首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structures of the first and the second transmembrane segment of the bovine mitochondrial oxoglutarate carrier (OGC) were studied by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. Peptides 21-46 and 78-108 of its primary sequence were synthesized and structurally characterized in membrane-mimetic environments. CD data showed that at high concentrations of TFE (>50%) and SDS (>2%) both peptides assume alpha-helical structures, whereas in more hydrophilic environments only peptide 78-108 has a helical structure. (1)H-NMR spectra of the two peptides in TFE/water and SDS were fully assigned, and the secondary structures of the peptides were obtained from nuclear Overhauser effects, (3)J(alphaH-NH) coupling constants and alphaH chemical shifts. The three-dimensional solution structures of the peptides in TFE/water were generated by distance geometry calculations. A well-defined alpha-helix was found in the region K24-V39 of peptide 21-46 and in the region A86-F106 of peptide 78-108. We cannot exclude that in intact OGC the extension of these helices is longer. The helix of peptide 21-46 is essentially hydrophobic, whereas that of peptide 78-108 is predominantly hydrophilic.  相似文献   

2.
The structures of the fifth and sixth transmembrane segments of the bovine mitochondrial oxoglutarate carrier (OGC) and of the hydrophilic loop that connects them were studied by CD and NMR spectroscopies. Peptides F215-R246, W279-K305 and P257-L278 were synthesized and structurally characterized. CD data showed that at high concentrations of TFE and SDS all peptides assume α-helical structures. 1H-NMR spectra of the three peptides in TFE/water were fully assigned and the secondary structures of the peptides were obtained from nuclear Overhauser effects, 3JαH-NH coupling constants and αH chemical shifts. The three-dimensional solution structures of the peptides were generated by distance geometry calculations. A well-defined α–helix was found in the region L220-V243 of peptide F215-R246 (TMS-V), in the region P284-M303 of peptide W279-K305 (TMS-VI) and in the region N261-F275 of peptide P257-L278 (hydrophilic loop). The helix L220-V243 exhibited a sharp kink at P239, while a little bend around P291 was observed in the helical region P284-M303. Fluorescence studies performed on peptide W279-K305, alone and together with other transmembrane segments of OGC, showed that the W279 fluorescence was quenched upon addition of peptide F215-R246, but not of peptides K21-K46, R78-R108 and P117-A149 suggesting a specific interaction between TMS-V and TMS-VI of OGC.  相似文献   

3.
The structures of the fifth and sixth transmembrane segments of the bovine mitochondrial oxoglutarate carrier (OGC) and of the hydrophilic loop that connects them were studied by CD and NMR spectroscopies. Peptides F215-R246, W279-K305 and P257-L278 were synthesized and structurally characterized. CD data showed that at high concentrations of TFE and SDS all peptides assume alpha-helical structures. (1)H-NMR spectra of the three peptides in TFE/water were fully assigned and the secondary structures of the peptides were obtained from nuclear Overhauser effects, (3)J(aH-NH) coupling constants and alphaH chemical shifts. The three-dimensional solution structures of the peptides were generated by distance geometry calculations. A well-defined alpha-helix was found in the region L220-V243 of peptide F215-R246 (TMS-V), in the region P284-M303 of peptide W279-K305 (TMS-VI) and in the region N261-F275 of peptide P257-L278 (hydrophilic loop). The helix L220-V243 exhibited a sharp kink at P239, while a little bend around P291 was observed in the helical region P284-M303. Fluorescence studies performed on peptide W279-K305, alone and together with other transmembrane segments of OGC, showed that the W279 fluorescence was quenched upon addition of peptide F215-R246, but not of peptides K21-K46, R78-R108 and P117-A149 suggesting a specific interaction between TMS-V and TMS-VI of OGC.  相似文献   

