首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The monthly productivity, standing stock, plant size and density of Ecklonia radiata (C.Ag.) J. Agardh is presented for a 2-yr period. Annual production was 20.7 kg wet wt · m?2 with maximum growth of 0.9% per day in spring (October–December) and minimum growth of 0.2% per day in late summer. (March–April). A close negative correlation was found between spring and summer growth and water temperature. Maximum biomass (18 kg wet wt · m ?2) did not coincide with maximum growth but occurred in late summer. Minimum biomass (6 kg wet wt · m ?2) occurred in winter. An estimate of erosion of plant material from the kelp bed was made from these data and a hypothesis concerning the ultimate destination of eroded and removed kelp plants was formulated.  相似文献   

2.
Fluctuations in plant and frond characteristics are described for Macrocystis pyrifera (L.) C. Agardh (Laminariales, Phaeophyta) forming a fringing zone in the Falkland Islands. Giant kelp plants were sampled along a transect in the austral autumn (May 1986) and late spring (December 1986) which, according to previous frond weight analysis, were the times when extremes in population parameters were expected. Plant density and holdfast wet weights were similar for both seasons, but plants had more fronds and the fronds weighed more in spring than in autumn. Consequently, in autumn the frond biomass (1·1 wet kg m?2) and productivity (34·1 wet g m?2 d?1) were lower than in spring, when a biomass of 5·0 wet kg m?2 and a productivity of 72·4 wet g m?2 d?1 were recorded. Production of new fronds and loss of old fronds were determined at monthly intervals between April 1986 and March 1987. New frond production rates followed fluctuations in the quantity of light and varied between 0·08 and 0·48 fronds per plant per day. Frond loss rates did not show a seasonal pattern and fluctuated between 0·05 and 0·42 fronds per plant per day. It is suggested that the Falkland Islands Macrocystis population is more stable than most other giant kelp beds at high latitudes, because of the absence of winter storms.  相似文献   

3.
The contribution of below ground plant root tissue to soil carbon (C) pools is attracting considerable interest in the context of greenhouse gas mitigation options. A field experiment was conducted on a perennial ryegrass/white clover pasture in the Manawatu, New Zealand, to examine the effect of differing soil nitrogen (N) and phosphorus (P) fertility status on root dynamics. Root standing mass, shoot and root dry matter (DM) accumulation and root tissue decomposition were measured at 6–8 week intervals over one year at moderate (Olsen P?=?24, no added N) and high (Olsen P?=?49, 400 kgN ha?1y?1 added N) soil fertility levels. Shoot production was significantly greater in the high fertility treatment (2550 cf. 1890 gDM m?2y?1) but differences in root dynamics were confined to two periods in spring and winter. In late spring the pattern was for lower root mass (183 cf. 231 gDM m?2 between 0–80 mm depth) and higher root production (0.71 cf. 0.52 gDM m?2 d?1 between 0–120 mm depth) under higher fertility. In winter the reverse was observed. There is some evidence that the soil type used in the root in-growth cores underestimated root production values for this site by a factor of approx. one third. Short-term differences between the two fertiity treatments in standing root mass and root production did not lead to treatment differences in topsoil C and N changes over four years. This may reflect insufficient separation in the two soil fertility treatments and a low overall root tissue input to soil organic matter.  相似文献   

4.
Cell-to-cell communication in lateral branches of limited growth in male Chara corallina plants has been studied using fluorescent plasmalemma-impermeable probes. The extent of cell-to-cell communication was found to be seasonal. In winter, branch internodes were characterized by relatively low plasmalemma potential differences (–121·2±23·2 mV; [K+]o 0·5 mol m?3; pH 7·6), quiescent dactyls isolated from the symplast (conic tips) and by restricted cell-cell communication (frequency of intercellular transport of six carboxyfluorescein = 42·9%). Cell-to-cell communication was inhibited during action-potentials, and was more extensive between cells which did not give an action potential in response to a current pulse. An inhibitor of the action potential, La3+, promoted cell-to-cell communication. These may be characteristic features of winter dormancy in lateral branches of Chara. In spring, morphological and electrophysiological changes occurred immediately prior to the onset of fertility. Characteristic changes in morphology included increased abundance of spherosomes and glycosomes, elongation of stipulodes and development of active branch dactyls. Spring branch inter-nodes were characterized by high plasmalemma PDs (–210·5±30·8mV; [K+]o 0·5 mol m?3; pH 7·6), predominantly active, non-isolated dactyls (spinaceous tips), and extensive intercellular communication (frequency of intercellular transport of 6 carboxyfluorescein = 89·2%). Artificial elevation of the intracellular calcium ion concentration by application of ionophore A23187 or Ca2+ microinjection significantly restricted intercellular communication to a level similar to that found in winter. The depression of intercellular communication in winter tissues is suggested to be due to high sensitivity to action potentials and/or to Ca2+ fluxes. Changes in intracellular Ca2+ distribution may be involved in the transition between the morphologically distinct states of dormancy and incipient fertility.  相似文献   

