首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the interactions of the hypotensive drug, 2-hydroxyoleic acid (2OHOA), with model membranes using the techniques of DSC, 31P NMR and X-ray diffraction. We demonstrate that 2OHOA alters the thermotropic behaviour of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE), thereby promoting the formation of hexagonal phases (H(II)), despite stabilizing the lamellar phase (Lalpha). The lattice parameters of lamellar and non-lamellar structures were not altered by the presence of 2OHOA. The molecular bases underlying the alterations in membrane structure provoked by 2OHOA were analysed by comparing the effects produced by 2OHOA with the closely related fatty acids (FAs), oleic acid (OA) and elaidic acid (EA). The capacity of C-18 FAs to induce H(II)-phase formation followed the order OA > 2OHOA > EA. Furthermore, while 2OHOA stabilized the Lalpha phase, OA destabilized it. The net negative charge of 2OHOA at physiological pH (approximately 7.4) influenced its effect on membrane structure. By analysing the molecular architecture of 2OHOA in DEPE monolayers, interactions between the carboxylate groups of 2OHOA and the amine groups of DEPE were observed, as well as between the 2-hydroxyl group of the FA and the carbonyl oxygen of the phospholipid acyl chain. These structural characteristics provoked an increase in the P-to-N and P-to-P distances of neighbouring phospholipid headgroups in the presence of 2OHOA, with respect to those observed with OA and EA. The higher headgroup area at the lipid-water interface in presence of 2OHOA could account for the differential effect of this drug on the phase behaviour of DEPE membranes.  相似文献   

2.
The biological activity of farnesol (FN) and geranylgeraniol (GG) and their isoprenyl groups is related to membrane-associated processes. We have studied the interactions of FN and GG with 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes using DSC and X-ray diffraction. Storage of samples at low temperature for a long time favors a multidomain system formed by a lamellar crystalline (Lc) phase and isoprenoids (ISPs) aggregates. We demonstrate that ISPs alter the thermotropic behavior of DEPE, thereby promoting a HII growth in a lamellar Lc phase with a reduced degree of hydration. The HII phase occurs with the same repeat distance (dHII=5.4 nm) as the Lc phase and upon heating it expands considerably (δdT≈0.22 nm/°C). The dimensional stabilization of this HII phase coincides with the transition temperature of the Lc to Lα phase. Thereafter, the system DEPE/ISP will progress by increasing the nonlamellar-forming propensity and reaching a single HII phase at high temperature. The cooling scan followed a similar structural path, except that the system went into a stable gel phase Lβ with a repeat distance, d=6.5 nm, in co-existence with a HII phase. The formation of ISP microdomains in model PE membranes substantiates the importance of the isoprenyl group in the binding of isoprenylated proteins to membranes and in lipid–lipid interactions through modulation of the membrane structure.  相似文献   

3.
The structural transition between bilayer (Lα), inverted hexagonal (HII and inverted cubic (CII) phases in mixtures of unsaturated phosphatidylethanolamines (PE) and phosphatidylcholines (PC) were investigated. Freeze fracture electron micrographs of intermediate stages of phase transitions showed that CII was a stable intermediate form between the Lα-HII transition. The electron microscopic observation was supported by X-ray diffraction and 31P-NMR results. Detailed morphology revealed that during the Lα-CII transition, interlamellae attachment points (conical lipidic particles) connect adjacent bilayers to form arrays of entrapped water pockets (inverted micelles). These water-containg spherical units were packed in a cubic lattice. In the CII to HII transition, these spherical units were linearly connected to form tubes. During the Lα-HII transition, a ripple pattern was observed across the otherwise smooth lamellar. The troughs of the ripples were transformed into linear connections between adjacent bilayers, thereby converting multilayer structures into parallel tubes. No lipidic particles were involved in this type of transition. We show that there are different mechanisms involved in the Lα, HII, CII polymorphic transitions, and that different types of ‘lipidic particles’ representing different molecular organizations may be involved in each case. Models of these transitions are proposed.  相似文献   

