首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proline residues in transmembrane helices have been found to have important roles in the functioning of membrane proteins. Moreover, Pro residues occur with high frequency in transmembrane alpha-helices, as compared to alpha-helices for soluble proteins. Here, we report several properties of the bacteriorhodopsin mutants P50A (helix B), P91A (helix C) and P186A (helix F). Compared to wild type, strongly perturbed behaviour has been found for these mutants. In the resting state, increased hydroxylamine accessibility and altered Asp-85 pKa and light-dark adaptation were observed. On light activation, hydroxylamine accessibility was increased and proton transport activity, M formation kinetics and FTIR difference spectra of M and N intermediates showed clear distortions. On the basis of these alterations and the near identity of the crystalline structures of mutants with that of wild type, we conclude that the transmembrane proline residues of bacteriorhodopsin fulfil a dynamic role in both the resting and the light-activated states. Our results are consistent with the notion that mutation of Pro to Ala allows the helix to increase its flexibility towards the direction originally hindered by the steric clash between the ring Cgamma and the carbonyl O of the i-4 residue, at the same time decreasing the mobility towards the opposite direction. Due to their properties, transmembrane Pro residues may serve as transmission elements of conformational changes during the transport process. We propose that these concepts can be extended to other transmembrane proteins.  相似文献   

2.
Proline residues occur frequently in transmembrane alpha helices, which contrasts with their behaviour as helix-breakers in water-soluble proteins. The three membrane-embedded proline residues of bacteriorhodopsin have been replaced individually by alanine and glycine to give P50A, or P50G on helix B, P91A, or P91G on helix C, and P186A or P186G on helix F, and the effect on the protein folding kinetics has been investigated. The rate-limiting apoprotein folding step, which results in formation of a seven transmembrane, alpha helical state, was slower than wild-type protein for the Pro50 and Pro91 mutants, regardless of whether they were mutated to Ala or Gly. These proline residues give rise to several inter-helix contacts, which are therefore important in folding to the seven transmembrane helix state. No evidence for cis-trans isomerisations of the peptidyl prolyl bonds was found during this rate-limiting apoprotein folding step. Mutations of all three membrane-embedded proline residues affected the subsequent retinal binding and final folding to bacteriorhodopsin, suggesting that these proline residues contribute to formation of the retinal binding pocket within the helix bundle, again via helix/helix interactions. These results point to proline residues in transmembrane alpha helices being important in the folding of integral membrane proteins. The helix/helix interactions and hydrogen bonds that arise from the presence of proline residues in transmembrane alpha helices can affect the formation of transmembrane alpha helix bundles as well as cofactor binding pockets.  相似文献   

3.
Proline-induced constraints in alpha-helices   总被引:9,自引:0,他引:9  
L Piela  G Némethy  H A Scheraga 《Biopolymers》1987,26(9):1587-1600
The disrupting effect of a prolyl residue on an α-helix has been analyzed by means of conformational energy computations. In the preferred, nearly α-helical conformations of Ac-Ala4-Pro-NHMe and of Ac-Ala7-Pro-Ala7-NHMe, only the residue preceding Pro is not α-helical, while all other residues can occur in the α-helical A conformation; i.e., it is sufficient to introduce a conformational change of only one residue in order to accommodate proline in a distorted α-helix. Other low-energy conformations exist in which the conformational state of three residues preceding proline is altered considerably; on the other hand, another conformation in which these three residues retain the near-α-helical A-conformational state (with up to 26° changes of their dihedral angles ? and ψ, and a 48° change in one ω from those of the ideal α-helix) has a considerably higher energy. These conclusions are not altered by the substitution of other residues in the place of the Ala preceding Pro. The conformations of the peptide chain next to prolyl residues in or near an α-helix have been analyzed in 58 proteins of known structure, based on published atomic coordinates. Of 331 α-helices, 61 have a Pro at or next to their N-terminus, 21 have a Pro next to their C-terminus, and 30 contain a Pro inside the helix. Of the latter, 16 correspond to a break in the helix, 9 are located inside distorted first turns of the helix, and 5 are parts of irregular helices. Thus, the reported occurrence of prolyl residues next to or inside observed α-helices in proteins is consistent with the computed steric and energetic requirements of prolyl peptides.  相似文献   