5.
During the period April 1967-ApriI 1968 the phytoplankton production and respiration of the River Thames and its tributary, the River Kennet, were measured at approxi-mately 2-week intervals using the light and dark bottle technique. Concentrations of chlorophyll and pheopigment were determined weekly. On fourteen occasions sets of light and dark bottles were rotated in a specially designed apparatus, and production and respiration values obtained were found to be 1·38 ± 0·31 times higher than in stationary bottles at identical depths over the same period. There was little horizontal, vertical or diurnal variation in chlorophyll concentration showing that the water was well mixed. Peaks of chlorophyll were found in spring, summer and autumn in the Thames (max. 219 mg/m3) but there was very little variation in the Kennet (max. 38·2 mg/m3). In both rivers lowest concentrations were found during winter. Pheo-pigment concentration was low in both rivers for most of the period although in the Kennet this represented on average 50% of the pigments present. In the Thames a peak of pheopigments(1·33–5 mg/m3) was associated with the autumnal bloom and repre-sented 61 % of the total pigments. No pheopigments were detected during the spring bloom. The average concentration of suspended organic matter was identical in both rivers but in the Thames over 25 % was due to phytoplankton and in the Kennet almost 95 % was non-algal. In the Thames, net oxygen production reached a peak in May (10·81 gO2/m2/day) and was negative from November to February (min. ?0·45 gO2/m2/day). In the Kennet, maximum production also occurred in May (0·85 gO2/m2) but was negative from the middle of May until the following March. The average annual net production was 1250 and ?78 g O2/m2 in the Thames and Kennet respectively. Respiration rates showed similar fluctuations being 4·59 g O2/m2/day in spring in the Thames to 0·09 g O2/m2/day in November. The Kennet was almost always lower (1·05–0·34 g O2/m2/day. The average annual respiration was almost three times higher in the Thames than in the Kennet (641–228 g O2/m2). Various factors which might influence production are discussed. The average net efficiency ofthe Thames phytoplankton fell within ranges described from other rivers. Net efficiencies ofthe Kennet were almost always negative. In the Thames it appeared that net production could be explained as a function of solar radiation, chlorophyll concentration and euphotic depth.  相似文献   

6.
Different lamina of Macrocystis pyrifera sporophytes (i.e., sporophylls, pneumatocyst‐bearing blades, and apical scimitars) in a wave‐sheltered site were found to be fertile. We quantified their sorus surface area, reproductive output (number of spores released) and the viability of released spores (germination rate). Sorus area was greatest on the sporophylls, with sporangia developing on >57% of the total area and smallest on the pneumatocyst‐bearing blades with 21% of the total area bearing sporangia. The apical scimitar released the greatest number of meiospores (cells · mL?1 · cm?2) and the sporophylls the least. Meiospores produced from all types of fertile laminae were equally viable. This reproductive plasticity may enhance reproductive output, and contribute to short and long‐distance spore dispersal and the cryptic gametophyte propagule bank for the next generation of sporophytes.  相似文献   

