首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Desmosomes are adhesive intercellular junctions of epithelia and cardiac muscle. They have an essential function in maintaining the integrity of tissues, which is compromised in human genetic and autoimmune disease that targets desmosomal components. Recent evidence (1) suggests new roles for the function of desmosomal adhesion in tissue morphogenesis, (2) gives new insights into the molecular mechanism of adhesion, (3) indicates that the desmosomal adhesion molecules, desmocollin and desmoglein, may contribute to the regulation of epidermal diffentiation, and (4) shows that the affinity of desmosomal adhesion is regulated by protein kinase C.  相似文献   

2.
New evidence from blocking desmosomal adhesion with anti-adhesion peptides reveals a role for desmosomes in cell positioning in morphogenesis. Desmosomal adhesion is necessary for the stability of adherens junctions in epithelial cell sheets. Knockout and mis-expression of desmosomal cadherins in mice suggests that they may function directly or indirectly in regulating epidermal differentiation. Protein kinase C signalling and tyrosine phosphorylation appear to regulate desmosomal adhesion. There are new insights into the role of desmosomal cadherins in autoimmune, infectious and genetic disease.  相似文献   

3.
Plakophilins 1-3 are members of the p120(ctn) family of armadillo-related proteins. The plakophilins have been characterized as desmosomal proteins, whereas p120(ctn) and the closely related delta-catenin, ARVCF and p0071 associate with adherens junctions and play essential roles in stabilizing cadherin mediated adhesion. Recent evidence suggests that plakophilins are essential components of the desmosomal plaque where they interact with desmosomal cadherins as well as the cytoskeletal linker protein desmoplakin. Plakophilins stabilize desmosomal proteins at the plasma membrane and therefore may function in a manner similar to p120(ctn) in the adherens junctions. The three plakophilins reveal distinct expression patterns, and although partially redundant in their function, mediate distinct effects on desmosomal adhesion. Besides a structural role, a function in signaling has been postulated in analogy to other armadillo proteins such as beta-catenin. At least plakophilins 1 and 2 are also localized in the nucleus, and all three proteins occur in a cytoplasmic pool. This review aims to summarize the current knowledge of plakophilin function in the context of cell adhesion, signaling and their putative role in diseases.  相似文献   

4.
Desmosomes are intercellular junctions of epithelia and are of widespread importance in the maintenance of tissue architecture. We provide evidence that desmosomal adhesion has a function in epithelial morphogenesis and cell-type-specific positioning. Blocking peptides corresponding to the cell adhesion recognition (CAR) sites of desmosomal cadherins block alveolar morphogenesis by epithelial cells from mammary lumen. Desmosomal CAR-site peptides also disrupt positional sorting of luminal and myoepithelial cells in aggregates formed by the reassociation of isolated cells. We demonstrate that desmosomal cadherins and E-cadherin are comparably involved in epithelial morphoregulation. The results indicate a wider role for desmosomal adhesion in morphogenesis than has previously been considered.  相似文献   

5.
Impaired formation of desmosomal junctions in ADPKD epithelia   总被引:1,自引:1,他引:0  
Mutations in polycystin-1 (PC-1) are responsible for autosomal dominant polycystic kidney disease (ADPKD), characterized by formation of fluid-filled tubular cysts. The PC-1 is a multifunctional protein essential for tubular differentiation and maturation found in desmosomal junctions of epithelial cells where its primary function is to mediate cell–cell adhesion. To address the impact of mutated PC-1 on intercellular adhesion, we have analyzed the structure/function of desmosomal junctions in primary cells derived from ADPKD cysts. Primary epithelial cells from normal kidney showed co-localization of PC-1 and desmosomal proteins at cell–cell contacts. A striking difference was seen in ADPKD cells, where PC-1 and desmosomal proteins were lost from the intercellular junction membrane, despite unchanged protein expression levels. Instead, punctate intracellular expression for PC-1 and desmosomal proteins was detected. The N-cadherin, but not E-cadherin was expressed in adherens junctions of ADPKD cells. These data together with co-sedimentation analysis demonstrate that, in the absence of functional PC-1, desmosomal junctions cannot be properly assembled and remain sequestered in cytoplasmic compartments. Taken together, our results demonstrate that PC-1 is crucial for formation of intercellular contacts. We propose that abnormal expression of PC-1 causes disregulation of cellular adhesion complexes leading to increased proliferation, loss of polarity and, ultimately, cystogenesis.  相似文献   

