首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent crystal structures of Flavivirus and Alphavirus fusion proteins (class II) confirm two major principles of protein machineries that mediate the merger of two opposing lipid bilayers. First, the fusion protein can bridge both membranes tethered by two membrane anchors. Second, refolding or domain rearrangement steps lead to the positioning of both anchors into close proximity at the same end of an elongated structure. Although these two steps are in principle sufficient to pull two opposing membranes together and initiate membrane fusion, accumulating evidence suggests that the process requires the concerted action of a number of fusion proteins at and outside the contact sites. This review will focus on the structures of viral class I and class II fusion proteins and their similarities in facilitating membrane fusion.  相似文献   

2.
Virus membrane fusion   总被引:3,自引:0,他引:3  
Weissenhorn W  Hinz A  Gaudin Y 《FEBS letters》2007,581(11):2150-2155
Membrane fusion of enveloped viruses with cellular membranes is mediated by viral glycoproteins (GP). Interaction of GP with cellular receptors alone or coupled to exposure to the acidic environment of endosomes induces extensive conformational changes in the fusion protein which pull two membranes into close enough proximity to trigger bilayer fusion. The refolding process provides the energy for fusion and repositions both membrane anchors, the transmembrane and the fusion peptide regions, at the same end of an elongated hairpin structure in all fusion protein structures known to date. The fusion process follows several lipidic intermediate states, which are generated by the refolding process. Although the major principles of viral fusion are understood, the structures of fusion protein intermediates and their mode of lipid bilayer interaction, the structures and functions of the membrane anchors and the number of fusion proteins required for fusion, necessitate further investigations.  相似文献   

3.
Paramyxoviruses initiate infection by attaching to cell surface receptors and fusing viral and cell membranes. Viral attachment proteins, hemagglutinin-neuraminidase (HN), hemagglutinin (HA), or glycoprotein (G), bind receptors while fusion (F) proteins direct membrane fusion. Because paramyxovirus fusion is pH independent, virus entry occurs at host cell plasma membranes. Paramyxovirus fusion also usually requires co-expression of both the attachment protein and the fusion (F) protein. Newcastle disease virus (NDV) has assumed increased importance as a prototype paramyxovirus because crystal structures of both the NDV F protein and the attachment protein (HN) have been determined. Furthermore, analysis of structure and function of both viral glycoproteins by mutation, reactivity of antibody, and peptides have defined domains of the NDV F protein important for virus fusion. These domains include the fusion peptide, the cytoplasmic domain, as well as heptad repeat (HR) domains. Peptides with sequences from HR domains inhibit fusion, and characterization of the mechanism of this inhibition provides evidence for conformational changes in the F protein upon activation of fusion. Both proteolytic cleavage of the F protein and interactions with the attachment protein are required for fusion activation in most systems. Subsequent steps in membrane merger directed by F protein are poorly understood.  相似文献   

4.
Lipids as modulators of membrane fusion mediated by viral fusion proteins   总被引:1,自引:0,他引:1  
Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called "rafts", or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.  相似文献   

5.
膜的融合是一个基本的生命过程,在生物的生长发育中有着重要作用。通过融合,两套独立的双层脂分子合二为一,完成一定的生物功能。膜融合分子机制的关键在于其主要成分:融合蛋白。Ⅰ、Ⅱ类病毒融合蛋白形成“发夹”,胞内囊泡与目标膜各提供的融合蛋白形成“类亮氨酸拉链”,这些结构将独立的膜拉近,继而促使膜合为一体。细胞与细胞间融合蛋白的作用机制目前还未明确,在各种膜融合中,脂双层的变化可能是类似的,但介导融合的分子机制应该是不同的。目前,对于膜融合很多方面的理解还停留在假说阶段。理解了膜融合的过程和分子机制不仅将极大地促进生物学的发展,更重要是将为相关的疾病治疗打下坚实的基础。  相似文献   