7.
Transplanting experiments were carried out to determine whether the small type sporophytes with short stipe of Ecklonia cava Kjellman (Laminariales, Phaeophyta) growing in a locality with warm temperatures, change into larger type with a long stipe when transplanted to a locality with cooler temperatures. Juvenile E. cava sporophytes, having a stipe shorter than 5 cm long were collected from Tei in Tosa Bay (southern Japan) (seawater temperature 15–29°C) and transplanted to Nabeta Bay (central Japan) (seawater temperature 13–25°C), where larger type E. cava sporophytes characterized by long stipe (ca 1 m) grow. They were attached to artificial reefs at the sea bottom (9 m depth) in Nabeta Bay to monitor their growth. For comparison, juvenile E. cava sporophytes of almost similar size growing in Nabeta Bay were also transplanted in the same way to the same experimental site. Observations of growth of sporophytes from Tei and Nabeta were carried out monthly for 2 years from November 1995 to October 1997. The transplanted Tei and Nabeta sporophytes showed an increase in stipe length and diameter from winter to spring, whereas almost no increase was observed during summer and autumn. At the end of the study period, the stipe of Nabeta sporophytes reached 25.6 cm in length and 17.0 mm in diameter, whereas that of Tei sporophytes reached 11.1 cm in length and 11.2 mm in diameter. The primary blade length was 16.0 cm in Nabeta sporophytes, whereas it was 5.5 cm in Tei sporophytes. Thus, Tei sporophytes still remained smaller than Nabeta sporophytes even under the same environmental conditions.  相似文献   

8.
Biomass, chemical composition, growth rates and the photosynthetic response of natural populations of sea ice algae in McMurdo Sound, Antarctica were followed over most of the spring bloom to examine temporal variability under a relatively constant incident irradiance (ca. 1500–1700 μE · m-2· s-1 at solar noon). Collection were restricted to bottom 20 cm of the ice sheet in an area with little or no snow (0–5 cm). At low temperature and irradiance these algae normally exhibited low assimilation numbers (ca. 0.1–0.4 mg C · mg Chl-1· h-1). Average growth rates (0.02–0.45 d-1), based on changes in standing stocks, were also low. Biomass, biochemical composition, growth rates, assimilation numbers and photosynthetic efficiencies (mg C · mg Chl-1· h-1 (μE · m-2· s-1)-1) displayed large fluctuations over periods of several days during the growth season. On the other hand, Ik which is an index of photoadaptation, and Im, the optimal irradiance for photosynthesis, were relatively constant with less than twofold variation throughout our study. Substantial nutrient fluxes (3.3–8.0 mmol Si or N · m-2· d-1) were necessary to satisfy the minimum nutrient demand for the observed biomass levels and population growth rates; over the 41 days of our study, integrated nutrient demand represented 69–150 mmol N or Si · m-2, Only 5–25% of this total demand could be met by all of the nutrients in the ice sheet, if they were readily available. However, adequate amounts were present in the top few meters of the water column. With small nutrient gradients in surface waters below the sea ice, vertical eddy diffusivities on the order of 3.8–9.3 cm2· s- should supply sufficient nutrients to meet algal demand.  相似文献   

9.
We analysed the effects of temperature and photon fluence rate on meiospore germination, growth and fertility of gametophytes, and growth of young sporophytes of Laminaria ochroleuca. Maximum percentages of germination (91–98%) were obtained at 15°C and 18°C, independent of photon fluence rate. Optimal development of female gametophyte and maximum fecundity and reproductive success of gametophytes occurred at 15°C and 18°C and at 20 and 40 μmol m–2 s–1. Maximum relative growth rate of young sporophytes after 2 weeks of culture was achieved under the same conditions. L. ochroleuca gametophytes cannot reproduce and growth of its sporophytes is not competitive at temperatures close to 10°C. Received in revised form: 31 August 2001 Electronic Publication  相似文献   