6.
In confluent keratinocyte monolayers, desmosomal adhesion gradually becomes calcium-independent and this is associated with an increase in the strength of intercellular adhesion (hyper-adhesion). In this study, we investigated the functional and molecular significance of hyper-adhesion in a system challenged by autoimmune sera from patients with Pemphigus Vulgaris (PV), a disease primarily targeting desmosomal adhesion. The results show that keratinocytes with calcium-independent desmosomes are resistant to disruption of intercellular contacts (acantholysis) in experimental PV. Furthermore, both the desmosomal cadherins desmoglein (Dsg) 1 and Dsg3 and the adherens junction protein E-cadherin were decreased in confluent keratinocytes at Day 1, but not in hyper-adhesive cells (Day 6) after incubation with PV serum. Pharmacological induction of the hyper-adhesive state with the PKC inhibitor Go6976 reduced both the acantholysis rate and the processing of cell adhesion molecules induced by PV serum. When the establishment of the hyper-adhesive state was prevented by cell adhesion recognition (CAR) peptides that perturbed desmosomal interactions, Go6976 could still partially attenuate PV acantholysis. Taken together, these data demonstrate that keratinocyte hyper-adhesion decreases the morphological, functional and biochemical dys-cohesive effects of PV serum via mechanisms that involve, at least in part, the function of PKC. This suggests that reinforcing keratinocyte adhesion may be a promising way to inhibit the effects of this most debilitating disorder.  相似文献   

7.
Desmosomal cadherins, desmogleins (Dsgs) and desmocollins, make up the adhesive core of intercellular junctions called desmosomes. A critical determinant of epithelial adhesive strength is the level and organization of desmosomal cadherins on the cell surface. The Dsg subclass of desmosomal cadherins contains a C-terminal unique region (Dsg unique region [DUR]) with unknown function. In this paper, we show that the DUR of Dsg2 stabilized Dsg2 at the cell surface by inhibiting its internalization and promoted strong intercellular adhesion. DUR also facilitated Dsg tail–tail interactions. Forced dimerization of a Dsg2 tail lacking the DUR led to decreased internalization, supporting the conclusion that these two functions of the DUR are mechanistically linked. We also show that a Dsg2 mutant, V977fsX1006, identified in arrhythmogenic right ventricular cardiomyopathy patients, led to a loss of Dsg2 tail self-association and underwent rapid endocytosis in cardiac muscle cells. Our observations illustrate a new mechanism desmosomal cadherins use to control their surface levels, a key factor in determining their adhesion and signaling roles.  相似文献   

8.
Strong intercellular adhesion is critical for tissues that experience mechanical stress, such as the skin and heart. Desmosomes provide adhesive strength to tissues by anchoring desmosomal cadherins of neighboring cells to the intermediate filament cytoskeleton. Alterations in assembly and disassembly compromise desmosome function and may contribute to human diseases, such as the autoimmune skin blistering disease pemphigus vulgaris (PV). We previously demonstrated that PV auto-antibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3) cause loss of adhesion by triggering membrane raft-mediated Dsg3 endocytosis. We hypothesized that raft membrane microdomains play a broader role in desmosome homeostasis by regulating the dynamics of desmosome assembly and disassembly. In human keratinocytes, Dsg3 is raft associated as determined by biochemical and super resolution immunofluorescence microscopy methods. Cholesterol depletion, which disrupts rafts, prevented desmosome assembly and adhesion, thus functionally linking rafts to desmosome formation. Interestingly, Dsg3 did not associate with rafts in cells lacking desmosomal proteins. Additionally, PV IgG-induced desmosome disassembly occurred by redistribution of Dsg3 into raft-containing endocytic membrane domains, resulting in cholesterol-dependent loss of adhesion. These findings demonstrate that membrane rafts are required for desmosome assembly and disassembly dynamics, suggesting therapeutic potential for raft targeting agents in desmosomal diseases such as PV.  相似文献   

