首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of phospholipids on the activity of isoform ACA8 of Arabidopsis thaliana plasma membrane (PM) Ca2+-ATPase was evaluated in membranes isolated from Saccharomyces cerevisiae strain K616 expressing wild type or mutated ACA8 cDNA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4-monophosphate > phosphatidylserine > phosphatidylcholine approximately = phosphatidylethanolamine approximately = 0. Acidic phospholipids increased V(max-Ca2+) and lowered the value of K(0.5-Ca2+) below the value measured in the presence of calmodulin (CaM). In the presence of CaM acidic phospholipids activated ACA8 by further decreasing its K(0.5-Ca2+) value. Phosphatidylinositol 4-monophosphate and, with lower efficiency, phosphatidylserine bound peptides reproducing ACA8 N-terminus (aa 1-116). Single point mutation of three residues (A56, R59 and Y62) within the sequence A56-T63 lowered the apparent affinity of ACA8 for phosphatidylinositol 4-monophosphate by two to three fold, indicating that this region contains a binding site for acidic phospholipids. However, the N-deleted mutant Delta74-ACA8 was also activated by acidic phospholipids, indicating that acidic phospholipids activate ACA8 through a complex mechanism, involving interaction with different sites. The striking similarity between the response to acidic phospholipids of ACA8 and animal plasma membrane Ca2+-ATPase provides new evidence that type 2B Ca2+-ATPases share common regulatory properties independently of structural differences such as the localization of the terminal regulatory region at the N- or C-terminal end of the protein.  相似文献   

2.
ACA8 is a type 2B Ca2+-ATPase having a regulatory N terminus whose auto-inhibitory action can be suppressed by binding of calmodulin (CaM) or of acidic phospholipids. ACA8 N terminus is able to interact with a region of the small cytoplasmic loop connecting transmembrane domains 2 and 3. To determine the role of this interaction in auto-inhibition we analyzed single point mutants produced by mutagenesis of ACA8 Glu252 to Asn345 sequence. Mutation to Ala of any of six tested acidic residues (Glu252, Asp273, Asp291, Asp303, Glu302, or Asp332) renders an enzyme that is less dependent on CaM for activity. These results highlight the relevance in ACA8 auto-inhibition of a negative charge of the surface area of the small cytoplasmic loop. The most deregulated of these mutants is D291A ACA8, which is less activated by controlled proteolysis or by acidic phospholipids; the D291A mutant has an apparent affinity for CaM higher than wild-type ACA8. Moreover, its phenotype is stronger than that of D291N ACA8, suggesting a more direct involvement of this residue in the mechanism of auto-inhibition. Among the other produced mutants (I284A, N286A, P289A, P322A, V344A, and N345A), only P322A ACA8 is less dependent on CaM for activity than the wild type. The results reported in this study provide the first evidence that the small cytoplasmic loop of a type 2B Ca2+-ATPase plays a role in the attainment of the auto-inhibited state.  相似文献   

3.
Calmodulin (CaM) is a Ca2+ signaling protein that binds to a wide variety of target proteins, and it is important to establish methods for rapid characterization of these interactions. Here we report the use of fluorescence polarization (FP) to measure the Kd for the interaction of CaM with the plasma membrane Ca2+-ATPase (PMCA), a Ca2+ pump regulated by binding of CaM. Previous assays of PMCA-CaM interactions were indirect, based on activity or kinetics measurements. We also investigated the Ca2+ dependence of CaM binding to PMCA. FP assays directly detect CaM-target interactions and are rapid, sensitive, and suitable for high-throughput screening assay formats. Values for the dissociation constant Kd in the nanomolar range are readily measured. We measured the changes in anisotropy of CaM labeled with Oregon Green 488 on titration with PMCA, yielding a Kd value of CaM with PMCA (5.8 ± 0.5 nM) consistent with previous indirect measurements. We also report the binding affinity of CaM with oxidatively modified PMCA (Kd = 9.8 ± 2.0 nM), indicating that the previously reported loss in CaM-stimulated activity for oxidatively modified PMCA is not a result of reduced CaM binding. The Ca2+ dependence follows a simple Hill plot demonstrating cooperative binding of Ca2+ to the binding sites in CaM.  相似文献   

