首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lactate permease was biochemically identified in Candida albicans RM1000 presenting the following kinetic parameters at pH 5.0: Km 0.33+/-0.09 mM and Vmax 0.85+/-0.06 nmol s(-1) mg dry wt(-1). Lactate uptake was competitively inhibited by pyruvic and propionic acids; acetic acid behaved as a non-competitive substrate. An open reading frame (ORF) homologous to Saccharomyces cerevisiae gene JEN1 was identified (CaJEN1). Deletions of both CaJEN1 alleles of C. albicans (resulting strain CPK2) resulted in the loss of all measurable lactate permease activity. No CaJEN1 mRNA was detectable in glucose-grown cells neither activity for the lactate transporter. In a medium containing lactic acid, CaJEN1 mRNA was detected in the RM1000 strain, and no expression was found in cells of CPK2 strain. In a strain deleted in the CaCAT8 genes the expression of CaJEN1 was significantly reduced, suggesting the role of this gene as an activator for CaJEN1 expression. Both in C. albicans and in S. cerevisiae cells CaJEN1-GFP fusion was expressed and targeted to the plasma membrane. The native CaJEN1 was not functional in a S. cerevisiae jen1delta strain. Changing ser217-CTG codon (encoding leucine in S. cerevisiae) to a TCC codon restored the permease activity in S. cerevisiae, proving that the CaJEN1 gene codes for a monocarboxylate transporter.  相似文献   

2.
The genome from the Saccharomyces pastorianus industrial lager brewing strain Weihenstephan 34/70, a natural Saccharomyces cerevisiae/Saccharomyces eubayanus hybrid, indicated the presence of two different maltotriose transporter genes: a new gene in the S. eubayanus subgenome with 81% of homology to the AGT1 permease from S. cerevisiae, and an amplification of the S. eubayanus MTY1 maltotriose permease previously identified in S. pastorianus yeasts. To characterize these S. eubayanus transporter genes, we used a S. cerevisiae strain deleted in the AGT1 permease and introduced the desired permease gene(s) into this locus through homologous recombination. Our results indicate that both the MTY1 and AGT1 genes from the S. eubayanus subgenome encode functional maltotriose transporters that allow fermentation of this sugar by yeast cells, despite their apparent differences in the kinetics of maltotriose‐H+ symport activity. The presence of two maltotriose transporters in the S. eubayanus subgenome not only highlights the importance of sugar transport for efficient maltotriose utilization by industrial yeasts, but these new genes can be used in breeding and/or selection programs aimed at increasing yeast fitness for the efficient fermentation of brewer's wort.  相似文献   

3.
Plasmids containing derivatives of the Saccharomyces cerevisiae leucyl-tRNA (tRNA3 3 Leu ) gene that vary in anticodon sequence were constructed and transformed into the pathogen Candida albicans and S. cerevisiae. C. albicans could readily be transformed with plasmids encoding leucyl-tRNA genes with the anticodons CAA and UAA (recognizing the codons UUG and UUA) and expression of the heterologous tRNALeu could be demonstrated by Northern RNA blotting. In contrast, no transformants were obtained if the anticodons were UAG (codons recognized CUN, UUR) and CAG (codon CUG), indicating that the insertion of leucine at CUG codons is toxic for C. albicans. All tRNALeu-encoding plasmids transformed S. cerevisiae with equally high efficiencies. These results provide in vivo evidence that non-standard decoding of CUG codons is essential for the viability of C. albicans.  相似文献   

4.
Saccharomyces cerevisiae expresses two proteins that together support high‐affinity Fe‐uptake. These are a multicopper oxidase, Fet3p, with specificity towards Fe2+ and a ferric iron permease, Ftr1p, which supports Fe‐accumulation. Homologues of the genes encoding these two proteins are found in all fungal genomes including those for the pathogens, Candida albicans and Cryptococcus neoformans. At least one of these loci represents a virulence factor for each pathogen suggesting that this complex would be an appropriate pharmacologic target. However, the mechanism by which this protein pair supports Fe‐uptake in any fungal pathogen has not been elucidated. Taking advantage of the robust molecular genetics available in S. cerevisiae, we identify the two of five candidate ferroxidases likely involved in high‐affinity Fe‐uptake in C. albicans, Fet31 and Fet34. Both localize to the yeast plasma membrane and both support Fe‐uptake along with an Ftr1 protein, either from C. albicans or from S. cerevisiae. We express and characterize Fet34, demonstrating that it is functionally homologous to ScFet3p. Using S. cerevisiae as host for the functional expression of the C. albicans Fe‐uptake proteins, we demonstrate that they support a mechanism of Fe‐trafficking that involves channelling of the CaFet34‐generated Fe3+ directly to CaFtr1 for transport into the cytoplasm.  相似文献   