4.
Nramp1 (natural resistance-associated macrophage protein 1) is an integral membrane protein with 12 putative transmembrane domains. As a proton-coupled divalent metal cation transporter, it is involved in defense against intracellular pathogens. Disease-causing mutation in Nramp1 occurring at glycine 169 located within the fourth transmembrane domain (TM4) suggests functional importance of this domain. In this paper, we study the three-dimensional structures of a peptide, corresponding to the TM4 of the wild-type Nramp1, in SDS micelles and 2, 2, 2-trifluoroethanol solvent using CD and NMR spectroscopies. We have found that an α-helix is predominantly induced in membrane-mimetic environments and the folding of the C-terminal residues is regulated by pH in SDS micelles. The peptide is embedded in SDS micelles and self-associated by coiled-coil interactions. The helix of the peptide in TFE is lengthened towards the N-terminus compared with those in SDS micelles at acidic pH and the self-association of the peptide is also observed in TFE. The fact that Mn2+ ions are accessible to Asp-14 located in the interior of SDS micelles is found and the binding affinity is increased with increasing pH. The self-association of the peptide may provide a path by which Mn2+ ions pass through the membrane.  相似文献   

5.
The N-terminal domain of HIV-1 glycoprotein 41?000 (FP; residues 1-23; AVGIGALFLGFLGAAGSTMGARSCONH2) participates in fusion processes underlying virus-cell infection. Here, we use physical techniques to study the secondary conformation of synthetic FP in aqueous, structure-promoting, lipid and biomembrane environments. Circular dichroism and conventional, 12C-Fourier transform infrared (FTIR) spectroscopy indicated the following α-helical levels for FP in 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) liposomes∼hexafluoroisopropanol (HFIP)>trifluoroethanol (TFE)>phosphate-buffered saline (PBS). 12C-FTIR spectra also showed disordered FP structures in these environments, along with substantial β-structures for FP in TFE or PBS. In further experiments designed to map secondary conformations to specific residues, isotope-enhanced FTIR spectroscopy was performed using a suite of FP peptides labeled with 13C-carbonyl at multiple sites. Combining these 13C-enhanced FTIR results with molecular simulations indicated the following model for FP in HFIP: α-helix (residues 3-16) and random and β-structures (residues 1-2 and residues 17-23). Additional 13C-FTIR analysis indicated a similar conformation for FP in POPG at low peptide loading, except that the α-helix extends over residues 1-16. At low peptide loading in either human erythrocyte ghosts or lipid extracts from ghosts, 13C-FTIR spectroscopy showed α-helical conformations for the central core of FP (residues 5-15); on the other hand, at high peptide loading in ghosts or lipid extracts, the central core of FP assumed an antiparallel β-structure. FP at low loading in ghosts probably inserts deeply as an α-helix into the hydrophobic membrane bilayer, while at higher loading FP primarily associates with ghosts as an aqueous-accessible, β-sheet. In future studies, 13C-FTIR spectroscopy may yield residue-specific conformations for other membrane-bound proteins or peptides, which have been difficult to analyze with more standard methodologies.  相似文献   

6.
Antimicrobial peptides from a wide range of amphibian species, especially frogs of the genus Rana, have been characterised and are potential therapeutic agents. Here we describe the isolation, purification, and structural and biological characterisation of three novel antimicrobial peptides from the skin secretions of the black spotted frog, Rana nigromaculata, from Northeastern China. The peptides were identified as belonging to two known families: the temporin, which was first identified in R. nigromaculata from China, and the brevinin-2. Temporin-1RNa and temporin-1RNb both containing three positive charges and have a high potency against microorganisms (MIC: 3.13–8.3 μM against Gram-positive bacteria, 12.5–25.0 μM against Gram-negative bacteria, and 6.25–12.5 μM against Candida albicans) and a high haemolytic activity against human erythrocytes (HC50: 100–150 μM). Brevinin-2RNa contains a single intra-disulphide bridge at the C-terminus that is active towards the tested Gram-positive bacteria but is not active against E. coli and P. aeruginosa. The cDNAs encoding three novel peptide precursors were also subsequently cloned from an R. nigromaculata skin cDNA library and sequenced. The precursors contain 58–72 amino acid residues, which include a conserved signal peptide, acidic propeptide, and the mature temporin-1RNa, temporin-1RNb and brevinin-2RNa. The CD spectra of temporin-1RNa and temporin-1RNb in water, 30 mM SDS and 50 % trifluoroethanol (TFE) indicated that both peptides adopted an aperiodic structure in water and an organised structure with an α-helical conformation in TFE and SDS solution. The conformational transition induced by TFE or SDS reflects the potential ability of temporin-1RNa and temporin-1RNb to interact with anionic membranes.  相似文献   