10.
Standard growth analysis procedures were used to study the production and distribution of dry matter in 3 1/2 to 5-year-old coffee trees through their first and into their second commercial fruiting year. The trees were growing in the field and were treated according to normal commercial practice. Up to fifteen fruiting and deblossomed trees were harvested on each of seven occasions, at intervals of 63–90 days. The dry weights of four aerial fractions, five root fractions and all fallen, picked and pruned material were recorded. The net assimilation rate (E) of deblossomed trees was as large as that recorded in East Africa for coffee seedlings (0·13 g dm-2wk-1). Fruiting trees increased in dry weight faster than deblossomed trees, even when their leaf area was 30% smaller. Their E was up to 0·19 g dm-2wk-1when expressed on a leaf area basis and up to 0·16 g dm-2wk-1even when the total green fruit surface area was included in the calculation. In the hot, dry season, January–February 1968, all parts of the trees increased in dry weight relatively slowly, except the thin roots (< 3 mm diameter) which, in this season, took about 10% of the dry weight increment. The trees had been pruned in December and E of deblossomed trees was only 0·09 g dm-2wk-1. Flushes of shoot growth occurred at the beginning of the Long Rains 1967 and 1968 (February–March). During the 1967 shoot growth flush, 61% of the dry weight increment was used in the production of new, large leaves with a mean specific leaf area of over 140 cm2g-1. The thin roots took about 10 % of the increment, but the thicker roots increased in weight very slowly. The branches and trunk extended rapidly, but their radial growth was relatively slow. Following the shoot growth flushes, the leaf area ratio of the trees was large (0·38 dm2g-1in 1967) and during the Long Rains (April–June 1967, 1968), when conditions were favourable for photosynthesis (E 0·13 g dm-2wk-1), all parts increased in dry weight relatively rapidly, although in 1968 the thin roots took as little as 3 % of the total increment. Leaf area ratio decreased during the Long Rains owing to a large decrease in specific leaf area (in 1967: 118 to 95 cm2g-1). Pruning was carried out in June and new leaf production during the cool, dry season, July to mid-September, was very slow. Consequently, the total dry weight increase of the trees during this season was relatively small, although the E of deblossomed trees was 0·13 g dm-2wk-1. The leaves, which took 33 % of the increment, decreased further in specific leaf area (to 83 cm2g-1) and most root fractions increased in dry weight rapidly, the thin ones taking 17 % of the increment. Light fruiting in 1967 did not affect the seasonal periodicity in growth described. Both light and heavy fruiting tended, eventually, to lessen the dry weight increase of leaves and thin roots proportionately more than that of the trunk and thick roots. In 1968 fruiting trees retained over 8000 fruits per tree, which took over 70 % of the dry weight increment during the 1968 Long Rains, and became 36 % of the trees' dry weight. Some rootlets on these trees decreased in weight. Aspects of the productivity, growth periodicity and fruiting of coffee are discussed, and some management implications are noted.  相似文献   

11.
小兴安岭十种典型森林群落凋落物生物量及其动态变化   总被引:4,自引:0,他引:4  
侯玲玲  毛子军  孙涛  宋元 《生态学报》2013,33(6):1994-2002
在小兴安岭地区选取10种典型森林群落分别设置样地,研究该地区不同群落类型凋落物的年产量、月动态变化以及组成特征.结果表明:10种群落类型中年均凋落物量大小依次为椴树红松林(4.08t· hm-2·a-1)>蒙古栎红松林(3.83 t·hm-2·a-1)>云冷杉红松林(3.55 t·hm-2·a-1)>云冷杉林(3.44t· hm-2·a-1)>枫桦红松林(3.43t·hm-2· a-1)>山杨次生林(3.26 t·hm-2·a-1)>白桦次生林(3.04 t·hm-2·a-1)>枫桦次生林(2.96 t·hm-2·a-1)>杂木林(2.95 t·hm-2·a-1)>白桦落叶松林(2.91 t·hm-2·a-1).凋落物各组分中均以落叶为主,约占凋落总量的60%以上,枝仅占凋落量的5.7%-9.4%.凋落物月动态模式主要有两种:单峰型的有蒙古栎红松林、椴树红松林、枫桦红松林、枫桦次生林、山杨次生林、白桦次生林、杂木林,高峰期在8-10月份;双峰型的有云冷杉红松林、云冷杉林、白桦落叶松次生林,前两种群落的凋落高峰期在4月和9月,后者高峰期在8月和10月.不同群落类型年凋落量差异显著,原始红松林凋落量高于天然次生林,且凋落高峰出现时问以及各组分所占比例与群落类型有关,同时也与树种生物学特性有关.  相似文献   

12.
Persistence of annual plant populations requires sufficient seeds and suitable habitat for development and growth each year. Competition with perennials may prevent within site persistence and result in “fugitive” annual populations. Comparisons have been made between the population biology of annual macroalgae and terrestrial plants, but demographic information necessary to make strong comparisons is lacking for most of these algae, and life history differences may make such comparisons questionable. We studied population dynamics of the kelp Alaria marginata to determine if it was an annual and, if so, how populations persisted. This kelp is the dominant macroalga on exposed mid to low rocky intertidal shores along the Big Sur coast of California. Experimental clearings at two sites were used to assess recruitment timing and survivorship. Sporophytes were collected monthly to determine growth and fecundity. Recruitment occurred in late winter to early spring, primarily on geniculate corallines and residual A. marginata holdfasts. Thinning was inversely related to density, and occurred during the February through July growing season as larger thalli rapidly increased in length (up to 1.4 m month 1) and formed a thick canopy. Sorus development was positively related to size, began as early as March, peaked in late August-October, and decreased as adults were removed by winter surf. Spore release was generally highest (108-109 spores individual 11 h 1) between October and January and associated with high water motion. Survivorship of sporophytes beyond one year was < 1%, showing the populations were annual.Field observations and experiments on effects of canopy clearing, season of clearing, and influence of substrate type on recruitment were done to assess how these annual populations persist. Massive spore production at the onset of fall storms, survival of microscopic stages for 3-4 months facilitated by microhabitat refuges, rapid growth, large size and rapid maturation of sporophytes contributed to persistence. Furthermore, the dense stands with thick canopies may suppress potential competitors via shading and abrasion. Rather than being a fugitive, this combination of growth and life history features enables A. marginata and perhaps other large, annual kelps to maintain perennial populations.  相似文献   