4.
An analysis of the amino acid distributions at 15 positions, viz., N“, N′, Ncap, N1, N2, N3, N4, Mid, C4, C3, C2, C1, Ccap, C′, and C” in 1,131 α-helices reveals that each position has its own unique characteristics. In general, natural helix sequences optimize by identifying the residues to be avoided at a given position and minimizing the occurrence of these avoided residues rather than by maximizing the preferred residues at various positions. Ncap is most selective in its choice of residues, with six amino acids (S, D, T, N, G, and P) being preferred at this position and another 11 (V, I, F, A, K, L, Y, R, E, M, and Q) being strongly avoided. Ser, Asp, and Thr are all more preferred at Ncap position than Asn, whose role at helix N-terminus has been highlighted by earlier analyses. Furthermore, Asn is also found to be almost equally preferred at helix C-terminus and a novel structural motif is identified, involving a hydrogen bond formed by Nδ2 of Asn at Ccap or C1 position, with the backbone carbonyl oxygen four residues inside the helix. His also forms a similar motif at the C-terminus. Pro is the most avoided residue in the main body (N4 to C4 positions) and at C-ter-minus, including Ccap of an α-helix. In 1,131 α-helices, no helix contains Pro at C3 or C2 positions. However, Pro is highly favoured at N1 and C′. The doublet X-Pro, with Pro at C′ position and extended backbone conformation for the X residue at Ccap, appears to be a common structural motif for termination of α-helices, in addition to the Schellman motif. Main body of the helix shows a high preference for aliphatic residues Ala, Leu, Val, and Ile, while these are avoided at helix termini. A propensity scale for amino acids to occur in the middle of helices has been obtained. Comparison of this scale with several previously reported scales shows that this scale correlates best with the experimentally determined values. Proteins 31:460–476, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by differential scanning calorimetry (DSC) as a function of pH and by isothermal urea denaturation studies as a function of temperature. The P48S and P48A mutants were found to be marginally more stable than the wild-type protein. In the pH range of 5-9, there is an average increase in T(m) values of P48A and P48S of 0.4 degrees C and 0.2 degrees C, respectively, relative to the wild-type protein. The other mutants are less stable than the wild type. Analysis of the effects of such Pro substitutions in MBP and in three other proteins studied to date suggests that substitutions are more likely to be stabilizing if the carbonyl group i-3 or i-4 to the mutation site is not hydrogen bonded in the wild-type protein.  相似文献   

6.
A low resolution model has been proposed for the exofacial conformation of the Glut1 glucose transporter in which eight transmembrane segments form an inner helical bundle stabilized by four outer helices. The role of transmembrane segment 4, predicted to be an inner helix in this structural model, was investigated by cysteine-scanning mutagenesis in conjunction with the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS). A functional, cysteine-less, parental Glut1 molecule was used to produce 21 Glut1 point mutants by individually changing each residue along transmembrane helix 4 to a cysteine. The single cysteine mutants were then expressed in Xenopus oocytes, and their expression levels, transport activities, and sensitivities to pCMBS were determined. In striking contrast to all of the other seven predicted inner helices, none of the 21 helix 4 single-cysteine mutants was demonstrably inhibited by pCMBS. However, cysteine substitution within helix 4 resulted in an unusually high number of severely transport-defective mutants. The low absolute transport activities of two of these mutants (G130C and G134C) were due to their extremely low levels of expression, presumably a result of structural instability and consequent degradation in oocytes, suggesting that these two residues play an important role in maintaining the native structure of Glut1. The other two transport-defective mutants (Y143C and E146C) exhibited low specific transport activities, implying that these two residues play an important role in the transport cycle. Based on these data, we conclude that the exoplasmic end of helix 4 lies outside the inner helical bundle in the exofacial configuration of Glut1.  相似文献   

