共查询到20条相似文献,搜索用时 0 毫秒
1.
《Current biology : CB》2020,30(5):854-864.e5
- Download : Download high-res image (188KB)
- Download : Download full-size image
2.
Anelli T Ceppi S Bergamelli L Cortini M Masciarelli S Valetti C Sitia R 《The EMBO journal》2007,26(19):4177-4188
The biogenesis of secretory IgM occurs stepwise under stringent quality control, formation of μ2L2 preceding polymerization. How is efficiency of IgM secretion coupled to fidelity? We show here that ERp44, a soluble protein involved in thiol-mediated retention, interacts with ERGIC-53. Binding to this hexameric lectin contributes to ERp44 localization in the ER-golgi intermediate compartment. ERp44 and ERGIC-53 increase during B-lymphocyte differentiation, concomitantly with the onset of IgM polymerization. Both preferentially bind μ2L2 and higher order intermediates. Their overexpression or silencing in non-lymphoid cells promotes or decreases secretion of IgM polymers, respectively. In IgM-secreting B-lymphoma cells, μ chains interact first with BiP and later with ERp44 and ERGIC-53. Our findings suggest that ERGIC-53 provides a platform that receives μ2L2 subunits from the BiP-dependent checkpoint, assisting polymerization. In this process, ERp44 couples thiol-dependent assembly and quality control. 相似文献
3.
Owing to the quality control mechanisms operating in the early secretory compartment, only native proteins are secreted. Despite the difficulties in assembling planar immunoglobulin M (IgM) polymers, antibody‐secreting cells can release up to thousands of IgM per second. The finding that secretory μ (μs) chains bind to ERGIC‐53, a lectin transporter that cycles in the early secretory compartment, suggested that ERGIC‐53 hexamers could provide a polymerization platform. Here, we show that ERGIC‐53 binds to the conserved Asn563 glycan in the C‐terminal μs tailpiece (μstp). Removal of this glycan inhibits ERGIC‐53 binding and results in the rapid formation of larger polymeric assemblies. In contrast, removal of the Asn402 oligosaccharides prevents both polymerization and secretion. ERp44, a chaperone that interacts with ERGIC‐53, binds to Cys575 in the μstp, providing a fail‐safe mechanism that retrieves unpolymerized IgM subunits and promotes polymerization. The coordinated action of ERGIC‐53 and ERp44 provides a way to improve the efficiency of IgM secretion without perturbing its fidelity. 相似文献
4.
The endoplasmic reticulum (ER) is central for many essential cellular activities, such as folding, assembly and quality control of secretory and membrane proteins, disulfide bond formation, glycosylation, lipid biosynthesis, Ca2+ storage and signaling. In addition, this multifunctional organelle integrates many adaptive and/or maladaptive signaling cues reporting on metabolism, proteostasis, Ca2+ and redox homeostasis. We are beginning to understand how these functions and pathways are integrated with one another to regulate homeostasis at cell, tissue and organism levels. The mechanisms underlying the introduction of the proper set of disulfide bonds into secretory proteins (oxidative folding) are strictly related to redox homeostasis, ER stress sensing and signaling and provide a good example of the integration systems operative in the early secretory compartment. 相似文献
5.
Role of the cytoplasmic segments of Sec61alpha in the ribosome-binding and translocation-promoting activities of the Sec61 complex 总被引:1,自引:0,他引:1
The Sec61 complex performs a dual function in protein translocation across the RER, serving as both the high affinity ribosome receptor and the translocation channel. To define regions of the Sec61 complex that are involved in ribosome binding and translocation promotion, ribosome-stripped microsomes were subjected to limited digestions using proteases with different cleavage specificities. Protein immunoblot analysis using antibodies specific for the NH(2) and COOH terminus of Sec61alpha was used to map the location of proteolysis cleavage sites. We observed a striking correlation between the loss of binding activity for nontranslating ribosomes and the digestion of the COOH- terminal tail or cytoplasmic loop 8 of Sec61alpha. The proteolyzed microsomes were assayed for SRP-independent translocation activity to determine whether high affinity binding of the ribosome to the Sec61 complex is a prerequisite for nascent chain transport. Microsomes that do not bind nontranslating ribosomes at physiological ionic strength remain active in SRP-independent translocation, indicating that the ribosome binding and translocation promotion activities of the Sec61 complex do not strictly correlate. Translocation-promoting activity was most severely inhibited by cleavage of cytosolic loop 6, indicating that this segment is a critical determinant for this function of the Sec61 complex. 相似文献
6.
