首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of interaction between proflavine and poly I.poly C at 25°C, neutral pH, and moderate ionic strength have been studied by relaxation methods. The qualitative features of this system resemble those previously reported by Crothers and co-workers for proflavine–DNA and proflavine–poly A·poly U interactions–two relaxations are observed coresponding to a fast bimolecular step followed by a slower isomerization. These results can best be accommodated by a two-step mechanism leading from the free dye through an “outside-bound” complex to the intercalated complex. Quantitative comparison of the various rate constants for proflavine binding to different double-helical polynucleotides shows that the rates are slower for both ribohomopolymer pairs than for DNA. The rates for poly I·poly C are approximately three times faster than these for poly A·poly U.  相似文献   

2.
Extrinsic Cotton effects of proflavine bound to polynucleotides   总被引:1,自引:0,他引:1  
A Blake  A R Peacocke 《Biopolymers》1967,5(4):383-397
The magnitude of the Cotton effect of proflavine which is bound to RNA or to denatured DNA depends on the ratio of bound proflavine to nucleic acid base. A statistical treatment which explains this behavior has been fitted to the experimental curves and indicates that optical activity arises through interaction between two or more bound proflavine molecules. The corresponding requirement with double helical DNA is for interaction between 3–4 proflavine molecules. Although proflavine binds to denatured DNA at pH 2.8, as shown by the shift of the proflavine spectrum, the strong binding process is absent, and to this is attributed the absence of the Cotton effect at low pH. Studies on the Cotton effects of proflavine bound to poly A and poly U at neutral pH, to poly A at acid pH and to poly (A + U) allow the generalization that a relatively rigid configuration of the binding macromolecule is required for the induction of these extrinsic Cotton effects.  相似文献   

3.
The interaction of several 3,6-diaminoacridines with DNAs of various base composition has been studied by steady-state and transient fluorescence measurements. The acridine dyes employed are of the following two classes: class I - proflavine, acriflavine and 10-benzyl proflavine; class II - acridine yellow, 10-methyl acridine yellow and benzoflavine. It is found that the fluorescence decay kinetics follows a single-exponential decay law for free dye and the poly[d(A-T)]-dye complex, while that of the dye bound to DNA obeys a two-exponential decay law. The long lifetime (tau 1) for each complex is almost the same as the lifetime for the poly[d(A-T)]-dye complex, and the amplitude alpha 1 decreases with increasing GC content of DNA. The fluorescence quantum yields (phi F) of dye upon binding to DNA decrease with increasing GC content; the phi F values for class I are nearly zero when bound to poly(dG) X poly(dC), but those for class II are not zero. This is in harmony with the finding that GMP almost completely quenches the fluorescence for class I, whereas a weak fluorescence arises from the GMP-dye complex for class II. The fluorescence spectra of the DNA-dye complexes gradually shift toward longer wavelengths with increasing GC content. In this connection, the fluorescence decay parameters show a dependence on the emission wavelength; alpha 1 decreases with an increase in the emission wavelength. In view of these results, it is proposed that the decay behavior of the DNA-dye complexes has its origin in the heterogeneity of the emitting sites; the long lifetime tau 1 results from the dye bound to AT-AT sites, while the short lifetime tau 2 is attributable to the dye bound in the vicinity of GC pairs. Since GC pairs almost completely quench the fluorescence for class I, partly intercalated or externally bound dye molecules may play an important role in the component tau 2.  相似文献   

4.
Fluorescence of proflavine--DNA complexes: heterogeneity of binding sites   总被引:5,自引:0,他引:5  
J C Thomes  G Weill  M Daune 《Biopolymers》1969,8(5):647-669
Measurements of the relative quantum yield of fluorescence of proflavine bound to DNA as a function of the number of bound dyes per nucleotide and the ionic strength allow the determination of the binding constants and respective number of the two types of sites previously postulated. It is demonstrated that 2–3% of the base pairs form sites where the dye is strongly bound and fluoresces normally while in the other set of sites the binding constant is 3–4 times weaker and the fluorescence completely quenched. Comparison with complexes of Pro with double stranded polynucleotides poly (A + U), poly (I + C), poly(G + C), confirm that the strong binding sites correspond to A-T-rich regions of the DNA while the quenched sites seem to require the presence of a neighboring guanine. The role of charge transfer in quenching of fluorescence and mutagnic action is considered. An original method for the determination of free dye and bound dye, based upon the use of an external quencher is described in the Appendix.  相似文献   