7.
Experimental data and homology modeling suggest a structure for the exofacial configuration of the Glut1 glucose transporter in which 8 transmembrane helices form an aqueous cavity in the bilayer that is stabilized by four outer helices. The role of transmembrane segment 6, predicted to be an outer helix in this model, was examined by cysteine-scanning mutagenesis and the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzene-sulfonate (pCMBS). A fully functional Glut1 molecule lacking all 6 native cysteine residues was used as a template to produce a series of 21 Glut1 point mutants in which each residue along helix 6 was individually changed to cysteine. These mutants were expressed in Xenopus oocytes, and their expression levels, functional activities, and sensitivities to inhibition by pCMBS were determined. Cysteine substitutions at Leu(204) and Pro(205) abolished transport activity, whereas substitutions at Ile(192), Pro(196), Gln(200), and Gly(201) resulted in inhibition of activity that ranged from approximately 35 to approximately 80%. Cysteine substitutions at Leu(188), Ser(191), and Leu(199) moderately augmented specific transport activity relative to the control. These results were dramatically different from those previously reported for helix 12, the structural cognate of helix 6 in the pseudo-symmetrical structural model, for which none of the 21 single-cysteine mutants exhibited reduced activity. Only the substitution at Leu(188) conferred inhibition by pCMBS, suggesting that most of helix 6 is not exposed to the external solvent, consistent with its proposed role as an outer helix. These data suggest that helix 6 contains amino acid side chains that are critical for transport activity and that structurally analogous outer helices may play distinct roles in the function of membrane transporters.  相似文献   

8.
Proline, noted as a hydrophilic residue with helix-breaking potential, nevertheless occurs widely in putatively alpha-helical transmembrane segments of many transport proteins. Ligand-activated or enzyme-assisted trans/cis isomerization of an X-proline peptide bond (where X = any amino acid)--a dynamic, reversible event which could alter the orientation of a transmembrane alpha-helix--may provide the molecular basis for a protein channel regulatory process. Further elucidation of such a function requires knowledge of the isomeric status of the X-Pro bonds in native conformations of membrane proteins. We have used 13C nuclear magnetic resonance (NMR) spectroscopy to examine the conformation of intramembranous X-Pro peptide bonds in biosynthetically-labelled samples of a model transport protein, bacteriorhodopsin (bR) (purple membrane). Spectra of 13C-Tyr-carbonyl labelled bR (in the solvent system CHCl3:CD3OD (1:1) + 0.1 M LiClO4) first established that all 11 bR Tyr residues were sufficiently mobile for their resonances to be detected and resolved, independent of their domain location within the bR sequence. By taking advantage of the known diagnostic chemical shifts of the isomers of Pro-C gamma carbon resonances, spectra of bR labelled with 13C gamma-Pro were then used to demonstrate that all 11 bR X-Pro peptide bonds--including those within the protein's membrane domain (Pro50, Pro91, Pro186)--are in the trans conformation in resting state bR.  相似文献   

9.
Ala and Gly substitutions for Pro 101 (P101) located in transmembrane domain 2 of the dopamine transporter (DAT) abolished transport activity but did not disrupt plasma membrane expression. Due to the high conservation of P101 in all neurotransmitter transporters and the capability of Pro to add flexibility to helices, we hypothesized that P101 contributes to the dynamic feature of substrate translocation. To test this hypothesis, here we analysed transport activity for DAT mutants where this Pro was mutated into different amino acids, including Ser, Val, Leu and Phe. The transmembrane domain 2 helix of P101F, unlike the other mutants, was computationally predicted to have a Van der Waals energy threefold higher than the wild-type helix. P101F mutant expression was consistently disrupted in COS cells. Among all the other mutants that express normally, P101V, with a side-chain size close to that of Pro, restores the transport activity of P101A by sevenfold. Most importantly, P101V, P101L and P101S display negative-dosage effects on dopamine (DA) transport, i.e. the velocity-concentration curve for DA uptake does not show a plateau with increasing [DA] but rather peaks and then goes down. These data support the view that P101 of DAT plays an essential role in DA translocation.  相似文献   