9.
Desmosomal cadherins constitute the adhesive core of desmosomes. Different desmosomal cadherins are differentially expressed in a tissue-specific as well as differentiation-dependent manner. The skin and the heart are two examples of tissues whose vital functions require the ability to endure mechanical stress, and therefore, rely on the integrity of desmosomal adhesion. When this adhesion is compromised via mutations in genes encoding desmosomal cadherins or associated plaque proteins, both tissues can suffer the consequences. Open questions revolve around whether the resulting phenotypes are solely because of physical disruption of cell adhesion or whether these events are coupled with signaling mechanisms that influence many additional cellular processes. In this review, we focus on new developments in desmosomal adhesion with an emphasis on the skin, hair, and heart.  相似文献   

10.
Adhesion of the opposing palatal shelves is a critical first step in the mechanism for palatal fusion. Formation of desmosomal junctions between the two medial edge epithelia provides a mechanism for palatal shelf adhesion. RT-PCR and immunohistochemistry were used to determine the pattern of expression of desmosomal components during palatogenesis. Desmosomal expression was specifically upregulated in the medial edge epithelia (MEE) at the early stages of palatal fusion as detected by both immunohistochemistry and electron microscopy. RT-PCR characterization of the desmosomal components detected all known elements, except desmocollin 1 (DSC1). Desmocollin 2 (DSC2) was expressed as both the DSC2a and DSC2b variants. The two variants are expressed at the same level. Western analysis of desmoglein expression paralleled the RT-PCR result. The temporal and spatial upregulation of desmosomal gene expression is evidence that the MEE induce new gene expression required to accomplish palatal shelf adhesion and initiate the first stage of palatal fusion.  相似文献   

11.
12.
Desmoglein 1 (Dsg1) is a component of desmosomes present in the upper epidermis and can be targeted by autoimmune antibodies or bacterial toxins, resulting in skin blistering diseases. These defects in tissue integrity are believed to result from compromised desmosomal adhesion; yet, previous attempts to directly test the adhesive roles of desmosomal cadherins using normally non-adherent L cells have yielded mixed results. Here, two complementary approaches were used to better resolve the molecular determinants for Dsg1-mediated adhesion: (1) a tetracycline-inducible system was used to modulate the levels of Dsg1 expressed in L cell lines containing desmocollin 1 (Dsc1) and plakoglobin (PG) and (2) a retroviral gene delivery system was used to introduce Dsg1 into normal human epidermal keratinocytes (NHEK). By increasing Dsg1 expression relative to Dsc1 and PG, we were able to demonstrate that the ratio of Dsg1:Dsc1 is a critical determinant of desmosomal adhesion in fibroblasts. The distribution of Dsg1 was organized at areas of cell-cell contact in the multicellular aggregates that formed in these suspension cultures. Similarly, the introduction of Dsg1 into NHEKs was capable of increasing the aggregation of single cell suspensions and further enhanced the adhesive strength of intact epithelial sheets. Endogenous Dsc1 levels were also increased in NHEKs containing Dsg1, providing further support for the coordination of these two desmosomal cadherins in regulating adhesive structures. These Dsg1-mediated effects on intercellular adhesion were directly related to the presence of an intact extracellular domain as ETA, a toxin that specifically cleaves this desmosomal cadherin, inhibited adhesion in both fibroblasts and keratinocytes. Collectively, these observations demonstrate that Dsg1 promotes the formation of intercellular adhesion complexes and suggest that the relative level of Dsg and Dsc expressed at the cell surface regulates this adhesive process.  相似文献   