5.
J Chambron  R Bidet  G Weill 《Biopolymers》1971,10(2):225-242
The desorption and melting with temperature of proflavine–DNA complexes has been studied by spectrophotometry and spectrofluorometry. Two methods are described to determine at each temperature the concentration of free and bound dye. The first one is based on the quenching of fluorescence of the free dye by the iodine ion, the second on fluorescence polarization measurements. It is shown that the sites where the bound dye fluoresces are thermally less stable than those where it is quenched, in such a way that a redistribution of the dye between the two types of sites occurs at intermediate temperatures, leading to a drop in the total fluorescence. This confirms the nature of the “emitting” sites which correspond to AT-rich region, while “quenched” sites correspond to GC-rich region. The first have a larger binding constant at room temperature, but only the latter are stabilized by dye intercalation. The desorption and melting have also been followed through the relative changes of absorption. The curves obtained at different wavelengths are not superimposed which is at variance with what is observed with complexes of proflavine with poly dAT and poly dG.dC. The beginning of the desorption process corresponds to minor variations at 445 nm, the maximum of absorption of the free dye, but large changes occur at 460 nm, the maximum of the difference spectrum of the complexes proflavine–poly dAT and proflavine-poly dG.dC. The spreading of the melting curves for different wave lengths must therefore reflect the dependence of the absorption spectra of the dye on the nature of the neighboring bases. However, the action spectrum of the fluorescence, which gives the absorption spectrum of the “emitting” sites only, is identical with the total absorption spectrum of the bound dye.  相似文献   

6.
The interaction of Na ions with synthetic polynucleotides   总被引:1,自引:0,他引:1  
The interaction of Na+ with poly A, poly U, poly A·poly U, and Poly A·2 poly U has been investigated by means of potentiometry, by means of potentiometry, by means of a linked-function analysis of its effect on the binding of Mg++ ions, and of K+ by means of an analysis of its effect on the sedimentation coefficients of the polymers. The last method was found to be inapplicable. The results of the other two methods were found to be consistent, except in the case of poly A where the existence of base stacking, influenced by the binding of Mg++, significantly affects the linked-function analysis. The results are also consistent with the effects of the concentration of Na+ ions on the thermally induced conformational transitions of poly A·poly U and poly A·2 poly U, and with the extents of “binding” of Na+ to DNA measured by equilibrium and by transport methods. The interaction of Na+ with polynucleotides appears to be physically quite specific, although its thermodynamic basis is not clear. The extent of binding of Na+, Ψ, was found to be independent of the total Na+ concentration but a quadratic function of the extent of Mg++ binding, θ. In the absence of Mg++, Ψ = 0.35–0.38 for poly U, 0.40 for poly A, 0.59 for poly A·poly U, and 0.66 for poly A·2 poly U.  相似文献   

7.
Dielectric behavior of DNA-proflavine complex   总被引:1,自引:0,他引:1  
D N Goswami  J Das  N N Das Gupta 《Biopolymers》1973,12(5):1047-1052
The dielectric relaxation of namtive DNA and DNA–proflavine complexes at different DNA phosphate (P) to dye (D) ratios, were investigated in the frequency range 100 c/sec to 100 Kc/sec. The proflavine molecules were found to have a profound effect on the static dielectric constant and the relaxation time of the polymers. The static dielectric constant was oberserved to decrese with increasing level of added proflavine. At P/D = 1, the variation of dielectric constant with frequency was small. Relaxation time (τ) was greater for the DNA–proflavine complexes compared to that for free DNA, Maximum value of the relaxation time was obtained at P/D = 10. The increase in the relaxation time and decrease in the static dielectric constant were attributed to the increase in length and meutralization of surface charges of the DNA molecules, respectively, as aresult of proflavine binding.  相似文献   