4.
The structural preferences of soya phosphatidylinositol in isolation and in mixtures with soya phosphatidylethanolamine, and the influence of Ca2+ and Mg2+ on these preferences, have been examined employing 31P-NMR and freeze-fracture techniques. It is shown that phosphatidylinositol assumes the bilayer organization on hydration both in the presence and absence of Ca2+ and Mg2+. In mixed systems with HII phase) phosphatidylethanolamine, phosphatidylinositol induces lipidic particle structure at low (<10 mol%) concentrations and bilayer structure at higher levels. In systems containing 15 or 20 mol% phosphatidylinositol, Ca2+ (but not Mg2+) can induce HII phase structure. The results indicate that phosphatidylinositol is a more effective agent than other acidic phospholipids for stabilizing bilayer structure, particularly when high levels of divalent cations are present. These findings are discussed in terms of functional roles of phosphatidylinositol and mechanisms whereby Ca2+ induces structural reorganization in mixed systems containing acidic phospholipids and phosphatidylethanolamine.  相似文献   

5.
The purpose of this work was to obtain information about conformational changes of the plasma membrane Ca2+-pump (PMCA) in the membrane region upon interaction with Ca2+, calmodulin (CaM) and acidic phospholipids. To this end, we have quantified labeling of PMCA with the photoactivatable phosphatidylcholine analog [125I]TID-PC/16, measuring the shift of conformation E2 to the auto-inhibited conformation E1I and to the activated E1A state, titrating the effect of Ca2+ under different conditions. Using a similar approach, we also determined the CaM-PMCA dissociation constant. The results indicate that the PMCA possesses a high affinity site for Ca2+ regardless of the presence or absence of activators. Modulation of pump activity is exerted through the C-terminal domain, which induces an apparent auto-inhibited conformation for Ca2+ transport but does not modify the affinity for Ca2+ at the transmembrane domain. The C-terminal domain is affected by CaM and CaM-like treatments driving the auto-inhibited conformation E1I to the activated E1A conformation and thus modulating the transport of Ca2+. This is reflected in the different apparent constants for Ca2+ in the absence of CaM (calculated by Ca2+-ATPase activity) that sharply contrast with the lack of variation of the affinity for the Ca2+ site at equilibrium. This is the first time that equilibrium constants for the dissociation of Ca2+ and CaM ligands from PMCA complexes are measured through the change of transmembrane conformations of the pump. The data further suggest that the transmembrane domain of the PMCA undergoes major rearrangements resulting in altered lipid accessibility upon Ca2+ binding and activation.  相似文献   

6.
The effect of phospholipids on the activity of the plasma membrane (PM) Ca2+-ATPase was evaluated in PM isolated from germinating radish ( Raphanus sativus L. cv. Tondo Rosso Quarantino) seeds after removal of endogenous calmodulin (CaM) by washing the PM vesicles with EDTA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4,5-diphosphate (PIP2)≈phosphatidylinositol 4-monophosphate>phosphatidylinositol≈phosphatidylserine≈phosphatidic acid. Neutral phospholipids as phosphatidylcholine and phosphatidylethanolamine were essentially ineffective. When the assays were performed in the presence of optimal free Ca2+ concentrations (10 μ M ) acidic phospholipids did not affect the Ca2+-ATPase activated by CaM or by a controlled trypsin treatment of the PM, which cleaved the CaM-binding domain of the enzyme. Analysis of the dependence of Ca2+-ATPase activity on free Ca2+ concentration showed that acidic phospholipids increased Vmax and lowered the apparent Km for free Ca2+ below the value measured upon tryptic cleavage of the CaM-binding domain; in particular, PIP2 was shown to lower the apparent Km for free Ca2+ of the Ca2+-ATPase also in trypsin-treated PM. These results indicate that acidic phospholipids activate the plant PM Ca2+-ATPase through a mechanism only partially overlapping that of CaM, and thus involving a phospholipid-binding site in the Ca2+-ATPase distinct from the CaM-binding domain. The physiological implications of these results are discussed.  相似文献   

