共查询到3条相似文献,搜索用时 0 毫秒
1.
Amoebophrya is a parasitic, syndinian dinoflagellate genus that must infect another host dinoflagellate in order to reproduce. Work by Park et al. [Mar. Ecol. Prog. Ser., 227: 281–292 (2002)] has led to the hypothesis that Amoebophrya's development within a host cell nucleus disrupts the flow of genetic information involved in plastidial function. The possibility that genetic disruption by this parasite could lead to alterations in plastidial lipid composition during the course of an infection has not yet been elucidated. Our primary objective in this lipidomic study was to examine the chloroplast membrane galactolipid composition of Alexandrium tamarense infected by an Amoebophrya species in order to determine whether infection of A. tamarense causes a phenotypic alteration in the composition of mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively), two galactolipids that comprise the majority of photosynthetic membranes. Our secondary objective was to determine if non-photosynthetic Amoebophrya sp. either incorporated host cell MGDG and DGDG, and/or itself produced forms of MGDG and DGDG, as has been observed previously in heterotrophic apicomplexan parasites distantly related to Amoebophrya. We found that, despite development of Amoebophrya sp. within the nucleus, the composition of A. tamarense MGDG and DGDG did not change throughout the infection process. The predominant forms of these galactolipids were 18:5/18:4 (sn???1/sn?2) and 20:5/18:4 DGDG, which were present at similar abundances in both an uninfected host and a host late in the infection process just prior to release of Amoebophrya sp. dinospores. Amoebophrya sp. did not possess appreciable amounts of any forms of MGDG and DGDG. 相似文献
2.
Despite their importance in marine and freshwater microalgal assemblages, cold-adapted dinoflagellates have been the subject of few comprehensive lipid studies, particularly with respect to those lipids that comprise plastid membranes. In an effort to understand the differences between warm- and cold-adapted dinoflagellate glycolipid composition, four peridinin-containing, cold-adapted dinoflagellates were surveyed for intact forms of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), two common plastid lipids, using positive-ion electrospray ionization/mass spectrometry (ESI/MS) and electrospray ionization/mass spectrometry/mass spectrometry (ESI/MS/MS). It was determined that the dominant forms of MGDG and DGDG in these cold-adapted, peridinin-containing dinoflagellates possessed C18 fatty acids and did not, with the exception of a 20:5/18:5 form of DGDG in a cold-adapted Gymnodinium sp. from the Baltic Sea, have C20 fatty acids. This finding is in contrast to an earlier study of 35 peridinin-containing, warm-adapted dinoflagellates, which discovered a cluster dominated by C18 fatty acids and a cluster dominated by both C20 and C18 fatty acids. The key difference in MGDG and DGDG production between the former group and the cold-adapted dinoflagellates examined in this study is that the cold-adapted species’ DGDG fatty acids were less saturated. Each cold-adapted dinoflagellate possessed both 18:5/18:5 and 18:5/18:4 DGDG, while most of the warm-adapted dinoflagellates contained only 18:5/18:4 DGDG. This survey also revealed the presence of a putative 18:1/14:0 trigalactosyldiacylglycerol (TGDG) as a dominant glycolipid in Gymnodinium sp. TGDG, previously unreported in dinoflagellates, was also discovered in Gymnodinium sp. in the forms of 18:1/16:0 and 18:1/18:1 TGDG, as minor lipids. Since the fatty acids associated with TGDG are not those found with dominant forms of MGDG or DGDG, TGDG may be produced by a different biosynthetic pathway. 相似文献
3.
Leblond JD Dodson J Khadka M Holder S Seipelt RL 《The Journal of eukaryotic microbiology》2012,59(3):191-197
Chromera velia is a recently discovered, photosynthetic, marine alveolate closely related to apicomplexan parasites, and more distantly to perkinsids and dinoflagellates. To date, there are no published studies on the sterols of C. velia. Because apicomplexans and perkinsids are not known to synthesize sterols de novo, but rather obtain them from their host organisms, our objective was to examine the composition of the sterols of C. velia to assess whether or not there is any commonality with dinoflagellates as the closest taxonomic group capable of synthesizing sterols de novo. Furthermore, knowledge of the sterols of C. velia may provide insight into the sterol biosynthetic capabilities of apicomplexans prior to loss of sterol biosynthesis. We have found that C. velia possesses two primary sterols, 24-ethylcholesta-5,22E-dien-3β-ol, and 24-ethylcholest-5-en-3β-ol, not common to dinoflagellates, but rather commonly found in other classes of algae and plants. In addition, we have identified computationally three genes, SMT1 (sterol-24C-methyltransferase), FDFT1 (farnesyl diphosphate farnesyl transferase, squalene synthase), and IDI1 (isopentenyl diphosphate Δ-isomerase), predicted to be involved in sterol biosynthesis by their similarity to analogous genes in other sterol-producing eukaryotes, including a number of algae. 相似文献