S, UapA-F569S has a distinct capacity to bind several nucleobase-related compounds and different kinetic parameters of transport. These results show that molecular determinants external to the central functional domain (L9-TMS10-L10) are critical for the uptake specificity and transport kinetics of UapA.  相似文献   

12.
In Aspergillus nidulans, purine uptake is mediated by three transporter proteins: UapA, UapC and AzgA. UapA and UapC have partially overlapping functions, are 62% identical and have nearly identical predicted topologies. Their structural similarity is associated with overlapping substrate specificities; UapA is a high-affinity, high-capacity specific xanthine/uric acid transporter. UapC is a low/moderate-capacity general purine transporter. We constructed and characterized UapA/UapC, UapC/UapA and UapA/UapC/UapA chimeric proteins and UapA point mutations. The region including residues 378-446 in UapA (336-404 in UapC) has been shown to be critical for purine recognition and transport. Within this region, we identified: (i) one amino acid residue (A404) important for transporter function but probably not for specificity and two residues (E412 and R414) important for UapA function and specificity; and (ii) a sequence, (F/Y/S)X(Q/E/P) NXGXXXXT(K/R/G), which is highly conserved in all homologues of nucleobase transporters from bacteria to man. The UapC/UapA series of chimeras behaves in a linear pattern and leads to an univocal assignment of functional domains while the analysis of the reciprocal and 'sandwich' chimeras revealed unexpected inter-domain interactions. cDNAs coding for transporters including the specificity region defined by these studies have been identified for the first time in the human and Caenorhabditis elegans databases.  相似文献   

13.
The nucleobase-ascorbate transporter (NAT) signature motif is a conserved sequence motif of the ubiquitous NAT/NCS2 family implicated in defining the function and selectivity of purine translocation pathway in the major fungal homolog UapA. To analyze the role of NAT motif more systematically, we employed Cys-scanning mutagenesis of the Escherichia coli xanthine-specific homolog YgfO. Using a functional mutant devoid of Cys residues (C-less), each amino acid residue in sequence (315)GSIPITTFAQNNGVIQMTGVASRYVG(340) (motif underlined) was replaced individually with Cys. Of the 26 single-Cys mutants, 16 accumulate xanthine to > or =50% of the steady state observed with C-less YgfO, 4 accumulate to low levels (10-25% of C-less), F322C, N325C, and N326C accumulate marginally (5-8% of C-less), and P318C, Q324C, and G340C are inactive. When transferred to wild type, F322C(wt) and N326C(wt) are highly active, but P318G(wt), Q324C(wt), N325C(wt), and G340C(wt) are inactive, and G340A(wt) displays low activity. Immunoblot analysis shows that replacements at Pro-318 or Gly-340 are associated with low or negligible expression in the membrane. More extensive mutagenesis reveals that Gln-324 is critical for high affinity uptake and ligand recognition, and Asn-325 is irreplaceable for active xanthine transport, whereas Thr-332 and Gly-333 are important determinants of ligand specificity. All single-Cys mutants react with N-ethylmaleimide, but regarding sensitivity to inactivation, they fall to three regions; positions 315-322 are insensitive to N-ethylmaleimide, with IC(50) values > or =0.4 mM, positions 323-329 are highly sensitive, with IC(50) values of 15-80 microM, and sensitivity of positions 330-340 follows a periodicity, with mutants sensitive to inactivation clustering on one face of an alpha-helix.  相似文献   

14.
In this work we unmask a novel downregulation mechanism of the uric acid/xanthine transporter UapA, the prototype member of the ubiquitous Nucleobase-Ascorbate Transporter family, directly related to its function. In the presence of substrates, UapA is endocytosed, sorted into the multivesicular body pathway and degraded in vacuoles. Substrate-induced endocytosis, unlike ammonium-induced turnover, is absolutely dependent on UapA activity and several lines of evidence showed that the signal for increased endocytosis is the actual translocation of substrates through the UapA protein. The use of several UapA functional mutants with altered kinetics and specificity has further shown that transport-dependent UapA endocytosis occurs through a mechanism, which senses subtle conformational changes associated with the transport cycle. We also show that distinct mechanisms of UapA endocytosis necessitate ubiquitination of a single Lys residue (K572) by HulARsp5. Finally, we demonstrate that in the presence of substrates, non-functional UapA versions can be endocytosed in trans if expressed in the simultaneous presence of active UapA versions, even if the latter cannot be endocytosed themselves.  相似文献   