6.
Tsurudome M 《Uirusu》2005,55(2):207-219
The majority of viral fusion proteins can be divided into two classes. The influenza hemagglutinin (HA) belongs to the class I fusion proteins and undergoes a series of conformational changes at acidic pH, leading to membrane fusion. The crystal structures of the prefusion and the postfusion forms of HA have been revealed in 1981 and 1994, respectively. On the basis of these structures, a model for the mechanism of membrane fusion mediated by the conformational changes of HA has been proposed. The flavivirus E and alphavirus E1 proteins belong to the class II fusion proteins and mediate membrane fusion at acidic pH. Their prefusion structures are distinct from that of HA. Last year, however, it has become evident that the postfusion structures of these class I and class II fusion proteins are similar. The paramyxovirus F protein belongs to the class I fusion proteins. In contrast to HA, an interaction between F and its homologous attachment protein is required for F to undergo the conformational changes. Since F mediates fusion at neutral pH, the infected cells can fuse with neighboring uninfected cells. The crystal structures of F and the attachment protein HN have recently been clarified, which will facilitate studies of the molecular mechanism of F-mediated membrane fusion.  相似文献   

7.
Viral membrane fusion proceeds through a sequence of steps that are driven by triggered conformational changes of viral envelope glycoproteins, so-called fusion proteins. Although high-resolution structural snapshots of viral fusion proteins in their prefusion and postfusion conformations are available, it has been difficult to define intermediate structures of the fusion pathway because of their transient nature. Flaviviruses possess a class II viral fusion protein (E) mediating fusion at acidic pH that is converted from a dimer to a trimer with a hairpin-like structure during the fusion process. Here we show for tick-borne encephalitis virus that exposure of virions to alkaline instead of acidic pH traps the particles in an intermediate conformation in which the E dimers dissociate and interact with target membranes via the fusion peptide without proceeding to the merger of the membranes. Further treatment to low pH, however, leads to fusion, suggesting that these monomers correspond to an as-yet-elusive intermediate required to convert the prefusion dimer into the postfusion trimer. Thus, the use of nonphysiological conditions allows a dissection of the flavivirus fusion process and the identification of two separate steps, in which membrane insertion of multiple copies of E monomers precedes the formation of hairpin-like trimers. This sequence of events provides important new insights for understanding the dynamic process of viral membrane fusion.  相似文献   

8.
Summary Young and aged HVJ virions differ structurally and morphologically due to changes that occur during aging in vitro or in ovo. Young virions soon after their budding off are rodshaped, rigid and relatively uniform in size, whereas virions that have aged in vitro after their formation are round, nonrigid and variable in size. These changes during aging seem to be due to the variation of M protein, a skeletal protein that is associated with both the envelope membrane proteins and nucleocapsid strands in the virions. The capacities for virion-to-virion fusion of young and aged virions were compared to clarify the relation between the membrane fusion and membrane-associating skeletal proteins. On treatment with polyethylene glycol (PEG), aged virions readily fused, forming large virion vesicles, but young virions were resistant to fusion. Further, aged virions fused even on incubation at 37°C without the fusogen. Thus the capacity for virion-to-virion fusion evidently increases during aging of virions. This result suggests that skeletal proteins associating with the biological membrane are important for preventing membrane fusion, and that virion-to-virion fusion is a good model system for use in studies on the mechanism of membrane fusion.  相似文献   

9.
Membrane Fusion     
The fusion of biological membranes results in two bilayer-based membranes merging into a single membrane. In this process the lipids have to undergo considerable rearrangement. The nature of the intermediates that are formed during this rearrangement has been investigated. Certain fusion proteins facilitate this process. In many cases short segments of these fusion proteins have a particularly important role in accelerating the fusion process. Studies of the interaction of model peptides with membranes have allowed for increased understanding at the molecular level of the mechanism of the promotion of membrane fusion by fusion proteins. There is an increased appreciation of the roles of several independent segments of fusion proteins in promoting the fusion process.Many of the studies of the fusion of biological membranes have been done with the fusion of enveloped viruses with other membranes. One reason for this is that the number of proteins involved in viral fusion is relatively simple, often requiring only a single protein. For many enveloped viruses, the structure of their fusion proteins has certain common elements, suggesting that they all promote fusion by an analogous mechanism. Some aspects of this mechanism also appears to be common to intracellular fusion, although several proteins are involved in that process which is more complex and regulated than is fusion.  相似文献   