4.
Data on the location and dimensions of the pivotal surfaces in inverse hexagonal (HII) and inverse cubic (QII) phases of phospholipids and glycolipids are reviewed. This includes the HII phases of dioleoyl phosphatidylethanolamine, 2:1 mol/mol mixtures of saturated fatty acids with the corresponding diacyl phosphatidylcholine, and glucosyl didodecylglycerol, and also the QII230/G gyroid inverse cubic phases of monooleoylglycerol and glucosyl didodecylglycerol. Data from the inverse cubic phases are largely compatible with those from inverse hexagonal HII-phases. The pivotal plane is located in the hydrophobic region, relatively close to the polar–apolar interface. The area per lipid at the pivotal plane is similar in size to lipid cross-sectional areas found in the fluid lamellar phase (Lα) of lipid bilayers.  相似文献   

5.
The disaccharides, sucrose and trehalose, markedly decreased (up to 17-13C°) the temperature of the lamellar to hexagonal (Lα →HII) phase transition and simultaneously increase by 2–4 C° the temperature of the lamellar gel to lamellar liquid-crystal (Lβ →Lα) phase transition in hydrated dihexadecylphosphatidylethanolamine and distearoylphosphatidylethanolamine. These two transitions merge and convert into a single Lβ-HII phase transition when dispersed in 2.4 M sucrose. These results are inconsistent with recent reports by (8) and (9)) which suggest that trehalose stabilizes the Lα phase relative to the HII phase and shifts upwards beyond detectability the Lα-HII transition. The present results are considered as a manifestation of the Hofmeister effect in which the sugars act as kosmotropic reagents stabilizing the structure of bulk water. This tends to decrease the area of contact between the lipid and the aqueous phases and favours the HII and Lβ phases relative to Lα phase. This hypothesis is consistent with the effects of chaotropic reagents on the Lα-HII phase transition (Yeagle and Sen (1986) Biochemistry 25, 7518–7522) and on the stability of the lamellar phase of dipalmitoylphosphatidylcholine (Oku and MacDonald (1983) J. Biol. Chem. 258, 8733–8738).  相似文献   

6.
In the current work we study with monolayer tensiometry and Brewster angle microscopy (BAM) the surface properties of Dipalmitoleoylphosphatidylethanolamine (DPoPE) films at the air/water interface in presence and absence of specific surfactant protein C (SP-C). DPoPE is used, as it readily forms both lamellar (Lα) and non-lamellar inverted hexagonal (HII) phases and appears as a suitable model phospholipid for probing the interfacial properties of distinct lipid phases. At pure air/water interface Lα shows faster adsorption and better surface disintegration than HII phase. The interaction of DPoPE molecules with SP-C (predeposited at the interface) results in equalizing of the interfacial disintegration of the both phases (reaching approximately the same equilibrium surface tension) although the adsorption kinetics of the lamellar phase remains much faster. Monolayer compression/decompression cycling revealed that the effect of SP-C on dynamic surface tensions (γ max and γ min) of mixed films is remarkably different for the two phases. If γ max for Lα decreased from the first to the third cycle, the opposite effect is registered for HII where γ max increases during cycling. Also the significant decrease of γ min for Lα in SP-C presence is not observed for HII phase. BAM studies reveal the formation of more uniform and homogeneously packed DPoPE monolayers in the presence of SP-C.  相似文献   

7.
Lipid intake in diet regulates the membrane lipid composition, which in turn controls activities of membrane proteins. There is evidence that fatty acids (FAs) and triacylglycerols (TGs) can alter the phospholipid (PL) mesomorphism. However, the molecular mechanisms involved are not fully understood. This study focuses on the effect of the unsaturation degree of the C-18 FAs, oleic acid (OA), linoleic acid and linolenic acid, and their TGs, triolein (TO), trilinolein, and trilinolenin, on the structural properties of phosphoethanolamine PLs. By means of X-ray diffraction and 31P-NMR spectroscopy, it is shown that both types of molecules stabilize the HII phase in 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) liposomes. Several structural factors are considered to explain the correlation between the FA unsaturation degree and the onset temperature of the HII phase. It is proposed that TGs could act as lateral spacers between polar DEPE groups, providing an increase in the effective surface area per lipid molecule that would account for the structural parameters of the HII phase. Fluorescence polarization data indicated a fluidification effect of OA on the lamellar phase. TO increased the viscosity of the hydrophobic core with a high effect on the HII phase.  相似文献   

