首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertical transmission of cyanobacterial symbionts occurs in didemnid ascidians harboring Prochloron as an obligate symbiont; the photosymbionts are transferred from the parental ascidian colony to the offspring in various ways depending on host species. Although several didemnids harbor non-Prochloron cyanobacteria in their tunics, few studies have reported the processes of vertical transmission in these didemnids. Here we describe the histological processes of the transmission of cyanobacteria in two didemnids, Trididemnum nubilum harboring Synechocystis and T. clinides harboring three cyanobacterial species. In both species, the photosymbionts in the tunic of the parent colony were apparently captured by the tunic cells of the host and transferred to the embryos brooded in the tunic. The symbiont cells were then incorporated into the inner tunic of the embryo. This mode of transmission is essentially the same as that of T. miniatum harboring Prochloron in the tunic, although there are some differences among species in the timing of the release of the symbionts from the tunic cells. We suggest that the similar modes of vertical transmission are an example of convergent evolution caused by constraints in the distribution patterns of symbiont cells in the host colony.  相似文献   

2.
Trididemnum miniatum is a colonial ascidian harboring the photosymbiotic prokaryote Prochloron sp. These bacterial cells are located in the tunic of the host animal. The present study revealed, by ultrastructural analysis, that the Prochloron cells were exclusively distributed and proliferated in the tunic. They were shown to be embedded in the tunic matrix and to have no direct contact with ascidian cells. Some tunic cells of the ascidians, however, did phagocytize and digest the symbiont. Round cell masses were sometimes found in the tunic and appeared to consist of disintegrating cyanobacterial cells. The thoracic epidermis of ascidian zooids was often digitated, and the epidermal cells extended microvilli into the tunic. Since there were no Prochloron cells in the alimentary tract of the ascidian zooids, the photosymbionts would not be considered part of the typical diet of the host ascidians. Thin layer chromatography showed that the symbionts possessed both chlorophyll a and b, while a 16S rRNA gene phylogeny supported the identification of the photosymbiont of T. miniatum as Prochloron sp.  相似文献   

3.
Morphological processes in the vertical transmission of photosymbionts were investigated in the Prochloron-bearing ascidian Didemnum molle. Prochloron cells were found exclusively in the common cloacal cavity of the colony, attached mainly to the tunic lining of the cavity wall. Oocytes were found in the abdominal region of each zooid, but no Prochloron cells were associated with this stage. During embryogenesis, embryos moved into the tunic core of the colony and were always separated from Prochloron cells in the cloacal cavity by the tunic matrix, until they hatched out from the tunic core. In swimming larvae, Prochloron cells covered the surface of the posterior half of the larval trunk, whereas a thin larval tunic layer covered the anterior half, where no Prochloron cells were found. The tunic of the posterior half of the larval trunk had many folds that enfolded the Prochloron cells and may be adhesive in order to acquire Prochloron cells from the mother colony. The thin larval tunic layer is probably not adhesive and protects the anterior half of the trunk from interference by Prochloron cells with sensory receptors and adhesive organs.  相似文献   

4.
The effects of light intensity, pH, temperature, and UV irradiation on the photosynthetic rate of Prochloron isolated from the ascidian host Lissoclinum patella, collected from Palau, were examined. Photosynthesis increased with light intensity with saturation at 500 μmol/m2 per second. It was maximum at pH 8 to 9 but almost completely suppressed below pH 7. The optimum temperature was 35° to 40°C, but the photosynthesis was absent at ≤20°C and at 45°C. It was recovered when the symbiont was transferred from 1 hour of incubation at ≤20°C to 35°C but not when transferred from incubation at 45°C. Ultraviolet irradiation severely inhibited the photosynthesis of Prochloron in isolation but not in vivo. This protection was brought about by the tunic covering the ascidian colony, which contains UV-absorbing mycosporine-like amino acids. These results indicate that the characteristic condition of the tropical marine environment largely determines the ecological distribution of Prochloron, and the ascidian tunic protects the organism from UV radiation. Received February 17, 2000; accepted August 8, 2000.  相似文献   