7.
The receptor for the α-factor mating pheromone of the yeast Saccharomyces cerevisiae consists of 431 amino acid residues and is a member of a family of membrane proteins predicted to have seven transmembrane helices. Fragments of the receptor corresponding to two of the transmembrane helices [residues 246–269 (M6) and 273–302 (M7)], two of the interhelical loops [residues 107–125 (E2) and 191–206 (E3)], and to a portion of the carboxyl terminus [residues 350–372 (CT)] were synthesized using solid-phase methodologies and purified to near homogeneity. CD was used to characterize the secondary structure of these peptides in trifluoroethanol (TFE), in TFE/water mixtures, in sodium dodecyl sulfate (SDS), and in the presence of dimyristoyl phosphatidylcholine (DMPC) liposomes. In TFE, M6 and M7 exhibited CD spectra consistent with highly helical peptides, whereas CT was partially helical. In contrast, E2 and E3 were either disordered or aggregated in this solvent. M6 did not partition well into DMPC vesicles whereas M7 remained helical. Both M6 and M7 assumed helical conformations in 25 mM SDS. The loop neptides and the carboxyl terminus peptide were either in a β-structure or disordered in the presence of lipid. These findings represent the first biophysical evidence for conformations assumed by specific segments of the STE2 receptor protein. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Abstract

The peptide (35 residues) corresponding to the basic subdomain (bSD) of c-Jun (residues 252–281) and its fragments NP (N-terminal peptide, 1–19) and CP (C-terminal peptide, 1635) were synthesized in stepwise solid-phase using the tert-butyloxycarbonyl/benzyl strategy. In a previous paper, we have shown that during its binding to the DNA site CRE (cAMP- responsive element) the bSD structure was converted into α-helix from an initial random coil conformation [Krebs, D., Dahmani, B., El Antri, S., Monnot, M., Convert, O., Mauffret, O., Troalen, F. & Fermandjian, S. Eur. J. Biochem. 231, 370–380 (1995)]. Our results suggested both a high flexibility and a helical potential in bSD, these two properties seeming crucial for the accommodation of the basic subdomain of c-Jun to its specific DNA targets. In this work, we assessed the conformational variability of bSD through the study of the secondary structures of its NP and CP fragments in trifluoroethanol (TFE)/2H2O mixtures, using Fourier transform infrared (FTIR) spectroscopy. The IR results were critically analyzed in light of our previously reported circular dichroism (CD) and NMR data [Krebs, D., Dahmani, B., Monnot, M., Mauffret, O., Troalen, F. & Fermandjian, S. Eur. J. Biochem. 235, 699–712 (1996)]. Upon addition of TFE, the relative areas of the seven components of the amide I band (1700–1620 cm?1) reflected the conversion of a large amount of random coil conformation into α-helix for the two fragments and bSD. This effect was accompanied by more subtle variations of the less populated structures, in agreement with the results of CD and NMR experiments. The IR results stipulated the conservation of the parent bSD secondary structures in both fragments; however, NP and CP peptides did not display similar random-to-α-helix stabilization pattern upon additions of TFE to aqueous solutions. The profile from CD signal at 222 nm was found sigmoidal for NP and almost linear for CP, while that corresponding to the parent peptide bSD was just in between those of its fragments. Thus, the present study confirms the high flexibility and helix propensity of the c-Jun basic subdomain and suggests that the N- and C-terminal parts of the peptide do not follow the same random-to-helix conversion profile during their complexation with DNA.  相似文献   