7.
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate.  相似文献   

8.
Protein–protein interactions play central roles in physiological and pathological processes. The bases of the mechanisms of drug action are relevant to the discovery of new therapeutic targets. This work focuses on understanding the interactions in protein–protein–ligands complexes, using proteins calmodulin (CaM), human calcium/calmodulin‐dependent 3′,5′‐cyclic nucleotide phosphodiesterase 1A active human (PDE1A), and myosin light chain kinase (MLCK) and ligands αII–spectrin peptide (αII–spec), and two inhibitors of CaM (chlorpromazine (CPZ) and malbrancheamide (MBC)). The interaction was monitored with a fluorescent biosensor of CaM (hCaM M124C–mBBr). The results showed changes in the affinity of CPZ and MBC depending on the CaM–protein complex under analysis. For the Ca2+–CaM, Ca2+–CaM–PDE1A, and Ca2+–CaM–MLCK complexes, CPZ apparent dissociation constants (Kds) were 1.11, 0.28, and 0.55 μM, respectively; and for MBC Kds were 1.43, 1.10, and 0.61 μM, respectively. In competition experiments the addition of calmodulin binding peptide 1 (αII–spec) to Ca2+hCaM M124C–mBBr quenched the fluorescence (Kd = 2.55 ± 1.75 pM) and the later addition of MBC (up to 16 μM) did not affect the fluorescent signal. Instead, the additions of αII–spec to a preformed Ca2+hCaM M124C–mBBr–MBC complex modified the fluorescent signal. However, MBC was able to displace the PDE1A and MLCK from its complex with Ca2+–CaM. In addition, docking studies were performed for all complexes with both ligands showing an excellent correlation with experimental data. These experiments may help to explain why in vivo many CaM drugs target prefer only a subset of the Ca2+–CaM regulated proteins and adds to the understanding of molecular interactions between protein complexes and small ligands. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Biochemical and kinetic properties under identical substrate and reaction conditions were obtained for an ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase in synaptosome membrane vesicles prepared from the brain of the moth, Mamestra configurata. Both the ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase had single, high-affinity binding sites for ATP (Km = 14 and 116 μM, respectively), Ca2+free (Km = 0.13 nM and 0.072 nM, respectively), and Mg2+ (Km = 1.1 mM and 0.07 mM, respectively). Both systems were relatively little affected by K+ and were insensitive to ouabain, an inhibitor of (Na+ + K+)-ATPase. The results indicate that the ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase are functionally coupled in synaptic membranes and constitute a mechanism for Ca2+ transport in the brain of M. configurata. Although moth brain (Ca2+ + Mg2+)-ATPase is maximally active at nanomolar concentrations of free calcium ion, the enzyme retains at least one-half of its maximal activity at micromolar calcium concentrations, indicating either that the enzyme has two binding sites for calcium (a high-affinity site at nanomolar Ca2+free and a low-affinity site at micromolar Ca2+free), or that there are two enzymes with high and low affinity for calcium, respectively. Calcium extrusion from brain neurones of M. configurata may operate in a two-stage, concentration-dependent process in which a first stage, low-affinity pump reduces intraneuronal calcium to a concentration at which a second stage, high-affinity pump becomes activated.  相似文献   