5.
Didemnum molle is a colonial ascidian that harbors the prokaryotic photosymbiont Prochloron in its cloacal cavity. Colonies occur over a relatively wide bathymetric range (approximately 0-30 m), and colony color is widely variable, partly depending on depth. Colonies in shallow sites are bright white, with densely distributed spicules, and often with brown or dark gray pigmentation, while colonies in deeper sites are less pigmented, with sparsely distributed spicules. Didemnum molle colonies contain mycosporine-like amino acids (MAAs) as UV-absorbing substances. These include mycosporine-glycine, shinorine, and porphyra-334. Among colonies from 5-, 10-, 15-, and 20-m depths, the concentration of total MAAs was significantly high at 10 m and low at 20 m. Colonies at 10 m need to maintain low spicule densities to have enough photosynthetically active radiation (PAR) to maintain the photosymbionts, and they probably concentrate MAAs to block UV radiation without attenuating PAR. Because high levels of PAR cause photoinhibition of photosynthesis, spicules and pigment cells would be more effective for photoprotection in shallow water. Colonies of D. molle may adjust the light conditions for photosymbionts by combining MAAs, spicules, and pigment cells in varying amounts.  相似文献   

6.
The intermediate filament (IF) proteins Styela C and Styela D from the tunicate Styela (Urochordata) are co-expressed in all epidermal cells and they are thought to behave as type I and type II keratins. These two IF proteins, Styela C and Styela D, were identified in immunoblots of proteins isolated from the tunic of Styela plicata. The occurrence and distribution of these proteins within the tunic of this ascidian was examined by means of immunofluorescence and immunoperoxidase techniques, using anti-Styela C and anti-Styela D antibodies. In addition, immuno-electron microscopy of the tunic showed that the two proteins are located in the cuticle layer and in the tunic matrix. These results represent the first data about the presence of IF proteins in the tunic of adult ascidian S. plicata. The possible involvement of these IF proteins in reinforcing the integrity of the tunic, that represents the interface between the animal body and the external environment, is discussed.  相似文献   

7.
We documented changes in the abundance and distribution patterns of tunic cells involved in the allorecognition response of the colonial aplousobranch Didemnum vexillum, whose zooids do not share a common vascular system. A histological examination of the fusion zone of isogeneic (CIAs) and allogeneic (CAAs) fused colony assays revealed that tunic cuticles were rapidly regenerated. The underlying tunic matrix fused readily in all assays and controls. We identified four different types of tunic cells. Phagocytic cells represented the most abundant cell type in allogeneic fusions, followed by morula cells. These cells were more abundant at the immediate fusion junction than at 120 μm or 240 μm from the junction, most likely because they mediate the allorecognition reaction. Elongated filopodial cells also were present, although only at very low abundances, and a layer of bladder cells was located immediately below the cuticle. Our results provide quantitative evidence for the involvement of tunic cells in the allorecognition response of a highly invasive ascidian.  相似文献   

8.
In chordates, obligate photosynthetic symbiosis has been reported exclusively in some colonial ascidians of the family Didemnidae. The vertical transmission of the symbionts is crucial in establishing the obligate symbiosis between the cyanobacteria and the host ascidians. The results of comparative surveys on the morphological processes of cyanobacterial transmission suggest the occurrence of convergent evolution of the vertical transmission in the host species harboring symbionts in the cloacal cavity. In Trididemnum species harboring cyanobacterial cells in the tunic, the symbiont cells are transported by the tunic cells to the tunic of embryos brooded in the tunic of the parent colony. The present study examined whether the mode of symbiont transmission is the same in host species harboring the symbionts in the tunic, regardless of host genera, or whether non-Trididemnum hosts have a different vertical transmission mode. Our results showed that the vertical transmission process in Lissoclinum midui was almost the same as in the Trididemnum species, supporting the occurrence of convergent evolution in the two distinct didemnid genera, that is, Trididemnum and Lissoclinum. High plasticity of the embryogenic process in didemnid ascidians may be important in developing the mechanism of vertical transmission; this assumption may also explain why the obligate cyanobacterial symbiosis has been exclusively established in didemnid ascidians among chordates.  相似文献   