5.
Plasmids containing derivatives of the Saccharomyces cerevisiae leucyl-tRNA (tRNA3 3 Leu ) gene that vary in anticodon sequence were constructed and transformed into the pathogen Candida albicans and S. cerevisiae. C. albicans could readily be transformed with plasmids encoding leucyl-tRNA genes with the anticodons CAA and UAA (recognizing the codons UUG and UUA) and expression of the heterologous tRNALeu could be demonstrated by Northern RNA blotting. In contrast, no transformants were obtained if the anticodons were UAG (codons recognized CUN, UUR) and CAG (codon CUG), indicating that the insertion of leucine at CUG codons is toxic for C. albicans. All tRNALeu-encoding plasmids transformed S. cerevisiae with equally high efficiencies. These results provide in vivo evidence that non-standard decoding of CUG codons is essential for the viability of C. albicans.  相似文献   

6.
The BGL1 gene, encoding β-glucosidase in Saccharomycopsis fibuligera, was intracellular, secreted or cell-wall associated expressed in an industrial strain of Saccharomyces cerevisiae. The obtained recombinant strains were studied under aerobic and anaerobic conditions. The results indicated that both the wild type and recombinant strain expressing intracellular β-glucosidase cannot grow in medium using cellobiose as sole carbon source. As for the recombinant EB1 expressing secreted enzyme and WB1 expressing cell-wall associated enzyme, the maximum specific growth rates (μmax) could reach 0.03 and 0.05 h−1 under anaerobic conditions, respectively. Meanwhile, the surface-engineered S. cerevisiae utilized 5.2 g cellobiose L−1 and produced 2.3 g ethanol L−1 in 48 h, while S. cerevisiae secreting β-glucosidase into culture broth used 3.6 g cellobiose L−1 and produced 1.5 g ethanol L−1 over the same period, but no-full depletion of cellobiose were observed for both the used recombinant strains. The results suggest that S. cerevisiae used in industrial ethanol production is deficient in cellobiose transporter. However, when β-glucoside permease and β-glucosidase were co-expressed in this strain, it could uptake cellobiose and showed higher growth rate (0.11 h−1) on cellobiose.  相似文献   

7.
Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~ 1.89 × 106 member d ‐octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4‐methoxy‐2,3,6‐trimethylbenzenesulphonyl derivative of the d ‐octapeptide d ‐NH2‐FFKWQRRR‐CONH2, as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization‐resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug‐like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3.  相似文献   

8.
In order to maximize the glucoamylase production by recombinant Saccharomyces cerevisiae in batch culture, first a temperature-controlled expression system for a foreign gene in S. cerevisiae was constructed. A temperature-sensitive pho80 mutant of S. cerevisiae for the PHO regulatory system, YKU131, was used for this purpose. A DNA fragment bearing the promoter of the PHO84 gene, which encodes an inorganic phosphate (Pi) transporter of S. cerevisiae and is derepressed by Pi starvation, was used as promoter. The glucoamylase gene connected with the PHO84 promoter was ligated into a YEp13 vector, designated pKU122. When the temperature-sensitive pho80 ts mutant harboring the plasmid pKU122 is cultivated at a lower temperature, the expression of glucoamylase gene is repressed, but at a higher temperature it is expressed. Next the effect of temperature on the specific growth rate, μ, and specific production rate, ρ, was investigated. Maximum values of ρ and ρ at various temperatures were at 30°C and 34°C, respectively. The optimal cultivation temperature strategy for maximum production of glucoamylase by this recombinant strain in batch culture was then determined by the Maximum principle using the relationships of μ and ρ to the cultivation temperature. Finally, the optimal strategy was experimentally realized by changing the cultivation temperature from Tμ (30°C) to Tρ (34°C) at the switching time, ts. Received 18 September 1997/ Accepted in revised form 07 January 1998  相似文献   