13.
Sporophytes appeared on most gametophytes of Thelypteris palustris (Salisb.) Schott that reached a certain size, which is interpreted to be a critical size of gametophytes for the production of sporophytes. After sporophytes were produced, attached gametophytes ceased dry weight growth, but the gametophytes which did not produce sporophytes grew successively. It was hypothesized that matter produced by gametophytes was being supplied to young sporophytes. Photosynthesis and respiration of gametophytes with attached sporophytes were not significantly different from that of gametophytes without sporophytes. Photosynthetic activity of gametophytes dropped from 0.18 to 0.03 mol CO2 g–1 s–1 during the growth period. The higher photosynthetic rates of gametophytes in the early growth stage were important for reaching the critical size for sporophyte production in a short time. Sporophytes in the one leaf stage averaged 0.14 mol CO2 g–1 s–1 of photosynthetic activity. The results show that sporophytes that had expanded the first leaf grow by their own photosynthetic production. Gametophytes allocated the photosynthate for sporophytes and it was an important aid before the one-leaf stage. The supportive role of gametophytes ended at that stage.  相似文献   

14.
The influence of irradiance, photoperiod and temperature was determined for the growth kinetics of the diatoms Aulacoseira subarctica, Stephanodiscus astraea and Stephanodiscus hantzschii and the results compared with those of cyanobacteria. Irradiance and photoperiod relationships were qualitatively similar to those for cyanobacteria in that: (1) growth rate (K) was proportionally greater under short photoperiods, with ratios of K under continuous light to K under 3:21 light:dark (LD) cycles of 1·50, 1·80 and 2·96 for A. subarctica, S. astraea and S. hantzschii respectively; (2) at subsaturating irradiances, K was proportional to irradiance and independent of temperature with a negligible predicted maintenance growth rate requirement. Apparent growth efficiencies (GE) at subsaturating irradiances were 0·26±0·03, 0·42±0·03 and 0·50±0·03 divisions mol-1m2 for A. subarctica, S. astraea and S. hantzschii with the values for Stephanodiscus species comparable to values for Oscillatoria species. Under a 3:21 LD cycle at 4 °C, light-saturated growth rates were 0·066±0·004, 0·197±0·033 and 0·285±0·018 divisions day-1 for A. subarctica, S. astraea and S. hantzschii. S. hantzschii growth rate at 4 °C exceeded maximum Oscillatoria growth rates at 23 °C and the S. astraea growth rate at 4 °C was equivalent to O. agardhii growth rate at 20 °C. Temperature increases above 4 °C gave Q10 values between 4 °C and 12 °C of 3·68, 2·39 and 1·92 for A. subarctica, S. astraea and S. hantzschii, but higher temperatures resulted in minor increases in K. S. astraea growth rate peaked at 16 °C, declining sharply at higher temperatures. February to March in situ growth rates in Lough Neagh, mean temperature 4·3 °C, showed that the A. subarctica in situ K of 0·058 divisions day-1 was close to the laboratory K at 4 °C, but that S. astraea in situ K of 0·101 divisions day-1 was lower than the laboratory K at 4 °C.  相似文献   