8.
Experimental binding isotherms relative to the interactions between proflavine and poly(A) or DNA are analyzed by comparison with theoretical models dealing with competitive cooperative bindings. In the case of poly(A), there are apparently no specific binding sites for the positive co-operative binding (complex I) leading to dye aggregation along the polyanionic chain. The second complex (complex II) seems to involve specific base-dye interactions, but it cannot be said whether this binding displays negative cooperativity or noncooperativity. None of the two simpler theoretical models agree quantitatively with all experimental data. A plausible interpretation can be given if it is assumed that (i) the electrostatic binding of one isolated bound dye molecule (nucleus of complex I) involves a definite interaction between a phosphate group and the positive charge of the dye; (ii) the structure of complex II is such that a dye–phosphate ionic interaction is maintained. In the case of DNA, our model of monoexclusive interactions fits the data more closely than does the model of biexclusive interactions. This gives experimental support for structural models in which the intercalated molecule interacts preferentially with one strand of the double helix and blocks only one phosphate for electrostatic binding. In order to propose a mechanism consistent with equilibrium and relaxation kinetic data, a modified reaction scheme is considered which takes account of the cooperativity effects in external binding and extends previous models.  相似文献   

9.
The binding isotherm of 2, 7-di-tert-butyl proflavine on calf thymus DNA has been measured by dialysis equilibrium. The CD spectra of complexes of the dye and DNA have been measured, and the variation of the induced circular dichroism of the dye with the amount of dye bound (r) has been found. The results show that di-tert-butyl proflavine binds to DNA in a completely different manner from proflavine itself, since both the visible and ultraviolet CD spectra of complexes of the two dyes with DNA differ markedly. The conformation of the nucleic acid is not affected by the binding of di-tert-butyl proflavine. It is possible that these results may allow determination, by using CD spectroscopy, of whether molecules intercalate into DNA.  相似文献   

10.
A new asymmetric cyanine dye has been synthesised and its interaction with different DNA has been investigated. In this dye, BEBO, the structure of the known intercalating cyanine dye BO has been extended with a benzothiazole substituent. The resulting crescent-shape of the molecule is similar to that of the well-known minor groove binder Hoechst 33258. Indeed, comparative studies of BO illustrate a considerable change in binding mode induced by this structural modification. Linear and circular dichroism studies indicate that BEBO binds in the minor groove to [poly (dA-dT)](2), but that the binding to calf thymus DNA is heterogeneous, although still with a significant contribution of minor groove binding. Similar to other DNA binding asymmetric cyanine dyes, BEBO has a large increase in fluorescence intensity upon binding and a relatively large quantum yield when bound. The minor groove binding of BEBO to [poly (dA-dT)](2) affords roughly a 180-fold increase in intensity, which is larger than to that of the commonly used minor groove binding probes DAPI and Hoechst 33258.  相似文献   

11.
The nonexponential phosphorescence decay of a highly folded form of poly-riboadenylic acid (poly rA) with noncovalently bound dye is explained by a novel application of a well-known theory of electronic excitation transfer based on the F?rster mechanism. This theory, originally used to describe singlet-singlet energy transfer from donor molecules to an acceptor in a solution, is here applied to the transfer of triplet excitation from the adenine (in poly rA) to the singlet manifold of either of the bound dyes, ethidium bromide or proflavine. New experimental data are presented that allow straight-forward theoretical interpretation. These data fit the form predicted by the theory, U(t) exp(-Bt1/2), where U(t) is the decay of the poly rA phosphorescence in the absence of dye, for a range of relative concentrations of either dye. The self-consistency of these theoretical fits is demonstrated by the proportionality of B to the square root of the F?rster triplet-singlet overlap integrals for transfer from poly rA to each of the dyes, as demanded by the theory. From these self-consistent values of B, the theory enables one to deduce the mean packing density of nucleotides in this folded poly rA, which we estimate to be approximately 1 nm-3. We conclude that some variations of the method described here may be useful for deducing packing densities of nucleotides in other compact nucleic acid structures.  相似文献   

12.
J K Barton  S J Lippard 《Biochemistry》1979,18(12):2661-2668
The cationic complex (2-hydroxyethanethiolato)(2,2',2'-terpyridine)platinum(II), [(terpy)Pt(HET)]+, binds cooperatively to poly(A).poly(U) by intercalation. The melting temperature of poly(A).poly(U) in low-salt buffer is increased by 6 degrees C in the presence of [(terpy)Pt(HET)]+, indicating stabilization of the duplex structure by the bound platinum reagent. Viscosity measurements provide evidence for comparable lengthening of the polynucleotide in the presence of [(terpy)Pt(HET)]+ and the intercalating dye, ethidium bromide. Scatchard plots of the binding of [(terpy)Pt(HET)]+ to poly(A).poly(U) and poly(I).poly(C), determined through ultracentrifugation pelleting methods, show large positive curvature, reflecting the strong cooperativity associated with the platinum complex-RNA interaction. The characteristics of the binding isotherms are interpreted in terms of a model where cooperative pair units of [(terpy)Pt(HET)]+ intercalate into the double-stranded polymer. At saturation, two platinum molecules are bound for every three base pairs. This stoichiometry may be compared with the nearest-neighbor-exclusion binding observed previously in the interaction of [(terpy)Pt(HET)]+ and the ethidium cation with DNA, in which one intercalator occupies every other interbase-pair site at saturation. The striking differences observed in the interaction of [(terpy)Pt(HET)]+ with DNA and RNA suggest that drug recognition is sensitive to the constraints imposed by nucleic acid secondary structure.  相似文献   