10.
Membrane fusion is a sine qua non process for cell physiology. It is critical for membrane biogenesis, intracellular traffic, and cell secretion. Although investigated for over a century, only in the last 15 years, the molecular machinery and mechanism of membrane fusion has been deciphered. The membrane fusion event elicits essentially three actors on stage: anionic phospholipids - phosphatidylinositols, phosphatidyl serines, specific membrane proteins, and the calcium ions, all participating in a well orchestrated symphony. Three soluble N-ethylmaleimide-sensitive factor (NSF)-attachment protein receptors (SNAREs) have been implicated in membrane fusion. Target membrane proteins, SNAP-25 and syntaxin (t- SNARE) and secretory vesicle-associated membrane protein (v-SNARE) or VAMPwere discovered in the 1990's and suggested to be the minimal fusion machinery. Subsequently, the molecular mechanism of SNARE-induced membrane fusion was discovered. It was demonstrated that when t-SNARE-associated lipid membrane is exposed to v-SNARE-associated vesicles in the presence of Ca(2+), the SNARE proteins interact in a circular array to form conducting channels, thus establishing continuity between the opposing bilayers. Further it was proved that SNAREs bring opposing bilayers close to within a distance of 2-3 Angstroms, allowing Ca(2+) to bridge them. The bridging of bilayers by Ca(2+) then leads to the expulsion of water between the bilayers at the contact site, allowing lipid mixing and membrane fusion. Calcium bridging of opposing bilayers leads to the release of water, both from the water shell of hydrated Ca(2+) ions, as well as the displacement of loosely coordinated water at the phosphate head groups in the lipid membrane. These discoveries provided for the first time, the molecular mechanism of SNARE-induced membrane fusion in cells. Some of the seminal discoveries are briefly discussed in this minireview.  相似文献   

11.
Background information. Protein‐mediated merger of biological membranes, membrane fusion, is an important process. To investigate the role of fusogenic proteins in the initial size and dynamics of the fusion pore (a narrow aqueous pathway, which widens to finalize membrane fusion), two different fusion proteins expressed in the same cell line were investigated: the major glycoprotein of baculovirus Autographa californica (GP64) and the HA (haemagglutinin) of influenza X31. Results. The host Sf9 cells expressing these viral proteins, irrespective of protein species, fused to human RBCs (red blood cells) upon acidification of the medium. A high‐time‐resolution electrophysiological study of fusion pore conductance revealed fundamental differences in (i) the initial pore conductance; pores created by HA were smaller than those created by GP64; (ii) the ability of pores to flicker; only HA‐mediated pores flickered; and (iii) the time required for pore formation; HA‐mediated pores took much longer to form after acidification. Conclusion. HA and GP64 have divergent electrophysiological phenotypes even when they fuse identical membranes, and fusion proteins play a crucial role in determining initial fusion pore characteristics. The structure of the initial fusion pore detected by electrical conductance measurements is sensitive to the nature of the fusion protein.  相似文献   

12.
The mechanism of membrane fusion induced by the influenza virus hemagglutinin (HA) has been extensively characterized. Fusion is triggered by low pH, which induces conformational changes in the protein, leading to insertion of a hydrophobic 'fusion peptide' into the viral membrane and the target membrane for fusion. Insertion perturbs the target membrane, and hour glass-shaped lipidic fusion intermediates, called stalks, fusing the outer monolayers of the two membranes, are formed. Stalk formation is followed by complete fusion of the two membranes. Structures similar to those formed by HA at the pH of fusion are found not only in many other viral fusion proteins, but are also formed by SNAREs, proteins involved in intracellular fusion. Substances that inhibit or promote HA-induced fusion because they affect stalk formation, also inhibit or promote intracellular fusion, cell–cell fusion and even intracellular fission similarly. Therefore, the mechanism of influenza HA-induced fusion may be a paradigm for many intracellular fusion events.  相似文献   

13.
The fusion proteins of the alphaviruses and flaviviruses have a similar native structure and convert to a highly stable homotrimer conformation during the fusion of the viral and target membranes. The properties of the alpha- and flavivirus fusion proteins distinguish them from the class I viral fusion proteins, such as influenza virus hemagglutinin, and establish them as the first members of the class II fusion proteins. Understanding how this new class carries out membrane fusion will require analysis of the structural basis for both the interaction of the protein subunits within the homotrimer and their interaction with the viral and target membranes. To this end we report a purification method for the E1 ectodomain homotrimer from the alphavirus Semliki Forest virus. The purified protein is trimeric, detergent soluble, retains the characteristic stability of the starting homotrimer, and is free of lipid and other contaminants. In contrast to the postfusion structures that have been determined for the class I proteins, the E1 homotrimer contains the fusion peptide region responsible for interaction with target membranes. This E1 trimer preparation is an excellent candidate for structural studies of the class II viral fusion proteins, and we report conditions that generate three-dimensional crystals suitable for analysis by X-ray diffraction. Determination of the structure will provide our first high-resolution views of both the low-pH-induced trimeric conformation and the target membrane-interacting region of the alphavirus fusion protein.  相似文献   