Melissa A. Patterson Anannya Bandyopadhyay Prasanna K. Devaraneni Josha Woodward LeeAnn Rooney Zhongying Yang William R. Skach 《The Journal of biological chemistry》2015,290(48):28944-28952
Transmembrane topology of polytopic membrane proteins (PMPs) is established in the endoplasmic reticulum (ER) by the ribosome Sec61-translocon complex (RTC) through iterative cycles of translocation initiation and termination. It remains unknown, however, whether tertiary folding of transmembrane domains begins after the nascent polypeptide integrates into the lipid bilayer or within a proteinaceous environment proximal to translocon components. To address this question, we used cysteine scanning mutagenesis to monitor aqueous accessibility of stalled translation intermediates to determine when, during biogenesis, hydrophilic peptide loops of the aquaporin-4 (AQP4) water channel are delivered to cytosolic and lumenal compartments. Results showed that following ribosome docking on the ER membrane, the nascent polypeptide was shielded from the cytosol as it emerged from the ribosome exit tunnel. Extracellular loops followed a well defined path through the ribosome, the ribosome translocon junction, the Sec61-translocon pore, and into the ER lumen coincident with chain elongation. In contrast, intracellular loops (ICLs) and C-terminalresidues exited the ribosome into a cytosolically shielded environment and remained inaccessible to both cytosolic and lumenal compartments until translation was terminated. Shielding of ICL1 and ICL2, but not the C terminus, became resistant to maneuvers that disrupt electrostatic ribosome interactions. Thus, the early folding landscape of polytopic proteins is shaped by a spatially restricted environment localized within the assembled ribosome translocon complex. 相似文献
7.
Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane
下载免费PDF全文

Although the transport of model proteins across the mammalian ER can be reconstituted with purified Sec61p complex, TRAM, and signal recognition particle receptor, some substrates, such as the prion protein (PrP), are inefficiently or improperly translocated using only these components. Here, we purify a factor needed for proper translocation of PrP and identify it as the translocon-associated protein (TRAP) complex. Surprisingly, TRAP also stimulates vectorial transport of many, but not all, other substrates in a manner influenced by their signal sequences. Comparative analyses of several natural signal sequences suggest that a dependence on TRAP for translocation is not due to any single physical parameter, such as hydrophobicity of the signal sequence. Instead, a functional property of the signal, efficiency of its post-targeting role in initiating substrate translocation, correlates inversely with TRAP dependence. Thus, maximal translocation independent of TRAP can only be achieved with a signal sequence, such as the one from prolactin, whose strong interaction with the translocon mediates translocon gating shortly after targeting. These results identify the TRAP complex as a functional component of the translocon and demonstrate that it acts in a substrate-specific manner to facilitate the initiation of protein translocation. 相似文献
8.
In mammalian cells, most membrane proteins are inserted cotranslationally into the ER membrane at sites termed translocons. Although each translocon forms an aqueous pore, the permeability barrier of the membrane is maintained during integration, even when the otherwise tight ribosome-translocon seal is opened to allow the cytoplasmic domain of a nascent protein to enter the cytosol. To identify the mechanism by which membrane integrity is preserved, nascent chain exposure to each side of the membrane was determined at different stages of integration by collisional quenching of a fluorescent probe in the nascent chain. Comparing integration intermediates prepared with intact, empty, or BiP-loaded microsomes revealed that the lumenal end of the translocon pore is closed by BiP in an ATP-dependent process before the opening of the cytoplasmic ribosome-translocon seal during integration. This BiP function is distinct from its previously identified role in closing ribosome-free, empty translocons because of the presence of the ribosome at the translocon and the nascent membrane protein that extends through the translocon pore and into the lumen during integration. Therefore, BiP is a key component in a sophisticated mechanism that selectively closes the lumenal end of some, but not all, translocons occupied by a nascent chain. By using collisional quenchers of different sizes, the large internal diameter of the ribosome-bound aqueous translocon pore was found to contract when BiP was required to seal the pore during integration. Therefore, closure of the pore involves substantial conformational changes in the translocon that are coupled to a complex sequence of structural rearrangements on both sides of the ER membrane involving the ribosome and BiP. 相似文献
9.