9.
Summary A genomic library of the asexual pathogenic yeast Candida albicans was constructed in the S. cerevisiae vector YEp13. The library contains a representation of the entire genome with a probability of 99%. The expression of the genes of C. albicans in S. cerevisiae was examined and two mutations his3-1 and trp1-289 of S. cerevisiae were complemented by the cloned genes of C. albicans. The hybridization data indicates that the plasmids complementing the mutations of S. cerevisiae contain sequences from C. albicans.  相似文献   

10.
11.
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS 4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of the recombinantS. cerevisiae.  相似文献   

12.
Summary A plasmid vector (denoted pRC2312) was constructed, which replicates autonomously in Escherichia coli, Saccharomyces cerevisiae and Candida albicans. It contains LEU2, URA3 and an autonomously replicating sequence (ARS) from C. albicans for selection and replication in yeasts, and bla (ampicillin resistance) and ori for selection and replication in E. coli. S. cerevisiae AH22 (Leu) was transformed by pRC2312 to Leu at a frequency of 1.41 × 105 colonies per g DNA. Transformation of C. albicans SGY-243 (Ura-) to Ura+ with pRC2312 resulted in smaller transformant colonies at a frequency of 5.42 × 103 per g DNA where the plasmid replicated autonomously in transformed cells, and larger transformant colonies at a frequency of 32 per g DNA, in which plasmid integrated into the genome. Plasmid copy number in yeasts was determined by a DNA hybridization method and was estimated to be 15±3 per haploid genome in S. cerevisiae and 2–3 per genome in C. albicans replicative transformants. Multiple tandem integration occurred in integrative transformants and copy number of the integrated sequence was estimated to be 7–12 per diploid genome. The C. albicans ADE2 gene was ligated into plasmid pRC2312 and the construct transformed Ade strains of both C. albicans and S. cerevisiae to Ade+. The vector pRC2312 was also used to clone a fragment of C. albicans genomic DNA containing an aspartic proteinase gene. C. albicans transformants harboring this plasmid showed a two-fold increase in aspartic proteinase activity. However S. cerevisiae transformants showed no such increase in proteinase activity, suggesting the gene was not expressed in S. cerevisiae.  相似文献   

13.
14.
Humans are exposed much more often to exogenous Saccharomyces cerevisiae (a baker’s yeast) than exogenous Candida albicans (a highly infectious yeast) but suffer no apparent complications from S. cerevisiae. We hypothesize that variations in characteristics between these two species may be due, in part, to differences in glycine metabolism. In this study, we examined differences in glycine oxidation between C. albicans and S. cerevisiae. Both C. albicans and S. cerevisiae were cultured in glycine enriched media, followed by determination of glycine oxidation and amino acid concentrations in cells. Glycine was degraded to a much greater extent in C. albicans than in S. cerevisiae. Threonine concentrations and glycine oxidation were also elevated in C. albicans. Almost all of the disappearance of glycine from incubation media was accounted for by the formation of serine, threonine, and CO2 in S. cerevisiae, whereas these products represented only 50% of the metabolized glycine in C. albicans. The unidentified metabolites of glycine in C. albicans, presumably purines, could contribute to its infectious capacity and this warrants further study.  相似文献   

15.
Using a DNA microarray, we found that expression of the genes related to lactate metabolism was upregulated in a lactate-producing recombinant Saccharomyces cerevisiae strain. Disruption of the CYB2 gene encoding L-lactate dehydrogenase improved the L-lactate production by S. cerevisiae under low pH condition.  相似文献   

16.
Wang D  Wang Z  Liu N  He X  Zhang B 《Biotechnology letters》2008,30(11):2013-2018
The expression cassette I10 containing the new-found flocculation gene, FLONS, was transformed into an industrial strain Saccharomyces cerevisiae YSF5. Upstream activating sequences of the S. cerevisiae alcohol dehydrogenase II (ADH2) gene promoter (PU-ADH2) were used to regulate the expression of FLONS; α-acetolactate synthase gene ILV2 was chosen for homologous recombination of I10 to the YSF5 chromosome; copper binding metallothionein (encoded by CUP1) was used for selection of transformants. Ten randomly selected transformants exhibited increased flocculation ability of 1.5 to 2.3 fold more than the original strain. Based on their sensitivity to glucose, maltose and sucrose, flocculation property of the transformants was supported to be NewFlo-type. After successive subculture, the introduced CUP1 remained in the transformants. At the end of simulated fermentation test, diacetyl content of the culture media of 5I-1 was 0.45 g l−1, lower than YSF5 (0.48 g l−1).  相似文献   