9.
The cytolytic activities and conformational properties of pardaxin (GFFALIPKIISSPLFKTLLSAVGSALSSSGEQE), a 33-residue linear peptide that exhibits unusual shark repellent and cytolytic activities, and its analogues have been examined in aqueous environment and trifluoroethanol (TFE) using CD spectroscopy. A peptide corresponding to the 1–26 segment and an analogue where P7 has been changed to A show greater hemolytic activity than pardaxin. While the peptide corresponding to the N-terminal 18-residue segment does not exhibit hemolytic activity, its analogue where P7 is replaced by A is hemolytic. The secondary structural propensities of the peptides were inferred by deconvolution of the experimental spectra into pure components. Pardaxin, its variant where proline at position 7 was replaced by alanine, and shorter peptides corresponding to N-terminal segments exist in multiple conformations in aqueous medium that are comprised of β-turn, β-sheet, and distorted helical structures. With increasing proportions of TFE, while helical conformation predominates in all the peptides, both distorted and the regular α-helices appear to be populated. Analysis of CD spectra by deconvolution methods appears to be a powerful tool for delineating multiple conformations in peptides, especially membrane-active peptides that encounter media of different polarity ranging from aqueous environment to one of low dielectric constant in the hydrophobic interior of membranes. Our study provides further insights into the structural requirements for the biological activity of pardaxin and related peptides. © 1997 John Wiley & Sons, Inc. Biopoly 41: 635–645, 1997  相似文献   

10.
The conformational properties of a series of gastrin-related peptides in aqueous solution and in 2,2,2-trifluoroethanol (TFE) have been investigated by CD measurements. In aqueous solution the peptides Leu32-HG-34 (human big gastrin), Nle15-HG-17 (human little gastrin), and Nle11-HG-13 assume a random-coil structure in the pH range 3–7. In TFE the three hormones fold into partially ordered structures, consisting of mixtures of α-helix, β-form and random coil. Comparison with the CD properties of the shorter gastrin peptides HG-4 (tetragastrin), Nα-Boc-HG-5 (pentagastrin), and HG-7 (heptagastrin) indicates that the biologically important C-terminal sequence Trp-Met-Asp-Phe-NH2 in TFE does not maintain the same geometry upon elongation of the chain at the N-terminus from 4 to 34 residues. Thus, the various conformations in solution of the gastrin peptides examined do not provide a structural explanation for their very similar biological activity. Therefore, we hypothesize that the C-terminal tetrapeptide amide folds into an “active” structure only upon interaction with the receptor.  相似文献   

11.
We synthesized porcine neuropeptide Y (pNPY) N-terminal fragments by solid-phase synthesis techniques and analyzed them for solution Conformational properties by CD and 1H-nmr spectroscopy. The analogues pNPY1–9 and pNPY1–14 displayed CD spectra indicative of random structures and showed no evidence for induced α-helical structures in trifluoroethanol (TFE) up to 50%. However, the CD spectra of pNPY1-9 suggested a Conformational shift in tetrahydrofuran. Although in aqueous solution the CD spectra of pNPY1–21 indicated random structures with induction of only a small percentage of α-helix in aqueous TFE, pNPY1-25 displayed 13% a-helical structure in aqueous solution that increased to 40 and 41% by the addition of TFE and methanol, respectively. The nmr spectra of pNPY1-9 and the proline region of pNPY1–25 indicated extended structures with all-trans conformers at Pro5 and Pro8 for pNPY1–9 and at Pro5, Pro8, and Pro13 for pNPY1–25; in each case the Tyrl-Pro2 amide bond was in both cis and trans conformations. However, observed nuclear Overhauser effect correlations and UN exchange experiments indicated an α-helical segment in pNPY1–25 initiated by Pro 13 and extending from residues 14 to 25. Thus, the N-terminal polyproline region of NPY has no propensity to fold into a regular secondary structure, although Pro 13 is a helix initiator, a result consistent with the proposed role of this amino acid in the NPY structural model. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
The unique biophysical properties of tryptophan residues have been exploited for decades to monitor protein structure and dynamics using a variety of spectroscopic techniques, such as fluorescence and nuclear magnetic resonance (NMR). We recently designed a tryptophan mutant in the regulatory N‐domain of cardiac troponin C (F77W‐cNTnC) to study the domain orientation of troponin C in muscle fibers using solid‐state NMR. In our previous study, we determined the NMR structure of calcium‐saturated mutant F77W‐V82A‐cNTnC in the presence of 19% 2,2,2‐trifluoroethanol (TFE). TFE is a widely used cosolvent in the biophysical characterization of the solution structures of peptides and proteins. It is generally assumed that the structures are unchanged in the presence of cosolvents at relatively low concentrations, and this has been verified for TFE at the level of the overall secondary and tertiary structure for several calcium regulatory proteins. Here, we present the NMR solution structure of the calcium saturated F77W‐cNTnC in presence of its biological binding partner troponin I peptide (cTnI144–163) and in the absence of TFE. We have also characterized a panel of six F77W‐cNTnC structures in the presence and absence TFE, cTnI144–163, and the extra mutation V82A, and used 19F NMR to characterize the effect of TFE on the F77(5fW) analog. Our results show that although TFE did not perturb the overall protein structure, TFE did induce a change in the orientation of the indole ring of the buried tryptophan side chain from the anticipated position based upon homology with other proteins, highlighting the potential dangers of the use of cosolvents.  相似文献   