13.
H Krakauer 《Biopolymers》1972,11(4):811-828
The heats of binding of Mg++ ions to poly A, poly U, and to their complexes, in the presence of Na+ ions, have been measurd calorimetrically. In all cases the heat, ΔH(θ), exhibitis a distinct dependence on the extent of binding, θ, and in the cases of poly A and poly U also on the Na+ concentration. The values of ΔH(θ) range from +2 to +3 kcal/mole of Mg++ bound at θ = 0 to 1.3 kcal/mole at θ = 0.5 except in poly A where at θ = 0 ΔH(θ) = ?2 to ?3 kcal/mole. This is interpreted as being due to a facilitation of base stacking by the binding of Mg++. The extent of facilitation is consistent with current estimates of base stacking. A similar effect but of much smaller magnitude is believed to obtain in poly A poly U. An interpretation of the dependence of ΔH(θ) on θ in terms of simple electrostatic interactions, but neglecting solvent effects, was attempted and found to be inadequate.  相似文献   

14.
After staining by a new proflavine derivative (2,7-di-t-butyl proflavine, DBP), which specifically binds to the A-T base pairs of DNA by an external process, the constrictions of the human chromosomes 1, 16 and to a lesser extent 9 and the centromeric regions of the chromosomes (except the Y) of Mus musculus are brightly fluorescent. These chromosome regions are known to contain repetitive DNAs rich in A-T. On the contrary, the centromeric regions of the autosomes of Bos taurus, which contain a G-C rich DNA, are faintly fluorescent. The arms of the chromosomes of the three species display a banding similar to, but fainter than, the Q-banding. These results are discussed in correlation with physico-chemical studies on the binding and fluorescence processes of the dye bound to DNA and to nucleohistone. The staining properties of DBP are compared to those of quinacrine, quinacrine mustard and proflavine, three intercalative dyes which are also supposed to reveal the A-T base pairs along the chromosomes, but are faintly fluorescent on the human and murine A-T rich regions. This comparison leads us to discuss the mechanisms responsible for the chromosomal banding in relation to DNA base composition and repetitiveness, protein distribution and packing of the chromatin fibers, along the chromosomes.  相似文献   

15.
Raman studies of nucleic acids. VII. Poly A-poly U and poly G-poly C   总被引:6,自引:0,他引:6  
L Lafleur  J Rice  G J Thomas 《Biopolymers》1972,11(12):2423-2437
Laser-excited Raman spectra of the double-helical complexes poly A·poly U and poly G·poly C are reported for 2H2O and H2O solutions. The spectra are discussed in relation to their use as quantitative reference spectra for determining the dependence of the Raman scattering of RNA on secondary structure. The Raman line at 815 cm?1, due to the phosphodiester group, exhibits the same intrinsic intensity in spectra of poly A·poly U and poly G·poly C and is thus dependent only upon the amount of ordering of the helix and not on the kinds of nucleotides involved. The hypochromic Raman lines in spectra of poly A·poly U are identified and their intensity changes are determined quantitatively over the temperature range 32–85°C. Comparison of the spectra in the 1500–1750 cm?1 region reveals that the Raman lines from carbonyl group vibrations of uracil are about sevenfold more intense than those of guanine and cytosine for both paired and unpaired states and will thus dominate the spectra of RNA. The Raman frequencies in this region are also compared with previously reported infrared frequencies and give evidence of being strongly perturbed by base-stacking interactions in the helices.  相似文献   