8.
As part of a study of the molecular basis of membrane fusion by enveloped viruses, we have used neutron diffraction to study the lamellar (Lα) to inverse hexagonal (HII) phase transition in the phospholipid N-methylated dioleoylphosphatidylethanolamine. This lipid was chosen because its phase transitions are particularly sensitive to the presence of agents that have been demonstrated to promote or inhibit membrane fusion. Two different geometries of neutron diffraction were used: small angle scattering (SANS) and a membrane diffractometer. The SANS measurements were carried out on the SWAN instrument at KEK, Japan, using dispersions of multilamellar vesicles (MLVs). The diffractometer measurements used the V1 instrument at BeNSC-HMI, Germany, with a specially-constructed cell that holds a stack of lipid bilayers in an excess-water state. The two approaches are compared and discussed. Although the diffractometer takes considerably longer to collect the data, it records much higher resolution than the SANS instrument. The samples recorded in the excess-water cell were shown to be well aligned, despite the lipids being fully hydrated, allowing for the production of high-resolution data. Trial measurements performed have demonstrated that sample alignment is preserved throughout the Lα to HII phase transition, thereby opening up possibilities for obtaining high-resolution data from non-lamellar phases.  相似文献   

9.
In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using 31P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (Lβ) to liquid-crystalline (Lα) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the Lα to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the Lα phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures.  相似文献   

10.
Genetic hypertension is associated with alterations in lipid metabolism, membrane lipid composition and membrane-protein function. 2-Hydroxyoleic acid (2OHOA) is a new antihypertensive molecule that regulates the structure of model membranes and their interaction with certain peripheral signalling proteins in vitro. While the effect of 2OHOA on elevated blood pressure is thought to arise through its influence on signalling proteins, its effects on membrane lipid composition remain to be assessed. 2OHOA administration altered the lipid membrane composition of hypertensive and normotensive rat plasma membranes, and increased the fluidity of reconstituted liver membranes from hypertensive rats. In spontaneously hypertensive rats (SHR), treatment with 2OHOA increased the cholesterol and sphingomyelin content while decreasing that of phosphatidylserine-phosphatidylinositol lipids. In addition, monounsaturated fatty acid levels increased as well as the propensity of reconstituted membranes to form HII-phases. These data suggest that 2OHOA regulates lipid metabolism that is altered in hypertensive animals, and that it affects the structural properties of liver plasma membranes in SHR. These changes in the structural properties of the plasma membrane may modulate the activity of signalling proteins that associate with the cell membrane such as the Gαq/11 protein and hence, signal transduction.  相似文献   

11.
The mechanism of the lamellar/inverted cubic (QII) phase transition is related to that of membrane fusion in lipid systems. N-Monomethylated dioleoylphosphatidylethanolamine (DOPE-Me) exhibits this transition and is commonly used to investigate the effects of exogenous substances, such as viral fusion peptides, on the mechanism of membrane fusion. We studied DOPE-Me phase behavior as a first step in evaluating the effects of membrane-spanning peptides on inverted phase formation and membrane fusion. These measurements show that: a) the onset temperatures for QII and inverted hexagonal (HII) phase formation both are temperature scan rate-dependent; b) longer pre-incubation times at low temperature and lower temperature scan rates favor formation of the QII phase; and c) in temperature-jump experiments between 61 and 65°C, the meta-stable HII phase forms initially, and disappears slowly while the QII phase develops. These observations are rationalized in the context of a mechanism for both the lamellar/non-lamellar phase transition and the related process of membrane fusion. Current address for D.P.S.: Givaudan, Cincinnati, OH 45216 Data Deposition: Relevant transition temperatures in this paper have been deposited in the LIPIDAT ( )  相似文献   