13.
Desmosomes play a critical role in the maintenance of normal tissue architecture. Skin blistering can occur when desmosomal adhesion is compromised by antibodies in autoimmune diseases such as pemphigus. Inherited mutations in genes encoding desmosomal constituents can adversely affect the skin, and result in heart abnormalities. Desmosomes may have a tumour suppressor function: expression of desmosomal components is reduced in some human cancers, and desmosomal cadherins have the capacity to suppress the invasiveness of cells in culture. Transgenic animal research has provided important insights into the role of these junctions in normal epithelial morphogenesis and disease.  相似文献   

14.
The role of desmosomal cadherin desmocollin-2 (Dsc2) in regulating barrier function in intestinal epithelial cells (IECs) is not well understood. Here, we report the consequences of silencing Dsc2 on IEC barrier function in vivo using mice with inducible intestinal–epithelial-specific Dsc2 knockdown (KD) (Dsc2ERΔIEC). While the small intestinal gross architecture was maintained, loss of epithelial Dsc2 influenced desmosomal plaque structure, which was smaller in size and had increased intermembrane space between adjacent epithelial cells. Functional analysis revealed that loss of Dsc2 increased intestinal permeability in vivo, supporting a role for Dsc2 in the regulation of intestinal epithelial barrier function. These results were corroborated in model human IECs in which Dsc2 KD resulted in decreased cell–cell adhesion and impaired barrier function. It is noteworthy that Dsc2 KD cells exhibited delayed recruitment of desmoglein-2 (Dsg2) to the plasma membrane after calcium switch-induced intercellular junction reassembly, while E-cadherin accumulation was unaffected. Mechanistically, loss of Dsc2 increased desmoplakin (DP I/II) protein expression and promoted intermediate filament interaction with DP I/II and was associated with enhanced tension on desmosomes as measured by a Dsg2-tension sensor. In conclusion, we provide new insights on Dsc2 regulation of mechanical tension, adhesion, and barrier function in IECs.  相似文献   

15.
Desmosomes are adhesive intercellular junctions prominent in the skin and heart. Loss of desmosome function is associated with severe congenital and acquired disorders characterized by tissue fragility. Pemphigus vulgaris (PV) is an autoimmune disorder in which antibodies are directed against the desmosomal adhesion molecule Dsg3, resulting in severe mucosal erosions and epidermal blistering. To define the mechanisms by which Dsg3 autoantibodies disrupt keratinocyte adhesion, the fate of PV IgG and various desmosomal components was monitored in primary human keratinocytes exposed to PV patient IgG. PV IgG initially bound to keratinocyte cell surfaces and colocalized with desmosomal markers. Within 6 h after PV IgG binding to Dsg3, electron microscopy revealed that desmosomes were dramatically disrupted and keratinocyte adhesion was severely compromised. Immunofluorescence analysis indicated that PV IgG and Dsg3 were rapidly internalized from the cell surface in a complex with plakoglobin but not desmoplakin. Dsg3 internalization was associated with retraction of keratin filaments from cell-cell borders. Furthermore, the internalized PV IgG-Dsg3 complex colocalized with markers for both endosomes and lysosomes, suggesting that Dsg3 was targeted for degradation. Consistent with this possibility, biotinylation experiments demonstrated that soluble Dsg3 cell surface pools were rapidly depleted followed by loss of detergent-insoluble Dsg3. These findings demonstrate that Dsg3 endocytosis, keratin filament retraction, and the loss of keratinocyte cell-cell adhesion are coordinated responses to PV IgG.  相似文献   

16.
Pemphigus vulgaris (PV) is a potentially fatal blistering disease characterized by autoantibodies against the desmosomal adhesion protein desmoglein (Dsg) 3. Whether autoantibody steric hindrance or signaling through pathways such as p38 MAPK is primary in disease pathogenesis is controversial. PV mAbs that cause endocytosis of Dsg3 but do not dissociate keratinocytes because of compensatory adhesion by Dsg1 do not activate p38. The same mAbs plus exfoliative toxin to inactivate Dsg1 but not exfoliative toxin alone activate p38, suggesting that p38 activation is secondary to loss of adhesion. Mice with epidermal p38α deficiency blister after passive transfer of PV mAbs; however, acantholytic cells retain cell surface Dsg3 compared with wild-type mice. In cultured keratinocytes, p38 knockdown prevents loss of desmosomal Dsg3 by PV mAbs, and exogenous p38 activation causes internalization of Dsg3, desmocollin 3, and desmoplakin. p38α MAPK is therefore not required for the loss of intercellular adhesion in PV, but may function downstream to augment blistering via Dsg3 endocytosis. Treatments aimed at increasing keratinocyte adhesion could be used in conjunction with immunosuppressive agents, potentially leading to safer and more effective combination therapy regimens.  相似文献   