15.
Using the YgfO xanthine permease of Escherichia coli as a bacterial model for the study of the evolutionarily ubiquitous nucleobase-ascorbate transporter (NAT/NCS2) family, we performed a systematic Cys-scanning and site-directed mutagenesis of 14 putatively charged (Asp, Glu, His, Lys, or Arg) and 7 highly polar (Gln or Asn) residues that are predicted to lie in transmembrane helices (TMs). Of 21 single-Cys mutants engineered in the background of a functional YgfO devoid of Cys residues (C-less), only four are inactive or have marginal activity (H31C, N93C, E272C, D304C). The 4 residues are conserved throughout the family in TM1 (His-31), TM3 (Asn-93/Ser/Thr), TM8 (Glu-272), and putative TM9a (Asp-304/Asn/Glu). Extensive site-directed mutagenesis in wild-type background showed that H31N and H31Q have high activity and affinity for xanthine but H31Q recognizes novel purine bases and analogues, whereas H31C and H31L have impaired affinity for xanthine and analogues, and H31K or H31R impairs expression in the membrane. N93S and N93A are highly active but more promiscuous for recognition of analogues at the imidazole moiety of substrate, N93D has low activity, N93T has low affinity for xanthine or analogues, and N93Q or N93C is inactive. All mutants replacing Glu-272 or Asp-304, including E272D, E272Q, D304E, and D304N, are inactive, although expressed to high levels in the membrane. Finally, one of the 17 assayable single-Cys mutants, Q258C, was sensitive to inactivation by N-ethylmaleimide. The findings suggest that polar residues important for the function of YgfO cluster in TMs 1, 3, 8 and 9a.The nucleobase-ascorbate transporter (NAT)2 or nucleobase-cation symporter-2 (NCS2) family is an evolutionarily ubiquitous family of purine, pyrimidine, and l-ascorbate transporters, with members specific for cellular uptake of uracil, xanthine, or uric acid (microbial and plant genomes) or vitamin C (mammalian genomes) (1, 2). Despite their importance for the recognition and uptake of several frontline purine-related drugs, NAT/NCS2 members have not been studied systematically at the molecular level, and high resolution structures or mechanistic models are missing. More than 1000 sequence entries are known, but few have been functionally characterized to date. The best studied eukaryotic member is UapA, a high affinity uric acid/xanthine:H+ symporter from the ascomycote Aspergillus nidulans (37). Studies with chimeric transporter constructs (3), site-directed mutagenesis, second-site suppressors, and kinetic inhibition analysis of ligand specificity have shown that a conserved NAT/NCS2 motif region between putative transmembrane helices 8 and 9 of UapA includes determinants of substrate recognition and selectivity, with at least one residue (Gln-408) implicated in binding with the imidazole moiety of purine (4), whereas a conserved QH motif at the middle of TM1 is important for activity and/or correct targeting to the plasma membrane (5), and an aromatic residue at the middle of TM12 (Phe-528) may act as a purine substrate selectivity filter (6). It has been proposed that TM1, TM12, and the NAT motif region interact functionally to determine affinity and specificity for uric acid (7).Recently, we characterized the first purine-specific members of the NAT/NCS2 family from a Gram-negative bacterium, namely YgfO and YicE of Escherichia coli K-12 (8), as high affinity xanthine:H+ symporters that cannot use uric acid, hypoxanthine, uracil, or other nucleobases as a substrate and cannot recognize analogues substituted at positions 7 or 8 of the imidazole ring. We launched a systematic series of Cys-scanning and site-directed mutagenesis studies of YgfO to elucidate structure-function relationships in a bacterial NAT (9, 10). In the course of these studies, we showed that the NAT motif sequence region of YgfO includes the essential determinants Gln-324, irreplaceable for high affinity binding and uptake; Asn-325, irreplaceable for active transport; and an α-helical stripe of residues (Thr-332, Gly-333, Ser-336, Val-339), highly sensitive to site-directed alkylation and important for ligand selectivity3 (9). In addition, we provided evidence that Asn-430 of TM12 is close to the purine binding site and Ile-432 optimizes binding indirectly (10). These studies also show that the bacterial (9, 10) and fungal (4, 6) NAT determinants are strikingly similar, implying that few of the residues conserved within the members of NAT family may be invariably critical for function.In this report, we have studied the highly polar (Gln or Asn) and putatively charged (Asp, Glu, His, Lys, or Arg) residues of YgfO permease that are predicted to lie in transmembrane helices. Such residues are expected to face other hydrophilic parts of the protein and/or the solvent-accessible environment of the binding pocket and often play crucial roles in substrate binding and the mechanism of energy coupling in active transport (1114). Employing systematic site-directed mutagenesis of a set of 14 putatively charged and 7 highly polar residues predicted to lie in TMs (Fig. 1) and combining evidence from transport, immunoblotting, sulfhydryl alkylation, and ligand inhibition assays of a set of 60 site-directed mutants, we have identified four new important determinants in the YgfO mechanism: His-31 and Asn-93, which are crucial for affinity and/or specificity of binding purine analogues; and Glu-272 and Asp-304, which are irreplaceable for active xanthine transport. The results are discussed in conjunction with our previous findings on the role of TM12 and the NAT motif region and with respect to comparison with the major fungal homolog (UapA).Open in a separate windowFIGURE 1.Proposed topology of YgfO highlighting the polar/charged residues. This model is based on the program TMHMM, evidence that the C terminus is cytoplasmic (10, 25), and our unpublished evidence6 on the accessibility of loops to hydrophilic reagents from SCAM analysis. Putatively charged (K/R/H/D/E) or highly polar (Q/H) residues are enlarged and circled. Residues that fall in transmembrane helices (TMs) or in the NAT motif sequence (residues 323–333), as well as residue Asp-276 (which is discussed under “Discussion”) are shown with a dark background. Residues delineated as important to our studies are numbered and shown in red (this study) or blue (previous studies). The ambiguous topology segment 299–323 upstream of the NAT motif is designated as TM9a, and the transmembrane segment 330–357 that follows is designated as TM9b. SCAM analysis6 of the NAT motif shows that residues 323–333 are accessible to solvent from the outside (light blue-gray area), indicating that this region is topologically dynamic and might constitute a flexible, substrate-accessible (7, 9) reentry loop.  相似文献   