10.
Previous studies from this laboratory have indicated that tricyclohexyltin hydroxide (Plictran) is a potent inhibitor of both basal- and isoproterenol-stimulated cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase, with an estimated IC-50 of 2.5 × 10?8M. The present studies were initiated to evaluate the mechanism of inhibition of Ca2+-ATPase by Plictran. Data on substrate and cationic activation kinetics of Ca2+-ATPase indicated alteration of Vmax and Km by Plictran (1 and 5×10?8M), suggesting a mixed type of inhibition. The beta-adrenergic agonist isoproterenol increased Vmax of both ATP- and Ca2+-dependent enzyme activities. However, the Km of enzyme was decreased only for Ca2+ Plictran inhibited isoproterenol-stimulated Ca2+-ATPase activity by altering both and Vmax and Km of ATP as well as Ca2+-dependent enzyme activities, suggesting that after binding to a single independent site, Plictran inhibits enzyme catalysis by decreasing the affinity of enzyme for ATP as well as for Ca2+ Preincubation of enzyme with 15 μM cAMP or the addition of 2mM ATP to the reaction mixture resulted in slight activation of Plictran-inhibited enzyme. Pretreatment of SR with 5 × 10?7M propranolol and 5 × 10?8M Plictran resulted in inhibition of basal activity in addition to the loss of stimulated activity. Preincubation of heart SR preparation with 5 × 10?5M coenzyme A in combination with 5 × 10?8M Plictran partly restored the beta-adrenergic stimulation. These results suggest that some critical sites common to both basal- and beta-adrenergic-stimulated Ca2+-ATPase are sensitive to binding by Plictran, and the resultant conformational change may lead to inhibition of beta-adrenergic stimulation.  相似文献   

11.
In both cardiac and slow-twitch skeletal muscle sarcoplasmic reticulum (SR) there are several systems involved in the regulation of Ca2+-ATPase function. These include substrate level regulation, covalent modification via phosphorylation-dephosphorylation of phospholamban by both cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase (CaM kinase) as well as direct CaM kinase phosphorylation of the Ca2+-ATPase. Studies comparing, the effects of PKA and CaM kinase on cardiac Ca2+-ATPase function have yielded differing results; similar studies have not been performed in slow-twitch skeletal muscle. It has been suggested recently, however, that phospholamban is not tightly coupled to the Ca2+-ATPase in SR vesicles from slow-twitch skeletal muscle. Our results indicate that assay conditions strongly influence the extent of CaM kinase-dependent Ca2+-ATPase stimulation seen in both cardiac and slow-twitch skeletal muscle. Addition of calmodulin (0.2 M) directly to the Ca2+ transport assay medium results in minimal ( 112–130% of control) stimulation of Ca2+ uptake activity when the Ca2+ uptake reaction is initiated by the addition of either ATP or Ca2+/EGTA. On the other hand, prephosphorylation of the SR by the endogenous CaM kinase and subsequent transfer of the membranes to the Ca2+ transport assay medium results in stimulation of Ca2+ uptake activity (202% of control). These effects are observable in both cardiac and slow-twitch skeletal muscle SR. PKA stimulates Ca2+ uptake markedly (215% of control) when the Ca2+ uptake reaction is initiated by the addition of prephosphorylated SR membranes or by Ca2+/EGTA but minimally (130% of control) when the Ca2+ uptake reaction is initiated by the addition of ATP. These findings imply that (a) phospholamban is coupled to the Ca2+-ATPase in slow-twitch skeletal muscle SR (as in cardiac SR), and (b) the amount of Ca2+ uptake stimulation seen upon the addition of calmodulin or PKA depends strongly on the assay conditions employed. Our observations help to explain the wide range of effects of calmodulin or PKA addition reported in previous studies. It should be noted that, since CaM kinase is now known to phosphorylate the Ca2+-ATPase in addition to phospholamban, further studies are required to determine the relative contributions of phospholambanversus Ca2+-ATPase phosphorylation in the stimulation of Ca2+-ATPase function by CaM kinase. Also, earlier studies attributing all of the effects of CaM kinase stimulation of Ca2+ uptake and Ca2+-ATPase activity to phospholamban phosphorylation need to be re-examined.  相似文献   