12.
The present study shows that small admixtures of one chlorophyll a (Chla) molecule per several hundred lipid molecules have strong destabilizing effect on lipid bilayers. This effect is clearly displayed in the properties of the Lα-HII transformations and results from a Chla preference for the HII relative to the Lα phase. Chla disfavors the lamellar liquid crystalline phase Lα and induces its replacement with inverted hexagonal phase HII, as is consistently demonstrated by DSC and X-ray diffraction measurements on phosphatidylethanolamine (PE) dispersions. Chla lowers the Lα-HII transition temperature (42 °C) of the fully hydrated dipalmitoleoyl PE (DPoPE) by ∼ 8 °C and ∼ 17 °C at Chla/DPoPE molar ratios of 1:500 and 1:100, respectively. Similar Chla effect was recorded also for dielaidoyl PE dispersions. The lowering of the transition temperature and the accompanying significant loss of transition cooperativity reflect the Chla repartitioning and preference for the HII phase. The reduction of the HII phase lattice constant in the presence of Chla is an indication that Chla favors HII phase formation by decreasing the radius of spontaneous monolayer curvature, and not by filling up the interstitial spaces between the HII phase cylinders. The observed Chla preference for HII phase and the substantial bilayer destabilization in the vicinity of a bilayer-to-nonbilayer phase transformation caused by low Chla concentrations can be of interest as a potential regulatory or membrane-damaging factor.  相似文献   

13.
Summary Electron microscopic techniques have been employed to investigate the ability of didodecylphosphate vesicles (diameter approx. 900 Å) to fuse in the presence of Ca2+. As revealed by negative staining, Ca2+ induces extensive fusion and large vesicles with diameters up to 7000 Å are formed. In a processsecondary to fusion, the fused vesicles display a tendency to flatten and are subsequently transformed into extended tubular structures. Freeze-fracture electron microscopy, in conjunction with31P NMR and selected area electron diffraction measurements indicate that the tubes are packed in a hexagonal (HII) array and that the amphiphiles are converted from the lamellar to the hexagonal HII phase.The relationship between membrane fusion and the lamellar-to-hexagonal phase transition is discussed in terms of formation and abundance of transiently stable inverted micellar intermediates at contact regions between two interacting membranes. A model for the conversion of the (vesicular) lamellar into the (tubular) hexagonal HII phase is presented, taking into account the molecular shape of the amphiphile. The relevance of using simple synthetic amphiphiles as models for phospholipid bilayers and complex biomembrane behavior is briefly discussed.  相似文献   

14.
Abstract

2-Hydroxyoleic acid (2OHOA) is a synthetic fatty acid with antihypertensive properties that is able to alter structural membranes properties. The main purpose of this study was to analyze the effect of 2OHOA on the membrane architecture in cholesterol (Cho)-rich domains. For this purpose, model membranes mimicking the composition of lipid rafts and PC- or PE-Cho-rich domains were examined in the absence and presence of 2OHOA by synchrotron X-ray diffraction, atomic force microscopy (AFM) and microcalorimetry (DSC) techniques. Our results demonstrate that 2OHOA phase separates from lipid raft domains and affects the lateral organization of lipids in the membrane. In model raft membranes, 2OHOA interacted with the sphingomyelin (SM) gel phase increasing the thickness of the water layer, which should lead to increased bilayer fluidity. The hydrogen binding competition between 2OHOA and Cho could favour the enrichment of 2OHOA in SM domains separated from the SM-Cho domains, resulting in an enhanced phase separation into SM-2OHOA-rich liquid-disordered (non-raft) and SM-Cho-rich liquid-ordered (raft) domains. The segregation into 2OHOA-rich/Cho-poor and 2OHOA-poor/Cho-rich domains was also observed in PC bilayers.  相似文献   

15.
Acholeplasma laidlawii strain A-EF22 was grown in a medium supplemented with 75 μm α-deuterated palmitic acid (16:0-d 2) and 75 μm α-deuterated oleic acid (18:1c-d 2), or with 150 μm 18:1c-d 2. The fatty acids were incorporated into the membrane lipids and 2H NMR spectra were recorded from intact membranes, total lipid extracts, and the combined glucolipid and neutral lipid fractions of a total lipid extract. The lipids in intact membranes form a bilayer structure up to at least 70 °C. The same result was obtained with membranes digested with pronase, which removes a large fraction of the membrane proteins. A reversed hexagonal liquid crystalline (HII) phase was formed below 70 °C by the total lipid extracts hydrated with 20 and 30% (w/w) water; in the presence of 40% (w/w) water only one of the extracts formed an HII phase below 70 °C. The HII phase was formed at higher temperatures with an increasing water content. However, only a lamellar liquid crystalline (L α ) phase was formed up to 70 °C by the total lipid extracts when the water concentrations were 50% (w/w) or higher. The temperature (T LH) for the L α to HII phase transition in the combined glucolipid and neutral lipid fractions was only 2–3 °C lower than for the total lipids, and the phospholipids thus have a very modest influence on the T LH value. Physiologically relevant concentrations of Ca2+ and Mg2+ ions did not affect the phase equilibria of total lipid extracts significantly. It is concluded from comparison with published data that the membrane lipids of the cell wall-less bacterium A. laidlawii have a smaller tendency to form reversed nonlamellar phases than the membrane lipids of three bacterial species surrounded by a cell wall. Received: 10 March 1997 / Accepted: 4 July 1997  相似文献   