13.
The β subunit of human choriogonadotropin (hCGβ) and its asialoderivative were digested with trypsin and then reduced and S-carboxymethylated. A series of peptides were purified which corresponded to residues 1–43, 44–95, 96–114, and 123–145 of the 145 amino acid residue glycoprotein. The two N-linked oligosaccharides were present on the amino terminal peptide, and three of the four O-linked oligosaccharides were present on the carboxy terminal peptide. Circular dichroic spectra between 190–240 nm were obtained on reduced, S-carboxymethylated (RCM) hCGβ and the above peptides, both in aqueous solution and in the helicogenic solvent 80% (vol/vol) trifluoroethanol (TFE). In aqueous solution there was evidence of only limited helicity in the peptides and RCM-hCGβ however, in the presence of TFE, peptides 1–43 and 44–95 exhibited significant helicity, as did the full-length linear chain. The helicity developed in TFE by RCM-hCGβ appears much greater than that which occurs in the native, disulfide-intact form, thus suggesting that the disulfides prevent expression of helicity in regions with α-helix potential. Application of the Chou-Fasman secondary structure predictive algorithm to hCGβ suggested that several regions of helix potential, in particular regions 14–21, 59–69, and perhaps 80–88, may account for much of the helicity observed in peptides 1–43 and 44–95, respectively, in TFE. The region from 96–145 has no significant potential for helicity, consistent with the measured circular dichroic spectra of peptides 96–114 and 123–145. These results demonstrate that helicity can occur in the linear form of hCGβ, and this secondary structure can best be attributed to the amino terminal and the middle portion of the molecule. Several potential regions of β-structure and β-turns were also suggested.  相似文献   

