首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GLUT11 (SLC2A11) is a class II sugar transport facilitator which exhibits highest similarity with the fructose transporter GLUT5 (about 42%). Here we demonstrate that separate exons 1 (exon 1A, exon 1B, and exon 1C) of the SLC2A11 gene generate mRNAs of three GLUT11 variants (GLUT11-A, GLUT11-B, and GLUT11-C) that differ in the amino acid sequence of their N-termini. All three 5'-flanking regions of exon 1A, exon 1B and exon 1C exhibited promoter activity when expressed as luciferase fusion constructs in COS-7 cells. 5'-RACE-PCR, quantitative real-time PCR, and Northern blot analysis performed with specific probes for exon 1A, 1B and 1C demonstrated that GLUT11-A is expressed in heart, skeletal muscle, and kidney, GLUT11-B in kidney, adipose tissue, and placenta, and GLUT11-C in adipose tissue, heart, skeletal muscle, and pancreas. Surprisingly, mice and rats lack the SLC2A11 gene. When expressed in Xenopus oocytes, all three GLUT11 isoforms transport glucose and fructose but not galactose. There was no apparent difference in the subcellular distribution of the three isoforms expressed in COS-7 cells. Our data indicate that different promoters and splicing of the human SLC2A11 gene generate three GLUT11 isoforms which are expressed in a tissue specific manner but do not appear to differ in their functional characteristics.  相似文献   

2.
3.
Delta-like homolog 1 (DLK1), a paternally imprinted gene with several alternative splicing isoforms, is an important regulator of fetal and postnatal development. We report the sequence of porcine DLK1 (pDLK1) and examine the expression and alternative splicing isoforms in the pig (Sus scrofa) and human. DLK1-A was the sole isoform identified in human tissues and has been shown to be present in mouse and cattle. Surprisingly, DLK1-A was undetected in various tissues from fetal and postnatal pigs. Instead, DLK1-C2 was the most abundant isoform while DLK1-B was expressed to a lesser extent. In fractionated adipose tissue, pDLK1 was most highly expressed in the stromal-vascular cell fraction. In addition, total pDLK1 was highly expressed in fetal adipose tissue but dramatically decreased postnatally. Our data suggests that expression of DLK1-B and -C2 isoforms is sufficient for normal pig development. Furthermore, human and pig samples showed no alterations in species-specific splicing, but expression levels decreased with age, suggesting that regulation of expression, not splicing, is the most likely mechanism controlling the biological function of DLK1.  相似文献   

4.
5.
Antibodies to the solute carrier protein, CTL2/SLC44A2, cause hearing loss in animals, are frequently found in autoimmune hearing loss patients, and are implicated in transfusion-related acute lung injury. We cloned a novel CTL2/SLC44A2 isoform (CTL2 P1) from inner ear and identified an alternate upstream promoter and exon 1a encoding a protein of 704 amino acids which differs in the first 10–12 amino acids from the known exon 1b isoform (CTL2 P2; 706 amino acids). The expression of these CTL2/SLC44A2 isoforms, their posttranslational modifications in tissues and their localization in HEK293 cells expressing rHuCTL2/SLC44A2 were assessed. P1 and P2 isoforms with differing glycosylation are variably expressed in cochlea, tongue, heart, colon, lung, kidney, liver and spleen suggesting tissue specific differences that may influence function in each tissue. Because antibodies to CTL2/SLC44A2 have serious pathologic consequences, it is important to understand its distribution and modifications. Heterologous expression in X. laevis oocytes shows that while human CTL2-P1 does not transport choline, human CTL2-P2 exhibits detectable choline transport activity.  相似文献   

6.
Two distinct PDE3 [cyclic GMP-inhibited cyclic nucleotide phosphodiesterase (cGI PDE)] isoforms, cGIP1 and cGIP2, have been identified. Here we report cloning of the cDNA and gene encoding human (H)cGIP1 (classified as PDE3B). The cDNA encodes a protein of 1112 amino acids (123 kDa). Northern blots indicate that its mRNA is expressed in several adipose tissue depots. The human PDE3B gene is composed of 16 exons spanning more than 114 kb and was localized to chromosome 11p15 byin situhybridization. Exon/intron boundaries were determined, and genetic polymorphism, confirmed by single-strand conformational polymorphism of DNA from 25 healthy subjects, was demonstrated in exon 4 at nucleotide 1389 (A/G). Two polymorphic dinucleotide repeat sequences were identified in introns 5 and 12.  相似文献   