10.
The ABC multidrug transporter LmrA of Lactococcus lactis consists of six putative transmembrane segments (TMS) and a nucleotide binding domain. LmrA functions as a homodimer in which the two membrane domains form the solute translocation path across the membrane. To obtain structural information of LmrA a cysteine scanning accessibility approach was used. Cysteines were introduced in the cysteine-less wild-type LmrA in each hydrophilic loop and in TMS 6, and each membrane-embedded aromatic residue was mutated to cysteine. Of the 41 constructed single cysteine mutants, only one mutant, L301C, was not expressed. Most single-cysteine mutants were capable of drug transport and only three mutants, F37C, M299C, and N300C, were inactive, indicating that none of the aromatic residues in the transmembrane regions of LmrA are crucial for substrate binding or transport. Modification of the active mutants with N-ethylmaleimide blocked the transport activity in five mutants (S132C, L174C, S206C, S234C, and L292C). All cysteine residues in external and internal loops were accessible to fluorescein maleimide. The labeling experiments also showed that this thiol reagent cannot cross the membrane under the conditions used and confirmed the presence of six TMSs in each monomeric half of the transporter. Surprisingly, several single cysteines in the predicted TMSs could also be labeled by the bulky fluorescein maleimide molecule, suggesting unrestricted accessibility via an aqueous pathway. The periodicity of fluorescein maleimide accessibility of residues 291 to 308 in TMS 6 showed that this membrane-spanning alpha-helix has one face of the helix exposed to an aqueous cavity along its full-length. This finding, together with the solvent accessibility of 11 of 15 membrane-embedded aromatic residues, indicates that the transmembrane domains of the LmrA transporter form, under nonenergized conditions, an aqueous chamber within the membrane, which is open to the intracellular milieu.  相似文献   

11.
B Vilsen 《FEBS letters》1992,314(3):301-307
Site-specific mutagenesis was used to analyse the functional roles of the residues Pro328 and Leu332 located in the conserved PEGLL motif of the predicted transmembrane helix M4 in the alpha 1-subunit of the ouabain resistant rat kidney Na+,K(+)-ATPase. cDNAs encoding either of the Na+,K(+)-ATPase mutants Pro328-->Ala and Leu332-->Ala, and wild type, were cloned into the expression vector pMT2 and transfected into COS-1 cells. Ouabain-resistant clones growing in the presence of 10 microM ouabain were isolated, and the Na+,K+, ATP and pH dependencies of the Na+,K(+)-ATPase activity measured in the presence of 10 microM ouabain were analysed. Under these conditions the exogenous expressed Na+,K(+)-ATPase contributed more than 95% of the Na+,K(+)-ATPase activity. The Pro328-->Ala mutant displayed a reduced apparent affinity for Na+ (K0.5 (Na+) 13.04 mM), relative to the wild type (K0.5 (Na+) 7.13 mM). By contrast, the apparent affinity for Na+ displayed by the Leu332-->Ala mutant was increased (K0.5 (Na+) 3.92 mM). Either of the mutants exhibited lower apparent affinity for K+ relative to the wild type (K0.5 (K+) 2.46 mM for Pro328-->Ala and 1.97 mM for Leu332-->Ala, compared with 0.78 mM for wild type). Both mutants exhibited higher apparent affinity for ATP than the wild type (K0.5 (ATP) 0.086 mM for Pro328-->Ala and 0.042 mM for Leu332-->Ala, compared with 0.287 mM for wild type). The influence of pH was in accordance with an acceleration of the E2 (K)-->E1 transition in the mutants relative to the wild type. These data are consistent with a role of Pro328 and Leu332 in the stabilization of the E2 form and of Pro328 in Na+ binding. The possible role of the mutated residues in K+ binding is discussed.  相似文献   