9.
In comparative immunology and evolution of the chordate immune system, tunicates hold an important phylogenetic position as sister group of vertebrates. However, knowledge of the tunicate immune system is limited to the class Ascidiacea, in which some species are now considered model organisms. In the class Thaliacea, represented by fragile pelagic species, the few studies on their haemocytes go back to several decades ago and do not consider comparative aspects with ascidian haemocytes. In this study, we identified various haemocyte types and their distribution in the common salp Thalia democratica by comparative observations under light and electron microscopy and by histochemical, histoenzymatic and immunohistochemical techniques. By comparing specialisations with those of ascidian haemocytes, we detected an undifferentiated cell type (lymphocyte‐like cell) and three categories with four cell types, that is, (i) phagocytic line (hyaline amoebocyte and amoebocyte with large vacuoles), (ii) mast cell‐like line (granular cell) and (iii) storage cells (nephrocyte). Both phagocytes and granular cells appear to migrate in the tunic. Phagocytes adhere to the tunic which internally covers the oral siphon, where they probably function as sentinel cells of the pharynx. Results show the variety of haemolymph cells in the salp similar to phlebobranch ascidians.  相似文献   

10.
Adjusting the light exposure and capture of their symbiotic photosynthetic dinoflagellates (genus Symbiodinium Freud.) is central to the success of reef‐building corals (order Scleractinia) across high spatio‐temporal variation in the light environment of coral reefs. We tested the hypothesis that optical properties of tissues in some coral species can provide light management at the tissue scale comparable to light modulation by colony architecture in other species. We compared within‐tissue scalar irradiance in two coral species from the same light habitat but with contrasting colony growth forms: branching Stylophora pistillata and massive Lobophyllia corymbosa. Scalar irradiance at the level of the symbionts (2 mm into the coral tissues) were <10% of ambient irradiance and nearly identical for the two species, despite substantially different light environments at the tissue surface. In S. pistillata, light attenuation (90% relative to ambient) was observed predominantly at the colony level as a result of branch‐to‐branch self‐shading, while in L. corymbosa, near‐complete light attenuation (97% relative to ambient) was occurring due to tissue optical properties. The latter could be explained partly by differences in photosynthetic pigment content in the symbiont cells and pigmentation in the coral host tissue. Our results demonstrate that different strategies of light modulation at colony, polyp, and cellular levels by contrasting morphologies are equally effective in achieving favorable irradiances at the level of coral photosymbionts.  相似文献   

11.
Summary The ultrastructure of the mycetocytes and mycetome micro-organisms of the sweetpotato whitefly,Bemisia tabaci Genn. andTrialeurodes vaporariorum West are described. InB. tabaci, two morphologically distinct types of micro-organisms were observed in mycetocytes. The predominant type lacked a distinct cell wall, was pleomorphic in shape with a surrounding vacuole. The second type was a coccoid organism, with inner and outer cell membranes. The coccoid organism was often found in groups of varying number within vacuoles, and in many cases appeared to be undergoing degradation. InT. vaporariorum mycetocytes, pleomorphic and coccoid organisms were found, although the coccoid micro-organism inT. vaporariorum, had a thicker cell wall than the coccoid micro-organism inB. tabaci.Abbreviations C coccoid micro-organism - P pleomorphic micro-organism  相似文献   

12.
Summary The process of egg segregation in the tunic of the ovoviviparous ascidian Diplosoma listerianum was studied by light and electron microscopy. One egg at a time was seen to mature in each zooid. The eggs had large yolk and grew on the ovary wall enveloped in four layers: (1) outer follicle cells (OFC), long and rich in RER (rough endoplasmic reticulum) and with dense granules in the Golgi region; (2) flat inner follicle cells (IFC); (3) a loosely fibrillar vitelline coat (VC); (4) test cells encased on the egg surface. The growing egg protrudes from the ovary wall and presses on the contiguous epidermis. Granulocytes enter the space between the epidermis and the egg and insinuate cytoplasmic protrusions, disrupting the continuity of the OFC layer. At ovulation, OFC and IFC are discharged and form a post-ovulatory follicle (corpus luteum). The epidermis shrinks and closes, possibly by activation of microfilaments, causing the egg to be completely surrounded by the tunic. In the zooid, the wound caused by the passage of the egg is repaired both by contraction of the epidermis and by phagocytic activity. Altered spermatozoans are found in phagocytosing cells in the lumen of the ovary. These are presumably remnants of those which entered to fertilize the egg before segregation.  相似文献   