15.
Nitrogen (N) is a critical resource for plant growth in tundra ecosystems, and species differences in the timing of N uptake may be an important feature regulating community composition and ecosystem productivity. We added 15N-labelled glycine to a subarctic heath tundra dominated by dwarf shrubs, mosses and graminoids in fall, and investigated its partitioning among ecosystem components at several time points (October, November, April, May, June) through to the following spring/early summer. Soil microbes had acquired 65?±?7% of the 15N tracer by October, but this pool decreased through winter to 37?±?7% by April indicating significant microbial N turnover prior to spring thaw. Only the evergreen dwarf shrubs showed active 15N acquisition before early May indicating that they had the highest potential of all functional groups for acquiring nutrients that became available in early spring. The faster-growing deciduous shrubs did not resume 15N acquisition until after early May indicating that they relied more on nitrogen made available later during the spring/early summer. The graminoids and mosses had no significant increases in 15N tracer recovery or tissue 15N tracer concentrations after the first harvest in October. However, the graminoids had the highest root 15N tracer concentrations of all functional groups in October indicating that they primarily relied on N made available during summer and fall. Our results suggest a temporal differentiation among plant functional groups in the post-winter resumption of N uptake with evergreen dwarf shrubs having the highest potential for early N uptake, followed by deciduous dwarf shrubs and graminoids.  相似文献   

16.
Photosynthetic pigments, C, N, and P tissue composition, and photosynthetic rate were measured from April to October in the brown alga Phyllariopsis purpurascens (C. Agardh) Henry et South (Laminariales, Phaeophyta) growing at a 30-m depth in the Strait of Gibraltar. Ir-radiance reaching the population ranged from 13.5 to 27.5 mol.m-2.mo-1. The available light for this species, expressed as a percentage of the irradiance above the water, was 1.8%. Dissolved inorganic nitrogen forms, NO3-and NH4+, were constant from April to October, whereas phosphate was depleted in August. Chlorophyll a decreased from 520.0 ± 165.0 to 199.6 ± 159.9 μg.g-1 dry weight; in contrast, chlorophyll c and carotenoids did not change until September but increased threefold in October. C:N and N:P ratios changed in the same way and in the same range. They were constant until July but increased from 15–17 up to 42 (C:N) and from 14 to 40 (N:P) in October, suggesting a severe P limitation of growth of this species. The dark respiration rate and the light compensation point were constant from April to October (0.5 ± 0.1 μmol O2. m-2.s-1 and 6.5 ± 0.2 μmol.m-2. s-1, respectively), whereas the maximum rate of apparent photosynthesis, light onset saturation parameter, and half saturation constant for light were maximum in April to May (3.7 μmol O2. m-2.s-1and 40 and 41.5 μmol.m-2. s-1, respectively) and October (3.6 μmol O2. m-2.s-1 and 50 and 53.7 μmol.m-2. s-1, respectively). They were minimum in August (1.2 μmol O2.m-2.s-1 and 11.3 and 12 μmol.m-2.s-1, respectively). These minimum figures yielded a negative carbon budget in August and 0 in September, whereas it was positive the rest of the year. Photosynthetic efficiency, estimated by the ratio between maximum apparent photosynthesis and light half saturation constant, showed a strong agreement with productivity measured by means of an independent method. These results indicate that lamina expansion in this species is controlled by photosynthetic efficiency.  相似文献   

17.
Growth rates in terms of area increase per 30 min were measured in flat thalli of several seaweed, species by means of computer-assisted image analysis, at 12 h light per day and a photon fluence rate of 20 μmol · m-2· s?1. Light fields included white fluorescent, imitated underwater, blue, green, and red light. In the green alga Ulva pseudocurvata Koeman et Hoek, blue light caused an immediate reduction of thallus area and growth rate after the onset of light, whereas green light and red light resulted in an initial peak in growth rate followed by inhibition 60 min after the onset of light. More growth was observed in darkness than in blue light in U. pseudocurvata. All brown and red algae tested, with Laminaria saccharina (L.) Lamour. and Palmaria palmata Stackh. as the main investigated species, grew faster during the day than during the night, irrespective of light quality during the main light phase. The upper intertidal red alga Porphyra umbilicalis (L.) J. Ag. achieved most of its thallus expansion per 24 h during the first 3 h of the light phase, with maximum growth rates of 2–3% increase in area per hour. Maximal growth rates were 0.7% for juvenile laminarian sporophytes and were lower than this in Palmaria palmata and other perennial red algae. The temporary growth inhibition by light in Ulva pseudocurvata suggests photomorphogenetic events, similar to the kinetics of stem elongation in higher plant seedlings after blue or red light pulses in darkness.  相似文献   