12.
A model has been proposed for the exofacial configuration of the Glut1 glucose transporter in which eight transmembrane domains form an inner helical bundle stabilized by four outer helices. The role of transmembrane segment 12, predicted to be an outer helix in this hypothetical model, was examined by cysteine-scanning mutagenesis and the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS). A previously characterized functional cysteine-less Glut1 molecule was used to produce 21 Glut1 point mutants by changing each residue along helix 12 to a cysteine residue. These mutants were then expressed in Xenopus oocytes, and their protein levels, functional activities, and sensitivities to pCMBS were determined. Strikingly, in contrast to all nine other predicted Glut1 transmembrane helices that have been previously examined by this method, none of the 21 helix 12 single-cysteine mutants exhibited significant inhibition of specific transport activity. Also unlike most other Glut1 transmembrane domains in which solvent-accessible residues lie along a single face of the helix, mutations in five consecutive residues predicted to lie close to the exofacial face of the membrane resulted in sensitivity to pCMBS-induced transport inhibition. These results suggest that helix 12 plays a passive stabilizing role in the structure of Glut1 and is not directly involved in the transport mechanism. Additionally, the pCMBS data indicate that the predicted exoplasmic end of helix 12 is completely exposed to the external solvent when the transporter is in its exofacial configuration.  相似文献   

13.
The nature and distribution of amino acids in the helix interfaces of four polytopic membrane proteins (cytochrome c oxidase, bacteriorhodopsin, the photosynthetic reaction center of Rhodobacter sphaeroides, and the potassium channel of Streptomyces lividans) are studied to address the role of glycine in transmembrane helix packing. In contrast to soluble proteins where glycine is a noted helix breaker, the backbone dihedral angles of glycine in transmembrane helices largely fall in the standard alpha-helical region of a Ramachandran plot. An analysis of helix packing reveals that glycine residues in the transmembrane region of these proteins are predominantly oriented toward helix-helix interfaces and have a high occurrence at helix crossing points. Moreover, packing voids are generally not formed at the position of glycine in folded protein structures. This suggests that transmembrane glycine residues mediate helix-helix interactions in polytopic membrane proteins in a fashion similar to that seen in oligomers of membrane proteins with single membrane-spanning helices. The picture that emerges is one where glycine residues serve as molecular notches for orienting multiple helices in a folded protein complex.  相似文献   

14.
The determination of the crystal structure of the Ca2+-ATPase of sarcoplasmic reticulum (SR) in its Ca2+-bound [Nature 405 (2000) 647] and Ca2+-free forms [Nature 418 (2002) 605] gives the opportunity for an analysis of conformational changes on the Ca2+-ATPase and of helix-helix and helix-lipid interactions in the transmembrane (TM) region of the ATPase. The locations of the ends of the TM α-helices on the cytoplasmic side of the membrane are reasonably well defined by the location of Trp residues and by the location of Lys-262 that snorkels up to the surface. The locations of the lumenal ends of the helices are less clear. The position of Lys-972 on the lumenal side of helix M9 suggests that the hydrophobic thickness of the protein is only about 21 Å, rather than the normal 30 Å. The experimentally determined TM α-helices do not agree well with those predicted theoretically. Charged headgroups are required for strong interaction of lipids with the ATPase, consistent with the large number of charged residues located close to the lipid-water interface. Helix packing appears to be rather irregular. Packing of helices M8 and M10 is of the 3-4 ridges-into-grooves or knobs-into-holes types. Packing of helices M5 and M7 involves two Gly residues in M7 and one Gly residue in M5. Packing of the other helices generally involves just one or two residues on each helix at the crossing point. The irregular packing of the TM α-helices in the Ca2+-ATPase, combined with the diffuse structure of the ATPase on the lumenal side of the membrane, is suggested to lead to a relative low activation energy for changing the packing of the TM α-helices, with changes in TM α-helical packing being important in the process of transfer of Ca2+ ions across the membrane. The inhibitor thapsigargin binds in a cleft between TM α-helices M3, M5 and M7. It is suggested that this and other similar clefts provide binding sites for a variety of hydrophobic molecules affecting the activity of the Ca2+-ATPase.  相似文献   