7.
8.
9.
G-protein-coupled receptor kinases (GRK) are known to phosphorylate agonist-occupied G-protein-coupled receptors. We expressed and functionally characterized mouse GRK6 proteins encoded by four distinct mRNAs generated by alternative RNA splicing from a single gene, mGRK6-A to mGRK6-D. Three isoforms, mGRK6-A to mGRK6-C differ in their C-terminal-most portion, which is known to mediate membrane and/or receptor interaction and regulate the activity of GRK4-like kinases. One isoform, mGRK6-D, is identical to the other mGRK6 variants in the N-terminal region, but carries an incomplete catalytical domain. Mouse GRK6-D was catalytically inactive and specifically present in the nucleus of transfected cells. Recombinant mouse GRK6-A to mGRK6-C were found to be membrane-associated in cell-free systems and in transfected COS-7 cells, suggesting that the very C-terminus of GRK6-A, lacking in GRK6-B and mGRK6-C and carrying consensus sites for palmitoylation, is not required for membrane interaction. Interestingly, the shortest catalytically active variant, mGRK6-C, was conspicuously more active in phosphorylating light-activated rhodopsin than mGRK6-A and mGRK6-B, implying that the C-terminus of the latter two variants may fulfil an autoinhibitory function. Mutation and removal of C-terminal-most region of mGRK6-A by site-directed mutagenesis revealed that this region contains three autoregulatory elements: two discontinuous inhibitory elements consisting of a single residue, D560, and the sequence between residues S566 and L576, and an intervening stimulatory element. The results suggest that mGRK6-C may be considered a basic, prototypic representative of the GRK4-like kinases, which is capable of interacting with both plasma membrane and its receptor substrate, but is resistant to further regulatory modification conferred to the prototype via C-terminal extension.  相似文献   

10.
11.
In mammals, insulin-sensitive GLUTs, including GLUT4, are recruited to the plasma membrane of adipose and muscle tissues in response to insulin. The GLUT4 gene is absent from the chicken genome, and no functional insulin-sensitive GLUTs have been characterized in chicken tissues to date. A nucleotide sequence is predicted to encode a chicken GLUT12 ortholog and, interestingly, GLUT12 has been described to act as an insulin-sensitive GLUT in mammals. It encodes a 596 amino acid protein exhibiting 71% identity with human GLUT12. First, we present the results of a phylogenetic study showing the stability of this gene during evolution of vertebrates. Second, tissue distribution of chicken SLC2A12 mRNA was characterized by RT-PCR. It was predominantly expressed in skeletal muscle and heart. Protein distribution was analysed by Western blotting using an anti-human GLUT12 antibody directed against a highly conserved region (87% of identity). An immuno-reactive band of the expected size (75kDa) was detected in the same tissues. Third a physiological characterization was performed: SLC2A12 mRNA levels were significantly lowered in fed chickens subjected to insulin immuno-neutralization. Finally, recruitment of immuno-reactive GLUT12 to the muscle plasma membrane was increased following 1h of intraperitoneal insulin administration (compared to a control fasted state). Thus insulin administration elicited membrane GLUT12 recruitment. In conclusion, these results suggest that the facilitative glucose transporter protein GLUT12 could act in chicken muscle as an insulin-sensitive transporter that is qualitatively similar to GLUT4 in mammals.  相似文献   

12.
13.
14.
15.
16.