18.
Summary In a fringing reef at Aqaba at the northern end of the Gulf of Aqaba (29°26′N) growth rates, density, and the calcification rate ofPorites were investigated in order to establish calculations of gross carbonate production for the reefs in this area. Colony accretion ofPorites decreases with depth as a function of decreasing growth rates. The calcification rate ofPorites is highest in shallow water (0–5 m depth) with 0.9 g·cm−2·yr−1 and falls down to 0.5 g·cm−2·yr−1 below 30 m. Scleractinian coral gross production is calculated from potential productivity and coral coverage. It is mainly dependent on living coral cover and to a lesser extent on potential productivity. Total carbonate production on the reef ranged from 0 to 2.7 kg/m2 per year, with a reef-wide average of 1.6 kg/m2 perycar. Maximum gross carbonate production by corals at Aqaba occurs at the reef crest and in the middle fore-reef from 10 to 15 m water depth. Production is low in sandy reef parts. Below 30 m depth values still reach ca. 50% of shallow water values. Mean potential production of colonies and gross carbonate production of the whole reef community at Aqaba is lower than in tropical reefs. However, carbonate production is higher than in reef areas at the same latitude in the Pacific, indicating a northward shift of reef production in the Red Sea.  相似文献   

19.
Drifting Macrocystis pyrifera (L.) C. Agardh sporophytes have long been viewed as the primary long‐distance dispersal vector; yet, few data exist that support the ability of reproductive viable sporophytes to actually travel the presumed hundreds to thousands of kilometers. This study addressed the reproductive longevity of experimental and naturally occurring M. pyrifera drifters. Temporal variability in sporophyte size and reproduction was estimated for experimental drifting sporophytes that were tethered to surface buoys and compared with attached plants (controls). Reproductive viability was also studied for beach‐cast drifters (BCD), and naturally drifting sporophytes observed during field surveys in Monterey Bay. Detached drifting sporophytes were tracked with radio transmitters to follow drifter trajectories and to measure drifting speed. Experimental drifters (ED) experienced a 74% reduction in frond length after 35 days, a 76% reduction in average frond number after 70 days, and a reduction in average sorus area by 83% after 28 days. Although zoospore production was reduced following detachment, sporophytes remained fertile with high zoospore germination success as long as sori were present (125 days). Zoospore production and germination success for natural and BCD was similar to ED. The average displacement of radio‐tagged drifters was 7.12 km·day?1, suggesting that a sporophyte adrift for 125 days disperses viable propagules (zoospores) over 890 km (±363). Dispersal of propagules is important for population restoration, distribution, and genetic diversity. Such dispersal distances are long enough to connect potentially all Northern Hemisphere Macrocystis populations across a generational timescale and may facilitate inter‐hemispheric gene flow.  相似文献   

20.
Optimum light, temperature, and pH conditions for growth, photosynthetic, and respiratory activities of Peridinium cinctum fa. westii (Lemm.) Lef were investigated by using axenic clones in batch cultures. The results are discussed and compared with data from Lake Kinneret (Israel) where it produces heavy blooms in spring. Highest biomass development and growth rates occurred at ca. 23° C and ≥50 μE· m?2·s1 of fluorescent light with energy peaks at 440–575 and 665 nm. Photosynthetic oxygen release was more efficient in filtered light of blue (BG 12) and red (RG 2) than in green (VG 9) qualities. Photosynthetic oxygen production occurred at temperatures ranging from 5° to 32° C in white fluorescent light from 10 to 105 μE·m?2·s?1 with a gross maximum value of 1500 × 10?12 g·cell?1·h?1 at the highest irradiance. The average respiration amounted to ca. 12% of the gross production and reached a maximum value of ca. 270·10?12 g·cell?1·h?1 at 31° C. A comparison of photosynthetic and respiratory Q10-values showed that in the upper temperature range the increase in gross production was only a third of the corresponding increase in respiration, although the gross production was at maximum. Short intermittent periods of dark (>7 min) before high light exposures from a halogen lamp greatly increased oxygen production. Depending on the physiological status of the alga, light saturation values were reached at 500–1000 μE·m?2·s?1 of halogen light with compensation points at 20–40 μE·m?2·s?1 and Ik-values at 100–200 μE·m?2·s?1. The corresponding values in fluorescent light in which it was cultured and adapted, were 25 to 75% lower indicating the ability of the alga to efficiently utilize varying light conditions, if the adaptation time is sufficient. Carbon fixation was most efficient at ca. pH 7, but the growth rates and biomass development were highest at pH 8.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号