13.
The effect of light quality on the photosynthetic pigments as chromatic adaptation in 8 species of lichens were examined. The chlorophylls, carotenoids in 5 species with green algae as phycobionts (Cladonia mitis, Hypogymnia physodes, H. tubulosa var. tubulosa and subtilis, Flavoparmelia caperata, Xanthoria parietina) and the chlorophyll a, carotenoids and phycobiliprotein pigments in 3 species with cyanobacteria as photobionts (Peltigera canina, P. polydactyla, P. rufescens) were determined. The total content of photosynthetic pigments was calculated according to the formule and particular pigments were determined by means CC, TLC, HPLC and IEC chromatography. The total content of the photosynthetic pigments (chlorophylls, carotenoids) in the thalli was highest in red light (genus Peltigera), yellow light (Xanthoria parietina), green light (Cladonia mitis) and at blue light (Flavoparmelia caperata and both species of Hypogymnia). The biggest content of the biliprotein pigments at red and blue lights was observed. The concentration of C-phycocyanin increased at red light, whereas C-phycoerythrin at green light.  相似文献   

14.
Ciona intestinalis L. tunic architecture and cell distribution were investigated with the electron microscope. The observations showed that the ascidian covering is formed by a thin outer cuticle, a subcuticle of variable width and a large single layer of ground substance. “Large granule”, morula, phagocyte and granulocyte are the cellular types encountered; they appear mainly in highly vacuolated states and are distributed throughout the whole tunic. The “large granule” cells, however, are mainly seen in the cuticle layer and the morula cells appear mostly in the outer zone of the ground substance. The role of these cells in tunic construction, repair and regeneration as well as their scavenging function are discussed.  相似文献   

15.
The tunic of Cystodytes dellechiajei (Poly- citoridae), a colony-forming species of the Ascidiacea that contains biologically active alkaloids, was investigated using light microscopy, laser-scanning microscopy and nuclear magnetic resonance techniques. The colonies contain numerous individual zooids, which are embedded in a common tunic. Each zooid is protected by a firm capsule of overlapping calcareous spicules. The colonies lack blood vessels in the tunic, but six morphologically different types of tunic cells were found: pigment cells, bladder cells, vacuolated filopodial cells, granular filopodial cells, morula cells and granular cells. Rod-like bacteria were found in the tunic matrix. Bladder cells and pigment cells could be identified as storage units for acid and pyridoacridine alkaloids, making the tunic inedible and repelling predators. Filopodial cells have long filopodia, which probably are connected to each other. They may be involved in transportation processes within the tunic tissue. The functions of the morula cells and the granular cells are unknown as yet. With its several specialised cells, the tunic of C. dellechiajei represents a dynamic living tissue containing biologically active compounds. Accepted: 20 September 2000  相似文献   

16.
Cell distribution and tunic morphology in the ascidian Styela canopus were examined by electron microscopy. The observations showed that the outer covering is composed of a thin sinuous cuticle with several protrusions and a deep layer of ground substance. The fibrous component and its arrangement in the tunic were demonstrated: elementary fibrils exhibit a 'microtubular' structure and an elliptical cross-sectional shape. Four types of cells were described: clear vesicular tunic granulocytes, tunic microgranulocytes, unilocular tunic granulocytes, and globular tunic granulocytes. Morphofunctional aspects of the tunic tissue and certain phylogenetic relationships are discussed.  相似文献   