14.
The widely observed phenomenon that peptides are capable of adopting multiple conformations in different environments suggests that secondary structure formation in a peptide segment is a process involving not only the peptide itself hut also the surrounding solvent media. The influence of the primary sequence and the molecular environment on peptide conformations are now investigated using synthetic peptides of amino acid sequence H2N-(Ser-Lys)2-Ala-X-Gly-Ala-X-Gly-Trp-Ala-X-Gly-(Lys-Ser)3-OH, where X = Ile or Val. These two peptides, namely 3I (X = Ile) and 3V (X = Val), are found to lack defined secondary structure in aqueous buffer. However, discrete conformational states, e.g., α-helices and β-sheets, are readily generated and interconverted for both peptides when the buffer is modulated with the addition of methanol, sodium dodecyl sulfate (SDS) micelles, or phospholipid vesicles. The role of the primary sequence in affecting peptide conformations is manifested in that peptides 3I and 3V, which differ respectively in their content of β-branched Ile or Val residues, differ in their secondary structures at monomeric concentrations in 2 mM SDS and in mixed lipid vesicles of phosphatidic acid and phosphatidylcholine. The overall results suggest that peptide segments can be conformationally flexible entities poised to react to minor modulations in cither the molecular environment or the primary sequence, a circumstance that may he relevant to protein functioning and folding. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
The 173–195 segment corresponding to the helix 2 of the globular PrP domain is a good candidate to be one of the several ‘spots’ of intrinsic structural flexibility, which might induce local destabilization and concur to protein transformation, leading to aggregation‐prone conformations. Here, we report CD and NMR studies on the α2‐helix‐derived peptide of maximal length (hPrP[180–195]) that is able to exhibit a regular structure different from the prevalently random arrangement of other α2‐helix‐derived peptides. This peptide, which has previously been shown to be affected by buffer composition via the ion charge density dependence typical of Hofmeister effects, corresponds to the C‐terminal sequence of the PrPC full‐length α2‐helix and includes the highly conserved threonine‐rich 188–195 segment. At neutral pH, its conformation is dominated by β‐type contributions, which only very strong environmental modifications are able to modify. On TFE addition, an increase of α‐helical content can be observed, but a fully helical conformation is only obtained in neat TFE. However, linking of the 173–179 segment, as occurring in wild‐type and mutant peptides corresponding to the full‐length α2‐helix, perturbs these intrinsic structural propensities in a manner that depends on whether the environment is water or TFE. Overall, these results confirm that the 180–195 parental region in hPrPC makes a strong contribution to the chameleon conformational behavior of the segment corresponding to the full‐length α2‐helix, and could play a role in determining structural rearrangements of the entire globular domain. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Ion channel-forming peptides enable us to study the conformational dynamics of a transmembrane helix as a function of sequence and environment. Molecular dynamics simulations are used to study the conformation and dynamics of three 22-residue peptides derived from the second transmembrane domain of the glycine receptor (NK4-M2GlyR-p22). Simulations are performed on the peptide in four different environments: trifluoroethanol/water; SDS micelles; DPC micelles; and a DMPC bilayer. A hierarchy of alpha-helix stabilization between the different environments is observed such that TFE/water < micelles < bilayers. Local clustering of trifluoroethanol molecules around the peptide appears to help stabilize an alpha-helical conformation. Single (S22W) and double (S22W,T19R) substitutions at the C-terminus of NK4-M2GlyR-p22 help to stabilize a helical conformation in the micelle and bilayer environments. This correlates with the ability of the W22 and R19 side chains to form H-bonds with the headgroups of lipid or detergent molecules. This study provides a first atomic resolution comparison of the structure and dynamics of NK4-M2GlyR-p22 peptides in membrane and membrane-mimetic environments, paralleling NMR and functional studies of these peptides.  相似文献   

17.
To study the effects of a point mutation found in Pelizaeus-Merzbacher disease (PMD) on the physicochemical and structural properties of the extracellular loop 4 of the myelin proteolipid protein (PLP), we synthesized the peptide PLP(181-230)Pro215 and one mutant PLP(181-230)Ser215 with regioselective formation of the two disulphide bridges Cys200-Cys219 and Cys183-Cys227. As conventional amino acid building blocks failed to give crude peptides of good quality we had to optimize the synthesis by introducing pseudoproline dipeptide building blocks during the peptide elongation. In peptide Pro215 the first bridge Cys200-Cys219 was obtained after air oxidation, but in peptide Ser215 because of aggregation, dimethyl sulfoxide (DMSO) oxidation had to be used. The second bridge Cys183-Cys227 was obtained by iodine oxidation of both Cys (acetamidomethyl, Acm)-protected peptides. The secondary structures of the parent and mutant loops were analysed by circular dichroism (CD) in the presence of trifluoroethanol (TFE) and sodium dodecyl sulphate (SDS) as a membrane mimetic. Analysis of the spectra showed that the content of alpha-helix and beta-sheet varied differently for both peptides in TFE and SDS solutions, demonstrating the sensitivity of their conformation to the environment and the differences in their secondary structure. The ability of both peptides to insert into the SDS micelles was assayed by intrinsic tryptophan fluorescence.  相似文献   