16.
Based on curvature energy considerations, nonbilayer phase-forming phospholipids in excess water should form stable bicontinuous inverted cubic (QII) phases at temperatures between the lamellar (Lα) and inverted hexagonal (HII) phase regions. However, the phosphatidylethanolamines (PEs), which are a common class of biomembrane phospholipids, typically display direct Lα/HII phase transitions and may form intermediate QII phases only after the temperature is cycled repeatedly across the Lα/HII phase transition temperature, TH, or when the HII phases are cooled from T > TH. This raises the question of whether models of inverted phase stability, which are based on curvature energy alone, accurately predict the relative free energy of these phases. Here we demonstrate the important role of a noncurvature energy contribution, the unbinding energy of the Lα phase bilayers, gu, that serves to stabilize the Lα phase relative to the nonlamellar phases. The planar Lα phase bilayers must separate for a QII phase to form and it turns out that the work of their unbinding can be larger than the curvature energy reduction on formation of QII phase from Lα at temperatures near the Lα/QII transition temperature (TQ). Using gu and elastic constant values typical of unsaturated PEs, we show that gu is sufficient to make TQ > TH for the latter lipids. Such systems would display direct Lα → HII transitions, and a QII phase might only form as a metastable phase upon cooling of the HII phase. The gu values for methylated PEs and PE/phosphatidylcholine mixtures are significantly smaller than those for PEs and increase TQ by only a few degrees, consistent with observations of these systems. This influence of gu also rationalizes the effect of some aqueous solutes to increase the rate of QII formation during temperature cycling of lipid dispersions. Finally, the results are relevant to protocols for determining the Gaussian curvature modulus, which substantially affects the energy of intermediates in membrane fusion and fission. Recently, two such methods were proposed based on measuring TQ and on measuring QII phase unit cell dimensions, respectively. In view of the effect of gu on TQ that we describe here, the latter method, which does not depend on the value of gu, is preferable.  相似文献   

17.
The partial phase diagram and the hydration properties of the 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE)-water system, in the absence and presence of 30 mol% cholesterol, have been investigated by solid state phosphorus NMR of the lipid and deuterium NMR of heavy water. The POPE-D2O phase diagram resembles other phosphatidylethanolamine (PE)-water systems: below water-to-lipid molar ratios (Ri) of 3 the lamellar gel (L or Lc)-to-hexagonal type II (HII) phase sequence is observed on increasing the temperature. For Ri3 the thermotropic sequence (L or Lc)-L-HII is detected. On increasing hydration from Ri=3, the HII phase is detected from 40°C to 85°C whereas the gel phase is observed from 40°C to 30°C. The limiting hydrations of the gel, L and HII phases are Ri 3, 17 and 20, respectively. The number of bound water molecules per lipid is ca. 8 in both the La and HII phases. The presence of cholesterol stabilizes the hexagonal phase 20°C below temperatures at which it is observed in its absence and reduces the limiting hydration of the fluid and hexagonal phases to Ri 9 and 14, respectively. The structure and/or dynamics of the water bound to the interface are markedly modified on going from the L to the HII phase.Abbreviations NMR Nuclear magnetic resonance - DDPE 1,2-Didodecyl-rac-glycerol-3-phosphoethanol-amine - DHPE 1,2-Dihexadecyl-sn-glycerol-3-phosphoethanol-amine - DOPE 1,2-Dioleoyl-sn-glycerol-3-phosphoethanol-amine - POPE 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoetha-nolamine - DAPE 1,2-Diarachinoyl-sn-glycerol-3-phosphoethanol-amine - DMPC 1,2-Dimyristol-sn-glycerol-3-phosphocholine - DPPC 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine - Tc lamellar gel-to-lamellar fluid transition temperature - Th lamellar fluid-to-hexagonal transition temperature  相似文献   