15.
Spin labeling EPR spectroscopy has been used to characterize light-induced conformational changes of bacteriorhodopsin (bR). Pairs of nitroxide spin labels were attached to engineered cysteine residues at strategic positions near the cytoplasmic ends of transmembrane alpha-helices B, F, and G in order to monitor distance changes upon light activation. The EPR analysis of six doubly labeled bR mutants indicates that the cytoplasmic end of helix F not only tilts outwards, but also rotates counter-clockwise during the photocycle. The direction of the rotation of helix F is the opposite of the clockwise rotation previously reported for bovine rhodopsin. The opposite chirality of the F helix rotation in the two systems is perhaps related to the differences in the cis-trans photoisomerization of the retinal in the two proteins. Using time-resolved EPR, we monitored the rotation of helix F also in real time, and found that the signal from the rotation arises concurrently with the reprotonation of the retinal Schiff base.  相似文献   

16.
Deletion of putative transmembrane helix III from the lactose permease of Escherichia coli results in complete loss of transport activity. Similarly, replacement of this region en bloc with 23 contiguous Ala, Leu, or Phe residues abolishes active lactose transport. The observations suggest that helix III may contain functionally important residues; therefore, this region was subjected to Cys-scanning mutagenesis. Using a functional mutant devoid of Cys residues (C-less permease) each residue from Tyr 75 to Leu 99 was individually replaced with Cys. Twenty-one of the 25 mutants accumulate lactose to > 70% of the steady-state exhibited by C-less permease, and an additional 3 mutants transport to lower, but significant levels (40-60% of C-less). Cys replacement for Leu 76 results in low transport activity (18% of C-less). However, when placed in the wild-type background, mutant Leu 76-->Cys exhibits highly significant rates of transport (55% of wild type) and steady-state levels of lactose accumulation (65% of wild type). Immunoblots reveal that the mutants are inserted into the membrane at concentrations comparable to wild type. Studies with N-ethylmaleimide show that mutant Gly 96-->Cys is rapidly inactivated, whereas the other single-Cys mutants are not altered significantly by the alkylating agent. Moreover, the rate of inactivation of Gly 96-->Cys permease is enhanced at least 2-fold in the presence of beta-galactopyranosyl 1-thio-beta, D-galactopyranoside. The observations demonstrate that although no residue per se appears to be essential, structural properties of helix III are important for active lactose transport.  相似文献   

17.
De Jesus M  Jin J  Guffanti AA  Krulwich TA 《Biochemistry》2005,44(38):12896-12904
Proline and glycine residues are well represented among functionally important residues in hydrophobic domains of membrane transport proteins, and several critical roles have been suggested for them. Here, the effects of mutational changes in membrane-embedded proline and glycine residues of Tet(L) were examined, with a focus on the conserved GP(155,156) dipeptide of motif C, a putative "antiporter motif". Mutation of Gly155 to cysteine resulted in a mutant Tet(L) that bound its tetracycline-divalent metal (Tc-Me2+) substrate but did not catalyze efflux or exchange of Tc-Me2+ or catalyze uptake or exchange of Rb+ which was used to monitor the coupling ion. These results support suggestions that this region is involved in the conformational changes required for translocation. Mutations in Pro156 resulted in reduction (P156G) or loss (P156A or P156C) of Tc-Me2+ efflux capacity. All three Pro156 mutants exhibited a K+ leak (monitored by 86Rb+ fluxes) that was not observed in wild-type Tet(L). A similar leak was observed in a mutant in a membrane-embedded proline residue elsewhere in the Tet(L) protein (P175C) as well as in a P156C mutant of related antiporter Tet(K). These findings are consistent with roles proposed for membrane-embedded prolines in tight helix packing. Patterns of Tc resistance conferred by additional Tet(L) mutants indicate important roles for another GP dipeptide in transmembrane segment (TMS) X as well as for membrane-embedded glycine residues in TMS XIII.  相似文献   