18.
Adrenergic receptors are integral membrane proteins involved in cellular signalling that belong to the G protein-coupled receptors. Synthetic peptides resembling the putative transmembrane (TM) segments TM4, TM6 and TM7, of the human α2-adrenergic receptor subtype C10 (P08913) and defined lipid vesicles were used to assess protein-lipid interactions that might be relevant to receptor structure/function. P6 peptide contains the hydrophobic core of TM6 plus the N-terminal hydrophilic motif REKR, while peptides P4 and P7 contained just the hydrophobic stretches of TM4 and TM7, respectively. All the peptides increase their helical tendency at moderate concentrations of TFE (30–50%) and in presence of 1,2-dielaidoyl-sn-glycero-3-phosphatidylethanolamine (DEPE) lipids. However, only P6 displays up to 19% of α-helix in the presence of just the DEPE lipids, evidences a transmembrane orientation and stabilizes the Lα lipid phase. Conversely, P4 and P7 peptides form only stable β-sheet structures in DEPE and favour the non-lamellar, inverted hexagonal (HII) phase of DEPE by lowering its phase transition temperature. This study highlights the potential of using synthetic peptides derived from the amino acid sequence in the native proteins as templates to understand the behaviour of the transmembrane segments and underline the importance of interfacial anchoring interactions to meet hydrophobic matching requirements and define membrane organization.  相似文献   

19.
Hwang S  Hilty C 《Proteins》2011,79(5):1365-1375
The two-stage model for membrane protein folding postulates that individual helices form first and are subsequently packed against each other. To probe the two-stage model, the structures of peptides representing individual transmembrane helices of the disulfide bond forming protein B have been studied in trifluoroethanol solution as well as in detergent micelles using nuclear magnetic resonance (NMR) and circular dichroism spectroscopy. In TFE solution, peptides showed well-defined α-helical structures. Peptide structures in TFE were compared to the structures of full-length protein obtained by X-ray crystallography and NMR. The extent of α-helical secondary structure coincided well, lending support for the two-stage model for membrane protein folding. However, the conformation of some amino acid side chains differs between the structures of peptide and full-length protein. In micellar solution, the peptides also adopted a helical structure, albeit of reduced definition. Using measurements of paramagnetic relaxation enhancement, peptides were confirmed to be embedded in micelles. These observations may indicate that in the native protein, tertiary interactions additionally stabilize the secondary structure of the individual transmembrane helices.  相似文献   

20.
A series of 14 residue amphipathic α-helical peptides, in which the sidechains of glutamic acid and lysine have been covalently joined, was synthesized in order to determine the effect of spacing, position and orientation of these lactam bridges. It was found that although an (i, i+3) spacing would position the lactam bridge on the same face of the helix, these lactams with 18-member rings were actually helix-destabilizing regardless of position or location. On the other hand, (i, i+4) lactams with 21-member rings were helix-stabilizing but this was dependent on orientation. Glutamic acid-lysine lactams increased the helical content of the peptide when compared with their linear homologue in benign conditions (50 mM KH2PO4, 100 mM KCl, pH 7). Two Glu-Lys (i, i+4) lactams located at the N- and C-termini gave rise to a peptide with greater than 99% helical content in benign conditions. Peptides with Lys-Glu oriented lactams were random structures in benign conditions but in the presence of 50% TFE could be induced into a helical conformation. The stability of the single-stranded α-helices, as measured by thermal denaturations in 25% TFE indicated that Glu-Lys oriented lactam bridges stabilized the helical conformation relative to the linear unbridged peptide. One Glu-Lys lactam in the middle of the peptide was more effective at stabilizing helical structure than two Glu-Lys lactams positioned one at each end of the molecule. The lactams with the Lys-Glu orientation were destabilizing relative to the unbridged peptide. This study demonstrates that correct orientation and position of a lactam bridge is critical in order to design peptides with high helical content in aqueous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号