Background  

The SLC11A1/Nramp1 and SLC11A2/Nramp2 genes belong to the SLC11/Nramp family of transmembrane divalent metal transporters, with SLC11A1 being associated with resistance to pathogens and SLC11A2 involved in intestinal iron uptake and transferrin-bound iron transport. Both members of the SLC11 gene family have been clearly identified in tetrapods; however SLC11A1 has never been documented in teleost fish and is believed to have been lost in this lineage during early vertebrate evolution. In the present work we characterized the SLC11 genes in teleosts and evaluated if the roles attributed to mammalian SLC11 genes are assured by other fish specific SLC11 gene members.  相似文献   

17.
18.
A family of protein kinases, termed G-protein-coupled receptor kinases (GRK1-6), is known to phosphorylate agonist-occupied G-protein-coupled receptors. We have identified mRNAs encoding four distinct mouse GRK6 isoforms (mGRK6), designated mGRK6-A through mGRK6-D. Mouse GRK6-B and mGRK6-C diverge from the known human GRK6 (577 residues) at residue 560 and are 13 residues longer and 16 residues shorter, respectively, than human GRK6, while mGRK6-A very likely represents the mouse equivalent of human GRK6. Mouse GRK6-D is identical to the other mGRK6 variants in the amino-terminal region, but comprises only 59 of the 263 amino acids of the putative catalytical domain. As mGRK6-D retains the region involved in interacting with activated receptors, but most likely lacks catalytic activity, this variant might represent a naturally occurring inhibitor of other GRKs. Analysis of the genomic organization of mGRK6 gene revealed that the four mRNAs are generated by alternative RNA splicing from a single approximately 14. 5-kb gene, made up of at least 17 exons and located on mouse chromosome 13. Similar to human GRK6, mGRK6-A contains three cysteine residues within its carboxyl-terminal region known to serve as substrates for palmitoylation. Mouse GRK6-B lacks these palmitoylation sites, but carries a basic carboxyl-terminus containing consensus sequences for phosphorylation by protein kinases C and cAMP/cGMP-dependent protein kinases. Mouse GRK6-C displays none of these motifs. Thus, mGRK6-A, mGRK6-B, and mGRK6-C are predicted to differ in terms of their regulation by carboxyl-terminal posttranslational modification. Analysis of mRNA expression revealed that the four mGRK6 mRNAs are differentially expressed in mouse tissues, suggesting that the four mGRK6 isoforms are involved in regulating tissue- or cell type-specific functions in vivo.  相似文献   

19.
Three closely related genes encoding amino acid transport proteins are clustered on 5q32 in humans, and Chromosome (Chr) 11 in mice. The human SLC36A1 gene, which encodes the lysosomal amino acid transporter LYAAT1/PAT1, generates multiple alternative mRNAs, some of which encode truncated proteins. SLC36A1 is expressed in numerous tissues, whereas expression of SLC36A2, which encodes the glycine transporter tramdorin1/PAT2, is most abundant in kidney and muscle. Expression of a third gene, SLC36A3, is restricted to testis. Mouse Slc36a2 also is expressed in bone and fat tissue. Polymorphisms in human SLC36A2 exclude it as a candidate locus for a peripheral neuropathy that has been mapped to 5q31-33. SLC36A2 is a candidate gene for 5q-myelodysplastic syndrome, on the basis of its chromosomal location and its expression in bone.  相似文献   

20.
C L Verweij  M Hart    H Pannekoek 《The EMBO journal》1987,6(10):2885-2890
Von Willebrand factor (vWF) is a multimeric plasma glycoprotein synthesized by vascular endothelial cells as a pre-pro-polypeptide with a highly repetitive domain structure, symbolized by the formula: (H)-D1-D2-D'-D3-A1-A2-A3-D4-B1-B2-B3-C1-C2-(OH) A heterologous expression system for the synthesis of recombinant vWF protein was developed, consisting of a monkey kidney cell line (COS-1), transfected with full-length vWF cDNA. This system was shown to mimic the constitutive secretory pathway of vWF in endothelial cells, since dimerization and multimerization occur similarly. To determine whether the pro-polypeptide, composed of the domains D1 and D2, is involved in vWF multimerization, a vWF cDNA was constructed that lacked the coding sequence for the pro-polypeptide. The mutant vWF protein, expressed by COS-1 cells transfected with this cDNA, did not assemble beyond the dimer stage. From this observation, we conclude that (i) dimerization does not involve the pro-polypeptide of pro-vWF and (ii) the presence of the pro-polypeptide, as part of pro-vWF, is obligatory for multimerization. It is argued that the interactions, required for interchain binding, are mediated by the D domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号