12.
Abstract: We have previously demonstrated that activation of the Na+-Ca2+ exchanger in the reverse mode causes Ca2+ influx in astrocytes. In addition, we showed that the exchange activity was stimulated by nitric oxide (NO)/cyclic GMP and inhibited by ascorbic acid. The present study demonstrates that the Na+-Ca2+ exchanger is involved in agonist-induced Ca2+ signaling in cultured rat astrocytes. The astrocytic intracellular Ca2+ concentration ([Ca2+]i) was increased by l -glutamate, noradrenaline (NA), and ATP, and the increases were all attenuated by the NO generator sodium nitroprusside (SNP). SNP also reduced the ionomycin-induced increase in [Ca2+]i. The Na-induced Ca2+ signal was also attenuated by S-nitroso-l -cysteine and 8-bromo cyclic GMP, whereas it was enhanced by 3,4-dichlorobenzamil, an inhibitor of the Na+-Ca2+ exchanger. Treatment of astrocytes with antisense, but not sense, deoxynucleotides to the sequence encoding the Na+-Ca2+ exchanger enhanced the ionomycin-induced increase in [Ca2+]i and blocked the effects of SNP and 8-bromo cyclic GMP in reducing the NA-induced Ca2+ signal. Furthermore, the ionomycin-induced Ca2+ signal was enhanced by removal of extracellular Na+ and pretreatment with ascorbic acid. These findings indicate that the Na+-Ca2+ exchanger is a target for NO modulation of elevated [Ca2+]i and that the exchanger plays a role in Ca2+ efflux when [Ca2+]i is raised above basal levels in astrocytes.  相似文献   

13.
A family of plant ligand gated nonselective cation channels (cngcs) can be activated by direct, and reversible binding of cyclic nucleotide. These proteins have a cytoplasm-localized cyclic nucleotide binding domain (CNBD) at the carboxy-terminus of the polypeptide. A portion of the cngc CNBD also acts as a calmodulin (CaM) binding domain (CaMBD). The objective of this work is to further characterize interaction of cyclic nucleotide and CaM in gating plant cngc currents. The three-dimensional structure of an Arabidopsis thaliana cngc (Atcngc2) CNBD was modeled, indicating cAMP binding to the Atcngc2 CNBD in a pocket formed by a β barrel structure appressing a shortened (relative to animal cngc CNBDs) αC helix. The Atcngc2 CaMBD was expressed as a fusion peptide linking blue and green fluorescent proteins, and used to quantify CaM (A. thaliana CaM isoform 4) binding. CaM bound the fusion protein in a Ca2+–dependent manner with a Kd of 7.6 nM and a Ca2+ binding Kd of 200 nM. Functional characterization (voltage clamp analysis) of Atcngc2 was undertaken by expression in human embryonic kidney cells. CaM reversed cAMP activation of Atcngc2 currents. This functional interaction was dependent on free cytosolic Ca2+. Increasing cytosolic Ca2+ was found to inhibit cAMP activation of the channel in the absence of added CaM. We conclude that the physical interaction of Ca2+/CaM with plant cngcs blocks cyclic nucleotide activation of these channels. Thus, the cytosolic secondary messengers CaM, cAMP, and Ca2+ can act in an integrated fashion to gate currents through these plant ion channels.  相似文献   

14.
Ca2+ signalling in neurons through calmodulin (CaM) has a prominent function in regulating synaptic vesicle trafficking, transport, and fusion. Importantly, Ca2+–CaM binds a conserved region in the priming proteins Munc13‐1 and ubMunc13‐2 and thus regulates synaptic neurotransmitter release in neurons in response to residual Ca2+ signals. We solved the structure of Ca2+4–CaM in complex with the CaM‐binding domain of Munc13‐1, which features a novel 1‐5‐8‐26 CaM‐binding motif with two separated mobile structural modules, each involving a CaM domain. Photoaffinity labelling data reveal the same modular architecture in the complex with the ubMunc13‐2 isoform. The N‐module can be dissociated with EGTA to form the half‐loaded Munc13/Ca2+2–CaM complex. The Ca2+ regulation of these Munc13 isoforms can therefore be explained by the modular nature of the Munc13/Ca2+–CaM interactions, where the C‐module provides a high‐affinity interaction activated at nanomolar [Ca2+]i, whereas the N‐module acts as a sensor at micromolar [Ca2+]i. This Ca2+/CaM‐binding mode of Munc13 likely constitutes a key molecular correlate of the characteristic Ca2+‐dependent modulation of short‐term synaptic plasticity.  相似文献   