18.
The Glut1 glucose transporter has been proposed to form an aqueous sugar translocation pathway through the lipid bilayer via the clustering of several transmembrane helices (Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E., and Lodish, H. F. (1985) Science 229, 941-945). The participation of transmembrane helix 10 in the formation of this putative aqueous tunnel was tested using cysteine-scanning mutagenesis in conjunction with the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS). A series of 21 mutants was created from a fully functional, cysteine-less, parental Glut1 molecule by changing each residue within putative transmembrane segment 10 to cysteine. Each mutant was then expressed in Xenopus oocytes, and its plasma membrane content, 2-deoxyglucose uptake activity, and sensitivity to pCMBS were measured. Helix 10 exhibited a highly distinctive reaction profile to scanning mutagenesis whereby cysteine substitution at residues within the cytoplasmic N-terminal half of the helix tended to increase specific transport activity, whereas substitution at residues within the exoplasmic C-terminal half of the helix tended to decrease specific transport activity. Four residues within helix 10 were clearly accessible to pCMBS as judged by inhibition or stimulation of transport activity. All four of these residues were clustered along one face of a putative alpha-helix. These results combined with previously published data suggest that transmembrane segment 10 of Glut1 forms part of the sugar permeation pathway. Two-dimensional models for the conformation of the 12 transmembrane helices and the exofacial glucose-binding site of Glut1 are proposed that are consistent with existing experimental data.  相似文献   

19.
The sodium-dependent transporters for dopamine, norepinephrine, and serotonin that regulate neurotransmission, also translocate the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)). Previous studies implicated residues in transmembrane helix (TMH) XI of DAT as important sites for MPP(+) transport. We examined the importance of TMH XI residues F551 and F556 for MPP(+) translocation by human SERT. Mutations at hSERT F556, but not F551, reduced both 5-HT and MPP(+) transport compared to wild type. However, F556S/hSERT showed a reduction in surface expression explaining the decrease of transport activity for 5-HT, but did not account for the decrease in MPP(+) transport observed. Cysteine mutants at those positions confirmed the accessibility of hSERT/F556 to different methanethiosulfonate (MTS) reagents, suggesting its presence in a hydrophilic environment of the protein. In the presence of MTSET, current induced by 5-HT and MPP(+) was inhibited at the F556C mutant. In agreement with our homology model of SERT, based on the leucine transporter (LeuT(Aa)) from Aquifex aeolicus structure, these results are consistent with the hypothesis that a portion of TMH XI lines the entrance into the substrate permeation pathway.  相似文献   

20.
Flavocytochrome b(558) (cytb) of phagocytes is a heterodimeric integral membrane protein composed of two subunits, p22(phox) and gp91(phox). The latter subunit, also known as Nox2, has a cytosolic C-terminal "dehydrogenase domain" containing FAD/NADPH-binding sites. The N-terminal half of Nox2 contains six predicted transmembrane α-helices coordinating two hemes. We studied the role of the second transmembrane α-helix, which contains a "hot spot" for mutations found in rare X(+) and X(-) chronic granulomatous disease. By site-directed mutagenesis and transfection in X-CGD PLB-985 cells, we examined the functional and structural impact of seven missense mutations affecting five residues. P56L and C59F mutations drastically influence the level of Nox2 expression indicating that these residues are important for the structural stability of Nox2. A53D, R54G, R54M, and R54S mutations do not affect spectral properties of oxidized/reduced cytb, oxidase complex assembly, FAD binding, nor iodonitrotetrazolium (INT) reductase (diaphorase) activity but inhibit superoxide production. This suggests that Ala-53 and Arg-54 are essential in control of electron transfer from FAD. Surprisingly, the A57E mutation partially inhibits FAD binding, diaphorase activity, and oxidase assembly and affects the affinity of immunopurified A57E cytochrome b(558) for p67(phox). By competition experiments, we demonstrated that the second transmembrane helix impacts on the function of the first intracytosolic B-loop in the control of diaphorase activity of Nox2. Finally, by comparing INT reductase activity of immunopurified mutated and wild type cytb under aerobiosis versus anaerobiosis, we showed that INT reduction reflects the electron transfer from NADPH to FAD only in the absence of superoxide production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号