16.
UapA, a member of the NAT/NCS2 family, is a high affinity, high capacity, uric acid-xanthine/H+ symporter of Aspergillus nidulans. We have previously presented evidence showing that a highly conserved signature motif ([Q/E/P]408-N-X-G-X-X-X-X-T-[R/K/G])417 is involved in UapA function. Here, we present a systematic mutational analysis of conserved residues in or close to the signature motif of UapA. We show that even the most conservative substitutions of residues Q408, N409 and G411 modify the kinetics and specificity of UapA, without affecting targeting in the plasma membrane. Q408 substitutions show that this residue determines both substrate binding and transport catalysis, possibly via interactions with position N9 of the imidazole ring of purines. Residue N409 is an irreplaceable residue necessary for transport catalysis, but is not involved in substrate binding. Residue G411 determines, indirectly, both the kinetics (K(m), V) and specificity of UapA, probably due to its particular property to confer local flexibility in the binding site of UapA. In silico predictions and a search in structural databases strongly suggest that the first part of the NAT signature motif of UapA (Q(408)NNG(411)) should form a loop, the structure of which is mostly affected by mutations in G411. Finally, substitutions of residues T416 and R417, despite being much better tolerated, can also affect the kinetics or the specificity of UapA. Our results show that the NAT signature motif defines the function of the UapA purine translocation pathway and strongly suggest that this might occur by determining the interactions of UapA with the imidazole part of purines.  相似文献   

17.
UapA, a member of the NAT/NCS2 family, is a high affinity, high capacity, uric acid-xanthine/H+ symporter in Aspergillus nidulans. Determinants critical for substrate binding and transport lie in a highly conserved signature motif downstream from TMS8 and within TMS12. Here we examine the role of TMS1 in UapA biogenesis and function. First, using a mutational analysis, we studied the role of a short motif (Q85H86), conserved in all NATs. Q85 mutants were cryosensitive, decreasing (Q85L, Q85N, Q85E) or abolishing (Q85T) the capacity for purine transport, without affecting physiological substrate binding or expression in the plasma membrane. All H86 mutants showed nearly normal substrate binding affinities but most (H86A, H86K, H86D) were cryosensitive, a phenotype associated with partial ER retention and/or targeting of UapA in small vacuoles. Only mutant H86N showed nearly wild-type function, suggesting that His or Asn residues might act as H donors in interactions affecting UapA topology. Thus, residues Q85 and H86 seem to affect the flexibility of UapA, in a way that affects either transport catalysis per se (Q85), or expression in the plasma membrane (H86). We then examined the role of a transmembrane Leu Repeat (LR) motif present in TMS1 of UapA, but not in other NATs. Mutations replacing Leu with Ala residues altered differentially the binding affinities of xanthine and uric acid, in a temperature-sensitive manner. This result strongly suggested that the presence of L77, L84 and L91 affects the flexibility of UapA substrate binding site, in a way that is necessary for high affinity uric acid transport. A possible role of the LR motif in intramolecular interactions or in UapA dimerization is discussed.  相似文献   