15.
The single calmodulin gene (CaM) of the green alga Mougeotia scalaris (Hassall) was cloned, sequenced and the CDNA inserted into the prokaryotic expression vector pGEX-2T. The recombinant calmodulin protein (CAM) was expressed as a fusion product together with glutathione S-transferase and isolated on glutathione sepharose. After cleavage and purification, the CaM was characterized by Ca2+-dependent shift in SDS-PAGE, by activation of cyclic 3′,5′nucleotide phosphodiesterase (PDE) and sensitivity to the inhibitors trifluoperazine and calmidazolium, with native Mougeotia CaM as control. Using Ca2+ buffers in the PDE test, affinity to Ca2+ of Mougeotia CaM was found to be diminished fivefold compared to maize or bovine brain CaMs. There was also a 20-fold increase of half maximal activation (Kact) in the PDE test for Mougeotia CaM relative to maize CaM, while the Kact of maize CaM to that of bovine brain CaM was almost the same. The derived amino acid sequences of CaM from Mougeotia and Zea mays revealed three major conservative amino acid exchanges, including unique 105-Trp (Mougeotia) → Leu (maize). In Mougeotia CaM the 105-Trp, including the neighbouring side chains of 92-Phe and 141-Phe, putatively form a hydrophobic ring interaction, as revealed by molecular modelling.  相似文献   

16.
Summary In rabbit ileum, Ca2+/calmodulin (CaM) appears to be involved in physiologically inhibiting the linked NaCl absorptive process, since inhibitors of Ca2+/CaM stimulate linked Na+ and Cl absorption. The role of Ca2+/CaM-dependent phosphorylation in regulation of the brush-border Na+/H+ antiporter, which is believed to be part of the neutral linked NaCl absorptive process, was studied using purified brush-border membrane vesicles, which contain both the Na+/H+ antiporter and Ca2+/CaM-dependent protein kinase(s) and its phosphoprotein substrates. Rabbit ileal villus cell brush-border membrane vesicles were prepared by Mg precipitation and depleted of ATP. Using a freezethaw technique, the ATP-depleted vesicles were loaded with Ca2+, CaM, ATP and an ATP-regenerating system consisting of creatine kinase and creatine phosphate. The combination of Ca2+/CaM and ATP inhibited Na+/H+ exchange by 45±13%. This effect was specific since Ca2+/CaM and ATP did not alter diffusive Na+ uptake, Na+-dependent glucose entry, or Na+ or glucose equilibrium volumes. The inhibition of the Na+/H+ exchanger by Ca2+/CaM/ATP was due to an effect on theV max and not on theK m for Na+. In the presence of CaM and ATP, Ca2+ caused a concentration-dependent inhibition of Na+ uptake, with an effect 50% of maximum occurring at 120nm. This Ca2+ concentration dependence was similar to the Ca2+ concentration dependence of Ca2+/CaM-dependent phosphorylation of specific proteins in the vesicles. The Ca2+/CaM/ATP-inhibition of Na+/H+ exchange was reversed by W13, a Ca2+/CaM antagonist, but not by a hydrophobic control, W12, or by H-7, a protein kinase C antagonist. we conclude that Ca2+, acting through CaM, regulates ileal brush-border Na+/H+ exchange, and that this may be involved in the regulation of neutral linked NaCl absorption.  相似文献   