P58/DNAJc3 defends cells against endoplasmic reticulum (ER) stress. Most P58 molecules are translocated into the ER lumen, and here we report selective and stable binding to misfolded proteins by P58's TPR-containing N-terminal domain. In vitro, too, P58 binds selectively to a model misfolded protein and challenge of that complex with physiological concentrations of the ER lumenal Hsp70-type chaperone BiP encourages disassembly. BiP-induced dissociation of P58 from its substrate depends on the presence of ATP and on interactions with P58's J-domain, which are mediated by invariant residues BiP(R197) and P58(H422). A functional J-domain also accelerates dissociation of P58 from a model substrate, VSV-G(ts045), on the latter's re-folding in vivo. However, J-domain binding can be separated from the ability to promote substrate dissociation by the mutant BiP(E201G) and a wild-type J-domain fused ectopically to P58(H422Q) rescues the latter's inability to dissociate from substrate in response to BiP and ATP. These findings are consistent with a model whereby localized activation of the Hsp70-type partner is sufficient to promote substrate handover from the J-domain co-chaperone. 相似文献
10.
11.
Rachel Hellman Marc Vanhove Annabelle Lejeune Fred J. Stevens Linda M. Hendershot 《The Journal of cell biology》1999,144(1):21-30
Immunoglobulin heavy chain-binding protein (BiP) is a member of the hsp70 family of chaperones and one of the most abundant proteins in the ER lumen. It is known to interact transiently with many nascent proteins as they enter the ER and more stably with protein subunits produced in stoichiometric excess or with mutant proteins. However, there also exists a large number of secretory pathway proteins that do not apparently interact with BiP. To begin to understand what controls the likelihood that a nascent protein entering the ER will associate with BiP, we have examined the in vivo folding of a murine λI immunoglobulin (Ig) light chain (LC). This LC is composed of two Ig domains that can fold independent of the other and that each possess multiple potential BiP-binding sequences. To detect BiP binding to the LC during folding, we used BiP ATPase mutants, which bind irreversibly to proteins, as “kinetic traps.” Although both the wild-type and mutant BiP clearly associated with the unoxidized variable region domain, we were unable to detect binding of either BiP protein to the constant region domain. A combination of in vivo and in vitro folding studies revealed that the constant domain folds rapidly and stably even in the absence of an intradomain disulfide bond. Thus, the simple presence of a BiP-binding site on a nascent chain does not ensure that BiP will bind and play a role in its folding. Instead, it appears that the rate and stability of protein folding determines whether or not a particular site is recognized, with BiP preferentially binding to proteins that fold slowly or somewhat unstably. 相似文献
12.
蛋白质二硫键异构酶家族的结构与功能 总被引:1,自引:0,他引:1
蛋白质二硫键异构酶(protein disulfide isomerase,PDI)家族是一类在内质网中起作用的巯基-二硫键氧化还原酶.它们通常含有CXXC(Cys-Xaa-Xaa-Cys,CXXC)活性位点,活性位点的两个半胱氨酸残基可催化底物二硫键的形成、异构及还原.所有PDI家族成员包含至少一个约100个氨基酸残基的硫氧还蛋白同源结构域.PDI家族的主要职能是催化内质网中新生肽链的氧化折叠,另外在内质网相关的蛋白质降解途径(ERAD)、蛋白质转运、钙稳态、抗原提呈及病毒入侵等方面也起重要作用. 相似文献
13.