14.
The fusion of enveloped viruses with cellular membranes is mediated by proteins that are anchored in the lipid bilayer of the virus and capable of triggered conformational changes necessary for driving fusion. The flavivirus envelope protein E is the only known viral fusion protein with a double membrane anchor, consisting of two antiparallel transmembrane helices (TM1 and TM2). TM1 functions as a stop-transfer sequence and TM2 as an internal signal sequence for the first nonstructural protein during polyprotein processing. The possible role of this peculiar C-terminal helical hairpin in membrane fusion has not been investigated so far. We addressed this question by studying TM mutants of tick-borne encephalitis virus (TBEV) recombinant subviral particles (RSPs), an established model system for flavivirus membrane fusion. The engineered mutations included the deletion of TM2, the replacement of both TM domains (TMDs) by those of the related Japanese encephalitis virus (JEV), and the use of chimeric TBEV-JEV membrane anchors. Using these mutant RSPs, we provide evidence that TM2 is not just a remnant of polyprotein processing but, together with TM1, plays an active role in fusion. None of the TM mutations, including the deletion of TM2, affected early steps of the fusion process, but TM interactions apparently contribute to the stability of the postfusion E trimer and the completion of the merger of the membranes. Our data provide evidence for both intratrimer and intertrimer interactions mediated by the TMDs of E and thus extend the existing models of flavivirus membrane fusion.  相似文献   

15.
The class II fusion proteins of the alphaviruses and flaviviruses mediate virus infection by driving the fusion of the virus membrane with that of the cell. These fusion proteins are triggered by low pH, and their structures are strikingly similar in both the prefusion dimer and the postfusion homotrimer conformations. Here we have compared cholesterol interactions during membrane fusion by these two groups of viruses. Using cholesterol-depleted insect cells, we showed that fusion and infection by the alphaviruses Semliki Forest virus (SFV) and Sindbis virus were strongly promoted by cholesterol, with similar sterol dependence in laboratory and field isolates and in viruses passaged in tissue culture. The E1 fusion protein from SFV bound cholesterol, as detected by labeling with photocholesterol and by cholesterol extraction studies. In contrast, fusion and infection by numerous strains of the flavivirus dengue virus (DV) and by yellow fever virus 17D were cholesterol independent, and the DV fusion protein did not show significant cholesterol binding. SFV E1 is the first virus fusion protein demonstrated to directly bind cholesterol. Taken together, our results reveal important functional differences conferred by the cholesterol-binding properties of class II fusion proteins.  相似文献   

16.
Various fusion proteins from eukaryotes and viruses share structural similarities such as a coiled coil motif. However, compared with eukaryotic proteins, a viral fusion protein contains a fusion peptide (FP), which is an N-terminal hydrophobic fragment that is primarily involved in directing fusion via anchoring the protein to the target cell membrane. In various eukaryotic fusion proteins the membrane targeting domain is cysteine-rich and must undergo palmitoylation prior to the fusion process. Here we examined whether fatty acids can replace the FP of human immunodeficiency virus type 1 (HIV-1), thereby discerning between the contributions of the sequence versus hydrophobicity of the FP in the lipid-merging process. For that purpose, we structurally and functionally characterized peptides derived from the N terminus of HIV fusion protein - gp41 in which the FP is lacking or replaced by fatty acids. We found that fatty acid conjugation dramatically enhanced the capability of the peptides to induce lipid mixing and aggregation of zwitterionic phospholipids composing the outer leaflet of eukaryotic cell membranes. The enhanced effect of the acylated peptides on membranes was further supported by real-time atomic force microscopy (AFM) showing nanoscale holes in zwitterionic membranes. Membrane-binding experiments revealed that fatty acid conjugation did not increase the affinity of the peptides to the membrane significantly. Furthermore, all free and acylated peptides exhibited similar α-helical structures in solution and in zwitterionic membranes. Interestingly, the fusogenic active conformation of N36 in negatively charged membranes composing the inner leaflet of eukaryotic cells is β-sheet. Apparently, N-terminal heptad repeat (NHR) can change its conformation as a response to a change in the charge of the membrane head group. Overall, the data suggest an analogy between the eukaryotic cysteine-rich domains and the viral fusion peptide, and mark the hydrophobic nature of FP as an important characteristic for its role in lipid merging.  相似文献   

