首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
This paper presents some new arguments for the metameric-wonn-theory for the evolution of the Vertebrates (Gutmann 1966a). Metameric coelomoducts in Enteropneust larvae (Goodrich 1947) which should be interpreted as metanephridia show that the Enteropneusts can be derived from metameric Chordate-like predecessors. The myomeres of Branchiostoma are no solid organs as there exist sclerocoels. These must be interpreted as vestigial coelomic cavities. They can be cited as a proof for the metameric worm-theory. They function as a canal system, which gathers excretory stuff in the myomeres which these organs could otherwise not get rid of. The coelom-cavities are cleaned by the protonephridia in the gill region. Some additional details of the phylogenetic transformation of metameric coelom cavities into myomeres are reconstructed. It is shown that the problem of coelomic and myomeric metamerism cannot be solved in the way proposed in the literature concerned with this question. The metameric-worm-theory for the evolution of the Vertebrates pretends that metameric metanephridia were fused on the lower level of Vertebrate phylogeny and formed the archinephric ducts. A paper of Goodrich (1947) shows that there are similar cases of fused metanephridia in some Annelids. These are parallels to the postulated formation of the metanephridia in the lowest Vertebrates. The archinephric duct acquired its muscular coat when it was formed by fusion of metanephridia in the bodywall. Muscles of the body wall took over a new function by making peristaltic movements of the newly formed archinephric ducts possible. When the archinephric duct was moved back into the coelom it did not lose the still functioning muscular coat.  相似文献   

13.
Heating with orchids Species‐rich meadows in Germany and Europe are highly threatened habitats. For conservation of these habitats regular cutting is necessary to prevent the invasion of high‐growing woody plants which otherwise would rule out the sun‐loving meadow species. However, due to a low energy content the extracted biomass is not well suitable for modern agricultural use or conventional energy production. Currently, scientists of the University of Kassel apply a new procedure which converts the species‐rich biomass into solid fuel for thermal combustion. During this process the extracted plant fluids are fermented to biogas, whereas the solid plant remains are pressed to pellets. In this manner the scientists intend to contribute to nature and climate protection as well as to an additional income for farmers.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号