17.
The effects of light spectral distribution on the composition of phototrophic microbial communities were analyzed in three metalimnetic levels (relative depth positions) of 41 lakes. Principal Component Analysis was used to compare light quality conditions reaching the populations of phototrophic micro-organisms containing different photosynthetic pigments. Results allowed to identify the optimal light quality conditions for the selection of each microbial group at their respective levels. Two general light-harvesting adaptations were defined, according to the wavebands that could be related to the selection of these microbial groups. The micro-organisms adapted to use red and near-infrared light – eukaryotic phytoplankton, Chloronema spp. and green-coloured Chlorobiaceae – predominated at shallow depths (specially in waters containing high gilvin contents) using their respective Qy absorption bands. The micro-organisms adapted to green-yellow light – phycoerythrin-containing cyanobacteria, Chromatiaceae and brown-coloured Chlorobiaceae – were dominant in deep metalimnetic communities. Laboratory experiments with cultures of Chlorobium limicola and C. phaeobacteroides growing under different light quality conditions showed that the green-coloured species had higher photosynthetic activity under red light, while the brown-coloured species was more active under green light. These results demonstrated that physiological differences between micro-organisms with different light-harvesting adaptations are responsible of their selection under different light quality conditions. This selection is experimented by Chlorobiaceae (as it was previously indicated by other investigators) at the deepest positions of the metalimnetic communities (level 3), but also by Chromatiaceae and Chloronema spp. at level 2 and by the eukaryotic phytoplankton and cyanobacteria at level 1.  相似文献   

18.
This paper provides the first information on the morphology of different morphotypes of bacteria in the tunic matrix of the colonial ascidian Diplosoma migrans. Ascidians were collected from waters near Helgoland (German Bight, North Sea). The dominant type is represented by extremely high numbers of long, needle-like rods (length 10–30 µm, width 0.5 µm). The bacteria are motile by means of bipolar monotrichous flagella, generating swift sigmoidal movement. Bacteria are already present during different embryonic stages. It is assumed that they are transferred during sexual propagation from the parental colony to its offspring. As a second morphotype, the tunic harbors screw-like bacteria in low numbers (length 4–10 µm, width 0.5 µm). Besides these conspicuous morphotypes, occasionally motile rods with spore-like globules at one end and additional coccoid forms in large quantities of unknown meaning (possibly spores) were found. The taxonomic status and ecological functions of these differently shaped bacterial groups are unclear.Communicated by H.-D. Franke  相似文献   

19.
Abstract. Tunic cells are free cells distributed in the tunic, the integumentary matrix of tunicates. In ascidians, various types of tunic cells have been described both in solitary and in colonial species. Many of them are functionally specialized and are related to the protection of the animal, such as phagocytosis to prevent infection, acid storage to avoid predation, and pigmentation to protect against solar radiation. While some tunic cells are known to play a role in colonial allorecognition, bioluminescence, and algal symbiosis, the functional roles of many cell types still remain to be determined. The composition of tunic-cell types varies among ascidian species, most likely reflecting the functional requirements of the tunic in each species. Although some cell types, e.g., tunic net cells and tunic bladder cells, are restricted to particular taxa of ascidians, tunic phagocytes are found in all known ascidians. Therefore, tunic phagocytes are hypothesized to be basal and shared with ancestral tunicates. In some ascidians, phagocytic cells are involved in other functions, such as pigmentation, intracellular photosymbiosis, and bioluminescence. These specialized phagocytic cells are hypothesized to be derived from tunic phagocytes, suggesting that tunic cells have a high potential to diversify and evolve a wide variety of cellular functions.  相似文献   

20.
During the early stages of embryogenesis of the ascidian Halocynthia roretzi the test cells creep exclusively on the inner surface of the chorion. Concomitant with elongation of the embryonic tail, however, the test cells begin to gather around the embryo and finally cover the whole embryo. The time at which the test cells surround the embryo almost coincides with that of initiation of larval tunic formation. Scanning electron microscope observations revealed that the test cells extend numerous cytoplasmic processes or pseudopodia. During larval tunic formation, the test cells compose a net by intertwining their filopodia, and the cell net covers the whole embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号