17.
Structure and function of a paramyxovirus fusion protein   总被引:21,自引:0,他引:21  
Paramyxoviruses initiate infection by attaching to cell surface receptors and fusing viral and cell membranes. Viral attachment proteins, hemagglutinin-neuraminidase (HN), hemagglutinin (HA), or glycoprotein (G), bind receptors while fusion (F) proteins direct membrane fusion. Because paramyxovirus fusion is pH independent, virus entry occurs at host cell plasma membranes. Paramyxovirus fusion also usually requires co-expression of both the attachment protein and the fusion (F) protein. Newcastle disease virus (NDV) has assumed increased importance as a prototype paramyxovirus because crystal structures of both the NDV F protein and the attachment protein (HN) have been determined. Furthermore, analysis of structure and function of both viral glycoproteins by mutation, reactivity of antibody, and peptides have defined domains of the NDV F protein important for virus fusion. These domains include the fusion peptide, the cytoplasmic domain, as well as heptad repeat (HR) domains. Peptides with sequences from HR domains inhibit fusion, and characterization of the mechanism of this inhibition provides evidence for conformational changes in the F protein upon activation of fusion. Both proteolytic cleavage of the F protein and interactions with the attachment protein are required for fusion activation in most systems. Subsequent steps in membrane merger directed by F protein are poorly understood.  相似文献   

18.
Enveloped viruses infect cells by a mechanism involving membrane fusion. This process is mediated and triggered by specific viral membrane glycoproteins. Evidence is accumulating that fusion of intracellular membranes, as occurs during endocytosis and transport between intracellular organelles, also requires the presence of specific proteins. The relevance of elucidating the mechanisms of virus fusion for a better understanding of fusion of intracellular membranes is discussed.  相似文献   

19.
A prevailing model for virus membrane fusion proteins has been that the hydrophobic fusion peptide is hidden in the prefusion conformation, becomes exposed once the fusion reaction is triggered, and then either inserts into target membranes or is rapidly inactivated. This model is in general agreement with the structure and mechanism of class I fusion proteins, such as the influenza virus hemagglutinin. We here describe studies of the class II fusion protein E1 from the alphavirus Semliki Forest virus (SFV). SFV fusion is triggered by low pH, which releases E1 from its heterodimeric interaction with the E2 protein and induces the formation of a stable E1 homotrimer. The exposure and target membrane interaction of the E1 fusion peptide (residues 83 to 100) were followed using a monoclonal antibody (MAb E1f) mapping to E1 residues 85 to 95. In agreement with the known structure of SFV and other alphaviruses, the fusion peptide was shielded in native SFV particles and exposed when E1-E2 dimer dissociation was triggered by acidic pH. In contrast, the fusion peptide on purified E1 ectodomains (E1(*)) was fully accessible at neutral pH. Functional assays showed that MAb E1f binding at neutral pH prevented subsequent low-pH-triggered E1(*) interaction with target membranes and trimerization. E1(*) was not inactivated by low pH when treated either in the absence of target membranes or in the presence of fusion-inactive cholesterol-deficient liposomes. Thus, the membrane insertion of the E1 fusion peptide is regulated by additional low-pH-dependent steps after exposure, perhaps involving an E1-cholesterol interaction.  相似文献   

20.
Segment 5, ORF 1 of the infectious salmon anemia virus (ISAV) genome, encodes for the ISAV F protein, which is responsible for viral-host endosomal membrane fusion during a productive ISAV infection. The entry machinery of ISAV is composed of a complex of the ISAV F and ISAV hemagglutinin esterase (HE) proteins in an unknown stoichiometry prior to receptor engagement by ISAV HE. Following binding of the receptor to ISAV HE, dissociation of the ISAV F protein from HE, and subsequent endocytosis, the ISAV F protein resolves into a fusion-competent oligomeric state. Here, we present a 2.1 Å crystal structure of the fusion core of the ISAV F protein determined at low pH. This structure has allowed us to unambiguously demonstrate that the ISAV entry machinery exhibits typical class I viral fusion protein architecture. Furthermore, we have determined stabilizing factors that accommodate the pH-dependent mode of ISAV transmission, and our structure has allowed the identification of a central coil that is conserved across numerous and varied post-fusion viral glycoprotein structures. We then discuss a mechanistic model of ISAV fusion that parallels the paramyxoviral class I fusion strategy wherein attachment and fusion are relegated to separate proteins in a similar fashion to ISAV fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号