Dimerization-dependent Folding Underlies Assembly Control of the Clonotypic αβT Cell Receptor Chains
Matthias J. Feige Julia Behnke Tanja Mittag Linda M. Hendershot 《The Journal of biological chemistry》2015,290(44):26821-26831
In eukaryotic cells, secretory pathway proteins must pass stringent quality control checkpoints before exiting the endoplasmic reticulum (ER). Acquisition of native structure is generally considered to be the most important prerequisite for ER exit. However, structurally detailed protein folding studies in the ER are few. Furthermore, aberrant ER quality control decisions are associated with a large and increasing number of human diseases, highlighting the need for more detailed studies on the molecular determinants that result in proteins being either secreted or retained. Here we used the clonotypic αβ chains of the T cell receptor (TCR) as a model to analyze lumenal determinants of ER quality control with a particular emphasis on how proper assembly of oligomeric proteins can be monitored in the ER. A combination of in vitro and in vivo approaches allowed us to provide a detailed model for αβTCR assembly control in the cell. We found that folding of the TCR α chain constant domain Cα is dependent on αβ heterodimerization. Furthermore, our data show that some variable regions associated with either chain can remain incompletely folded until chain pairing occurs. Together, these data argue for template-assisted folding at more than one point in the TCR α/β assembly process, which allows specific recognition of unassembled clonotypic chains by the ER chaperone machinery and, therefore, reliable quality control of this important immune receptor. Additionally, it highlights an unreported possible limitation in the α and β chain combinations that comprise the T cell repertoire. 相似文献
14.
内质网膜蛋白在参与信号序列的识别、新生肽链的修饰、转运通道的形成等生理过程中发挥重要作用.易位子相关蛋白(translocon-associated protein, TRAP)是广泛存在于高等真核生物中的一种膜蛋白,其作为信号序列的受体蛋白位于内质网膜上.该蛋白能选择性地识别信号序列,并与Sec61相互作用形成一个以Sec61为核心、TRAP侧向延伸的椭圆状转运通道,从而靶向新生肽链进入内质网腔.近来研究发现,TRAP与蛋白质构象病、神经退行性疾病、肿瘤转移等疾病的发病机制有关.本文将对TRAP各个亚基的最新研究及其功能作一综述. 相似文献
15.
Kien Van Vu Ngoc Trinh Nguyen Chan Young Jeong Yong‐Hwa Lee Hojoung Lee Suk‐Whan Hong 《The Plant journal : for cell and molecular biology》2017,89(5):972-983
Calnexin (CNX) and calreticulin (CRT) are homologous lectin chaperones in the endoplasmic reticulum (ER) that facilitate glycoprotein folding and retain folding intermediates to prevent their transit via the secretary pathway. The Arabidopsis genome has two CNX (CNX1 and CNX2) and three CRT (CRT1, CRT2 and CRT3) homologs. Despite growing evidence of the biological roles of CNXs and CRTs, little is understood about their function in Arabidopsis growth and development under normal conditions. Here, we report that the deletion of CNX1, but not of CNX2, in the crt1 crt2 crt3 triple mutation background had an adverse effect on pollen viability and pollen tube growth, leading to a significant reduction in fertility. The cnx1 crt1 crt2 crt3 quadruple mutation also conferred severe defects in growth and development, including a shortened primary root, increased root hair length and density, and reduced plant height. Disruption of all five members of the CNX/CRT family was revealed to be lethal. Finally, the abnormal phenotype of the cnx1 crt1 crt2 crt3 quadruple mutants was completely rescued by either the CNX1 or CNX2 cDNA under the control of the CNX1 promoter, suggesting functional redundancy between CNX1 and CNX2. Taken together, these results provide genetic evidence that CNX and CRT play essential and overlapping roles during vegetative growth and male gametophyte development in Arabidopsis. 相似文献
16.