18.
Synthetic cationic lipids can be used as DNA carriers and are regarded to be the most promising non-viral gene carriers. For this investigation, six novel phosphatidylcholine (PC) cationic derivatives with various hydrophobic moieties were synthesized and their transfection efficiencies for human umbilical artery endothelial cells (HUAEC) were determined. Three compounds with relatively short, myristoleoyl or myristelaidoyl 14:1 chains exhibited very high activity, exceeding by ∼ 10 times that of the reference cationic derivative dioleoyl ethylPC (EDOPC). Noteworthy, cationic lipids with 14:1 hydrocarbon chains have not been tested as DNA carriers in transfection assays previously. The other three lipids, which contained oleoyl 18:1 and longer chains, exhibited moderate to weak transfection activity. Transfection efficiency was found to correlate strongly with the effect of the cationic lipids on the lamellar-to-inverted hexagonal, Lα → HII, phase conversion in dipalmitoleoyl phosphatidylethanolamine dispersions (DPoPE). X-ray diffraction on binary DPoPE/cationic lipid mixtures showed that the superior transfection agents eliminated the direct Lα → HII phase transition and promoted formation of an inverted cubic phase between the Lα and HII phases. In contrast, moderate and weak transfection agents retained the direct Lα → HII transition but shifted to higher temperatures than that of pure DPoPE, and induced cubic phase formation at a later stage. On the basis of current models of lipid membrane fusion, promotion of a cubic phase by the high-efficiency agents may be considered as an indication that their high transfection activity results from enhanced lipoplex fusion with cellular membranes. The distinct, well-expressed correlation established between transfection efficiency of a cationic lipid and the way it modulates nonlamellar phase formation of a membrane lipid could be useful as a criterion to assess the quality of lipid carriers and for rational design of new and superior nucleotide delivery agents.  相似文献   

19.
Adrenergic receptors are integral membrane proteins involved in cellular signalling that belong to the G protein-coupled receptors. Synthetic peptides resembling the putative transmembrane (TM) segments TM4, TM6 and TM7, of the human α2-adrenergic receptor subtype C10 (P08913) and defined lipid vesicles were used to assess protein-lipid interactions that might be relevant to receptor structure/function. P6 peptide contains the hydrophobic core of TM6 plus the N-terminal hydrophilic motif REKR, while peptides P4 and P7 contained just the hydrophobic stretches of TM4 and TM7, respectively. All the peptides increase their helical tendency at moderate concentrations of TFE (30–50%) and in presence of 1,2-dielaidoyl-sn-glycero-3-phosphatidylethanolamine (DEPE) lipids. However, only P6 displays up to 19% of α-helix in the presence of just the DEPE lipids, evidences a transmembrane orientation and stabilizes the Lα lipid phase. Conversely, P4 and P7 peptides form only stable β-sheet structures in DEPE and favour the non-lamellar, inverted hexagonal (HII) phase of DEPE by lowering its phase transition temperature. This study highlights the potential of using synthetic peptides derived from the amino acid sequence in the native proteins as templates to understand the behaviour of the transmembrane segments and underline the importance of interfacial anchoring interactions to meet hydrophobic matching requirements and define membrane organization.  相似文献   

20.
Dipalmitoleoylphosphatidylethanolamine (DPOPE) membrane is in the L phase in neutral pH at 20 °C. The results of small-angle X-ray scattering (SAXS) indicate that an L to HII phase transition in DPOPE membranes occurred at pH 1.9 in the absence of salt, and at pH 2.8 in the presence of 0.5 M KCl, at fully hydrated condition at 20 °C. The spontaneous curvature of DPOPE monolayer membrane did not change with a decrease in pH values. To elucidate the mechanism, we have investigated the effect of the cationic dioctadecyldimethylammonium (DODMA) on the structure and phase behavior of DPOPE membrane. The result shows that DODMA stabilizes the HII phase rather than the L phase in DPOPE membrane at its low concentrations. Based on these results, the HII phase stability of DPOPE membrane due to low pH is discussed in terms of the spontaneous curvature of the monolayer membrane and the packing energy of acyl chains in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号