17.
The linkage of the different types of cytoskeletal proteins to cell adhesion structures at the cytoplasmic membrane and the connection of these contact sites to corresponding sites of adjacent cells is a prerequisite for integrity and stability of cells and tissues. The structurally most prominent types of such cell-cell adhesion complexes are the desmosomes (maculae adhaerentes), which are found in all epithelia and certain non-epithelial tissues. As an element of the cytoskeleton, intermediate filaments are connected to the adhesive desmosomal transmembrane proteins by the cytoplasmic desmosomal plaque proteins. At least three different types of proteins are found in the desmosomal plaque, one of which is represented by the plakophilins, a recently described sub-family of sequence-related armadillo-repeat proteins. Consisting of three isoforms, plakophilins (plakophilin 1 to 3, PKP 1 to 3) are located in all desmosomes in a differentiation-dependent manner. While PKP 2 and PKP 3 are part of almost all desmosome-bearing cell types (PKP 2 except for differentiated cells of stratified epithelia and PKP 3 for hepatocytes and cardiomyocytes), PKP 1 is restricted to desmosomes of cells of stratified and complex epithelia. Besides the architectural function that plakophilins seem to fulfill in the desmosomes, at least PKP 1 and 2 are also localized in the nucleus independently of any differentiation-related processes and with an up to now enigmatic function in this compartment. In the following article we want to summarize the current knowledge concerning structure, function and regulation of the plakophilins that has been achieved during the last decade.  相似文献   

18.
We have cloned the human genes coding for desmosomal glycoproteins DGII and DGIII, found in desmosomal cell junctions, and sequencing shows that they are related to the cadherin family of cell adhesion molecules. Thus a new super family of cadherin-like molecules exists which also includes the other major desmosomal glycoprotein, DGI (Wheeler, G. N., Parker, A. E., Thomas, C. L., Ataliotis, P., Poynter, D., Arnemann, J., Rutman, A. J., Pidsley, S. C., Watt, F. M., Rees, D. A., Buxton, R. S., and Magee, A. I. (1991) Proc. Natl. Acad. Sci. U.S.A., in press). DGIII differs from DGII by the addition of a 46-base pair exon containing an in-frame stop codon resulting in mature protein molecular weights of 84,633 for DGII and 78,447 for DGIII. The unique carboxyl-terminal region of DGII contains a potential serine phosphorylation site explaining why only DGII is phosphorylated on serine. The cadherin cell adhesion recognition sequence (His-Ala-Val) is replaced by Phe-Ala-Thr, suggesting that DGII/III may be adhesive molecules using a different mechanism.  相似文献   

19.
Desmosomes     
  相似文献   

20.
Desmosomes are intercellular junctions responsible for strong cell-cell adhesion in epithelia and cardiac muscle. Numerous studies have shown that the other major type of epithelial cell adhesion, the adherens junction, is destabilized by src-induced tyrosine phosphorylation of two of its principal components, E-cadherin and β-catenin. Here we show that treatment of epithelial cells with the potent tyrosine phosphatase inhibitor sodium pervanadate causes tyrosine phosphorylation of the major desmosomal components desmoglein 2 and plakoglobin in both the non-ionic detergent soluble and insoluble cell fractions and, surprisingly, stabilizes desmosomal adhesion, inducing the hyper-adhesive form normally found in tissues and confluent cell sheets. Taken together with the few other studies on desmosomes these results suggest that the effects of tyrosine phosphorylation on desmosomal adhesion are complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号