High capacity of the endoplasmic reticulum to prevent secretion and aggregation of amyloidogenic proteins
下载免费PDF全文

Lisa Vincenz‐Donnelly Hauke Holthusen Roman Körner Erik C Hansen Jenny Presto Jan Johansson Ritwick Sawarkar F Ulrich Hartl Mark S Hipp 《The EMBO journal》2018,37(3):337-350
Protein aggregation is associated with neurodegeneration and various other pathologies. How specific cellular environments modulate the aggregation of disease proteins is not well understood. Here, we investigated how the endoplasmic reticulum (ER) quality control system handles β‐sheet proteins that were designed de novo to form amyloid‐like fibrils. While these proteins undergo toxic aggregation in the cytosol, we find that targeting them to the ER (ER‐β) strongly reduces their toxicity. ER‐β is retained within the ER in a soluble, polymeric state, despite reaching very high concentrations exceeding those of ER‐resident molecular chaperones. ER‐β is not removed by ER‐associated degradation (ERAD) but interferes with ERAD of other proteins. These findings demonstrate a remarkable capacity of the ER to prevent the formation of insoluble β‐aggregates and the secretion of potentially toxic protein species. Our results also suggest a generic mechanism by which proteins with exposed β‐sheet structure in the ER interfere with proteostasis. 相似文献
17.
DnaJ proteins often bind to unfolded substrates and recruit their Hsp70 partners. This induces a conformational change in the Hsp70 that stabilizes its binding to substrate. By some unknown mechanism, the DnaJ protein is released. We examined the requirements for the release of ERdj3, a mammalian ER DnaJ, from substrates and found that BiP promoted the release of ERdj3 only in the presence of ATP. Mutations in ERdj3 or BiP that disrupted their interaction interrupted the release of ERdj3. BiP mutants that were defective in any step of the ATPase cycle were also unable to release ERdj3. These results demonstrate that a functional interaction between ERdj3 and BiP, including both a direct interaction and the ability to stimulate BiP's ATPase activity are required to release ERdj3 from substrate and support a model where ERdj3 must recruit BiP and stimulate its high-affinity association with the substrate through activation of ATP hydrolysis to trigger its own release from substrates. On the basis of similarities among DnaJs and Hsp70s, this is likely to be applicable to other Hsp70-DnaJ pairs. 相似文献
18.
Friederike Thor Matthias Gautschi Roger Geiger Ari Helenius 《Traffic (Copenhagen, Denmark)》2009,10(12):1819-1830
The C-terminal domain, Cp, of the Semliki Forest virus capsid protein, known for its rapid, efficient and chaperone-independent folding, was used to measure bulk fluid flow in the secretory pathway of Chinese hamster ovary cells. Being small, nonglycosylated, soluble and cytoplasmic in origin, Cp was not likely to interact with lectins, cargo receptors and retention factors. Using pulse-chase analysis, we observed that translocation into the endoplasmic reticulum resulted in rapid and efficient folding and transport of the newly synthesized Cp protein to the extracellular medium. The first Cp molecules were secreted 15 min after synthesis, which is the fastest transport of a protein so far recorded in mammalian cells. The rate constant of secretion was 1.2% per min, which amounts to an estimated bulk flow rate of about 155 coat protein II (COPII) vesicles per second. Transport was independent of expression level, and blocked by CI-976, brefeldin A and ATP depletion indicating that it depended on COPII vesicle formation, and followed the classical secretory pathway. In polarized Madin-Darby canine kidney cells, the secretion rate was similar but occurred mainly apically. The results demonstrated that fluid flow in the secretory pathway is fast, and can therefore play a significant role in the secretion of soluble secretory products. 相似文献
19.
20.
Protein quality control (QC) within the endoplasmic reticulum and the related unfolded protein response (UPR) pathway of signal transduction are major regulators of the secretory pathway, which is involved in virtually any aspect of development and reproduction. The study of plant-specific processes such as pathogen response, seed development and the synthesis of seed storage proteins and of particular toxins is providing novel insights, with potential implications for the general recognition events and mechanisms of action of QC and UPR. 相似文献