17.
Bonza MC  Luoni L 《FEBS letters》2010,584(23):4783-4788
Plant auto-inhibited Ca2+-ATPase 8 (ACA8) and animal plasma membrane Ca2+-ATPase 4b (PMCA4b) are representatives of plant and animal 2B P-type ATPases with a regulatory auto-inhibitory domain localized at the N- and C-terminus, respectively. To check whether the regulatory domain works independently of its terminal localization and if auto-inhibitory domains of different organisms are interchangeable, a mutant in which the N-terminus of ACA8 is repositioned at the C-terminus and chimeras in which PMCA4b C-terminus is fused to the N- or C-terminus of ACA8 were analysed in the yeast mutant K616 devoid of endogenous Ca2+-ATPases. Results show that the regulatory function of the terminal domain is independent from its position in ACA8 and that the regulatory domain belonging to PMCA4b is able to at least partially auto-inhibit ACA8.  相似文献   

18.
19.
The Ca2+-ATPase of skeletal sarcoplasmic reticulum was purified and reconstituted in proteoliposomes containing phosphatidylcholine (PC). When reconstitution occurred in the presence of PC and the acidic phospholipids, phosphatidylserine (PS) or phosphatidylinositol phosphate (PIP), the Ca2+-uptake and Ca2+-ATPase activities were significantly increased (2–3 fold). The highest activation was obtained at a 50:50 molar ratio of PSYC and at a 10:90 molar ratio of PIP:PC. The skeletal SR Ca2+-ATPase, reconstituted into either PC or PC:PS proteoliposomes, was also found to be regulated by exogenous phospholamban (PLB), which is a regulatory protein specific for cardiac, slow-twitch skeletal, and smooth muscles. Inclusion of PLB into the proteoliposomes was associated with significant inhibition of the initial rates of Ca2+-uptake, while phosphorylation of PLB by the catalytic subunit of cAMP-dependent protein kinase reversed the inhibitory effects. The effects of PLB on the reconstituted Ca2+-ATPase were similar in either PC or PC: PS proteoliposomes, indicating that inclusion of negatively charged phospholipid may not affect the interaction of PLB with the skeletal SR Ca2+-ATPase. Regulation of the Ca2+-ATPase appeared to involve binding with the hydrophilic portion of phospholamban, as evidenced by crosslinking experiments, using a synthetic peptide which corresponded to amino acids 1–25 of phospholamban. These findings suggest that the fast-twitch isoform of the SR Ca2+-ATPase may be also regulated by phospholamban although this regulator is not expressed in fast-twitch skeletal muscles.  相似文献   

20.
Plant auto-inhibited Ca2+-ATPases (ACA) are crucial in defining the shape of calcium transients and therefore in eliciting plant responses to various stimuli. Arabidopsis thaliana genome encodes ten ACA isoforms that can be divided into four clusters based on gene structure and sequence homology. While isoforms from clusters 1, 2 and 4 have been characterized, virtually nothing is known about members of cluster 3 (ACA12 and ACA13). Here we show that a GFP-tagged ACA12 localizes at the plasma membrane and that expression of ACA12 rescues the phenotype of partial male sterility of a null mutant of the plasma membrane isoform ACA9, thus providing genetic evidence that ACA12 is a functional plasma membrane-resident Ca2+-ATPase. By ACA12 expression in yeast and purification by CaM-affinity chromatography, we show that, unlike other ACAs, the activity of ACA12 is not stimulated by CaM. Moreover, full length ACA12 is able to rescue a yeast mutant deficient in calcium pumps. Analysis of single point ACA12 mutants suggests that ACA12 loss of auto-inhibition can be ascribed to the lack of two acidic residues—highly conserved in other ACA isoforms—localized at the cytoplasmic edge of the second and third transmembrane segments. Together, these results support a model in which the calcium pump activity of ACA12 is primarily regulated by increasing or decreasing mRNA expression and/or protein translation and degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号