18.
We have characterized the function of Leaf Permease1 (LPE1), a protein that is necessary for proper chloroplast development in maize, by functional expression in the filamentous fungus Aspergillus nidulans. The choice of this ascomycete was dictated by the similarity of its endogenous purine transporters to LPE1 and by particular genetic and physiological features of purine transport and metabolism in A. nidulans. When Lpe1 was expressed in a purine transport-deficient A. nidulans strain, the capacity for uric acid and xanthine transport was acquired. This capacity was directly dependent on Lpe1 copy number and expression level. Interestingly, overexpression of LPE1 from >10 gene copies resulted in transformants with pleiotropically reduced growth rates on various nitrogen sources and the absolute inability to transport purines. Kinetic analysis established that LPE1 is a high-affinity (K(m) = 30 +/- 2.5 microM), high-capacity transporter specific for the oxidized purines xanthine and uric acid. Competition studies showed that high concentrations of ascorbic acid (>30 mM) competitively inhibit LPE1-mediated purine transport. This work defines the biochemical function of LPE1, a plant representative of a large and ubiquitous transporter family. In addition, A. nidulans is introduced as a novel model system for the cloning and/or functional characterization of transporter genes.  相似文献   

19.
Abstract

Despite detailed genetic and mutagenic analysis and a recent high-resolution structure of a bacterial member of the nucleobase-ascorbate transporter (NAT) family, understanding of the mechanism of action of eukaryotic NATs is limited. Preliminary studies successfully expressed and purified wild-type UapA to high homogeneity; however, the protein was extremely unstable, degrading almost completely after 48 h at 4°C. In an attempt to increase UapA stability we generated a number of single point mutants (E356D, E356Q, N409A, N409D, Q408E and G411V) previously shown to have reduced or no transport activity, but correct targeting to the membrane. The mutant UapA constructs expressed well as GFP fusions in Saccharomyces cerevisiae and exhibited similar fluorescent size exclusion chromatography (FSEC) profiles to the wild-type protein, following solubilization in 1% DDM, LDAO or OM + 1 mM xanthine. In order to assess the relative stabilities of the mutants, solubilized fractions prepared in 1% DDM + 1 mM xanthine were heated at 45°C for 10 min prior to FSEC. The Q408E and G411V mutants gave markedly better profiles than either wild-type or the other mutants. Further FSEC analysis following solubilization of the mutants in 1% NG ± xanthine confirmed that G411V is more stable than the other mutants, but showed that Q408E is unstable under these conditions. G411V and an N-terminally truncated construct G411VΔ1-11 were submitted to large-scale expression and purification. Long-term stability analysis revealed that G411VΔ1-11 was the most stable construct and the most suited to downstream structural studies.  相似文献   

20.
The nucleobase-ascorbate transporter or nucleobase-cation symporter-2 (NAT/NCS2) family is one of the five known families of transporters that use nucleobases as their principal substrates and the only one that is evolutionarily conserved and widespread in all major taxa of organisms. The family is a typical paradigm of a group of related transporters for which conservation in sequence and overall structure correlates with high functional variations between homologs. Strikingly, the human homologs fail to recognize nucleobases or related cytotoxic compounds. This fact allows important biomedical perspectives for translation of structure-function knowledge on this family to the rational design of targeted antimicrobial purine-related drugs. To date, very few homologs have been characterized experimentally in detail and only two, the xanthine permease XanQ and the uric acid/xanthine permease UapA, have been studied extensively with site-directed mutagenesis. Recently, the high-resolution structure of a related homolog, the uracil permease UraA, has been solved for the first time with crystallography. In this review, I summarize current knowledge and emphasize how the systematic Cys-scanning mutagenesis of XanQ, in conjunction with existing biochemical and genetic evidence for UapA and the x-ray structure of UraA, allow insight on the structure-function and evolutionary relationships of this important group of transporters. The review is organized in three parts referring to (I) the theory of use of Cys-scanning approaches in the study of membrane transporter families, (II) the state of the art with experimental knowledge and current research on the NAT/NCS2 family, (III) the perspectives derived from the Cys-scanning analysis of XanQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号