16.
Study of the relaxation kinetics of the interaction of ethidium and DNA reveals a novel and potentially important general binding mechanism, namely direct transfer of the ligand between DNA binding sites without requiring dissociation to free ligand. The measurable relaxation spectrum shows three relaxation times, indicating that three bound dye species are present at equilibrium; about 80% of the dye is in the major intercalated form. For each relaxation the reciprocal relaxation time varies linearly with concentration up to very high DNA concentrations. The failure of the longer relaxation times to plateau at high concentration can be accounted for by including a bimolecular pathway for conversion from one complex form to another. This we envisage as direct transfer of an ethidium molecule, bound to one DNA molecule, to an empty binding site on another DNA molecule. Additional evidence for this direct transfer mechanism was obtained from an experiment showing that DNA (which binds ethidium relatively rapidly) accelerates the binding of ethidium to poly(rA) · poly(rU), presumably by first forming a DNA-ethidium complex and then transferring the ethidium to RNA. The bimolecular rate constant for transfer is found to be about four times larger than the constant for intercalating the free dye. The transfer pathway thus provides a highly efficient means for the ligand to equilibrate over its DNA binding sites, especially at high polymer concentration. The potential importance of direct transfer for DNA-binding regulatory proteins is emphasized.  相似文献   

17.
The binding of proflavine to DNA has been studied by measuring the polarization and intensity of emission of DNA–dye complexes. Such measurements also permit the determination of the fluorescence of the bound dye as a function of the degree of binding. Techniques of emission spectroscopy permit the study of complexing at high phosphate to dye ratios, and we have examined complexes formed at up to 12,300:1 phosphates to dye. At high phosphate to dye ratios, we find that equilibrium plots of the binding data show only one type of binding. Reports in the literature of multiple binding constants are shown to be due to the incorrect assumption that the fluorescence of the bound dye is independent of the amount bound. The emission properties can be qualitatively accounted for by assuming that nearest-neighbor interaction between bound dyes quenches the fluorescence. We report that, within experimental error, the binding constant is insensitive to the base content of the DNA. The DNA-dye complexes show a temperature dependent depolarization, the cause of which is, as yet, unknown. Heat denaturation of the DNA–dye complex may be followed on a Perrin plot.  相似文献   

18.
L Noronha-Blob  J Pitha 《Biochemistry》1979,18(15):3206-3209
The binding of polyuridylate to cells is substantially increased by proflavine. This enhanced binding is saturable with respect to time and to the concentration of both proflavine and polyuridylate. Enhancement is observed only when cells are exposed to both proflavine and polyuridylate together and depends cooperatively on the proflavine concentration. The resulting complex formed between the cell, proflavine, and polyuridylate can be dissociated with salt but not with sucrose solutions. An increase in the binding of polyuridylate to cells similar to that observed with proflavine was also obtained with cationic dyes such as acridine orange, 9-aminoacridine, and Hoechst 33258, while the introduction of a bulky polysaccharide residue, dextran, into the dyes cancels these effects. Similarly, cationic aromatic compounds such as primaquine and quinacrine which carry bulky nonplanar substituents or aliphatic cationic compounds like ethylenediamine do not enhance binding. Proflavine is unable to augment the binding of a basic macromolecule, diethylaminoethylaminoethyldextran, to cells. The model proposed for the enhanced binding of polyuridylate is based on the cooperative formation of stacked complexes of cationic dye located between the cell surface and the bound polyuridylate.  相似文献   

19.
Induced circular dichroism of DNA-dye complexes   总被引:4,自引:0,他引:4  
C H Lee  C T Chang  J G Wetmur 《Biopolymers》1973,12(5):1098-1122
The binding of methylene blue, proflavine, and ethidium bromide with DNA has been studied by spectrophotometric titration. Methylene blue and proflavine or methylene blue and ethidium bromide were simultaneously titrated by DNA. The results indicate that all of these dyes compete for the same bindine sites. The binding properties are discussed in terms of symmetry. The optical properties of the dye–DNA complexes have been studied as a function of DNA/dye ratio. The induced circular dichriosm due to dye–dye interaction was measured at low dye/DNA ratios for cases involving both the same dye and different dyes. A positive Cotton effect for DNA–proflavine complex may be induced at 465 mμ by eithr proflavine or ethidium bromide, whereas a netgative Cotton effect at 465 mμ may be induced by methylene blue. The limiting circular dichroism, with no dye–dye interaction, and the induced circular dichroism spectra are discussed in terms of symmetry rules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号