17.
Chen Z  Li Z  Yu N  Yan L 《Biotechnology letters》2011,33(4):721-725
The sweet protein monellin gene was expressed in Saccharomyces cerevisiae under the control of the GAL1 promoter and α-factor signal peptide sequence of S. cerevisiae. The gene, which was obtained through mutation of the synthesized single-chain monellin gene, was cloned into an E. coli-yeast shuttle vector pYES2.0 which carries the galactose-inducible promoter GAL1. Then the α-factor signal peptide of S. cerevisiae was linked also, resulting in the secreting expression vector pYESMTA. The recombinant plasmid was subsequently transformed into strain S. cerevisiae INVsc1. The peptide efficiently directed the secretion of monellin from the recombinant yeast cell. A maximum yield of active monellin was 0.41 g l−1 of the supernatant from INVsc1 harboring pYESMTA.  相似文献   

18.
The presence of maltose induces MAL gene expression in Saccharomyces cells, but little is known about how maltose is sensed. Strains with all maltose permease genes deleted are unable to induce MAL gene expression. In this study, we examined the role of maltose permease in maltose sensing by substituting a heterologous transporter for the native maltose permease. PmSUC2 encodes a sucrose transporter from the dicot plant Plantago major that exhibits no significant sequence homology to maltose permease. When expressed in Saccharomyces cerevisiae, PmSUC2 is capable of transporting maltose, albeit at a reduced rate. We showed that introduction of PmSUC2 restores maltose-inducible MAL gene expression to a maltose permease-null mutant and that this induction requires the MAL activator. These data indicate that intracellular maltose is sufficient to induce MAL gene expression independently of the mechanism of maltose transport. By using strains expressing defective mal61 mutant alleles, we demonstrated a correlation between the rate of maltose transport and the level of the induction, which is particularly evident in medium containing very limiting concentrations of maltose. Moreover, our results indicate that a rather low concentration of intracellular maltose is needed to trigger MAL gene expression. We also showed that constitutive overexpression of either MAL61 maltose permease or PmSUC2 suppresses the noninducible phenotype of a defective mal13 MAL-activator allele, suggesting that this suppression is solely a function of maltose transport activity and is not specific to the sequence of the permease. Our studies indicate that maltose permease does not function as the maltose sensor in S. cerevisiae.  相似文献   

19.
Glutathione and its derivatives play an important role in the tolerance of plants against heavy metals. A glutathione transporter, BjGT1 (AJ561120), was cloned and functionally characterized from Brassica juncea, a plant which may be used for phytoremediation. The full‐length BjGT1 cDNA showed homology with the high affinity glutathione transporter HGT1 from Saccharomyces cerevisiae and shares 92% identity with a putative glutathione transporter from A. thaliana (At4g16370). When expressed in the S. cerevisiae hgt1Δ strain, BjGT1 complemented the mutant on medium with glutathione as the only sulphur source and mediated the uptake of [3H]GSH. Immunoblot analysis with a peptide‐specific antiserum directed against a C‐terminal sequence revealed high BjGT1 expression in leaf tissue and relatively low expression in stem tissue, whereas BjGT1 protein was not detectable in root tissue. The amounts of BjGT1 mRNA and protein were analysed during a 6 d exposure of B. juncea to 25 µm Cd(NO3)2. BjGT1 mRNA was strongly induced by cadmium in stems and leaves. Unexpectedly, the amount of BjGT1 protein in leaves showed a pronounced decrease with a minimum after 96 h of Cd exposure, followed by partial recovery. The strong regulation of BjGT1 by cadmium suggests a role of this glutathione transporter during heavy metal exposure.  相似文献   

20.
Summary The gene encoding the efficient UGA suppressor sup3-e of Schizosaccharomyces pombe was isolated by in vivo transformation of Saccharomyces cerevisiae UGA mutants with S. pombe sup3-e DNA. DNA from a clone bank of EcoRI fragments from a S. pombe sup3-e strain in the hybrid yeast vector YRp17 was used to transform the S. cerevisiae multiple auxotroph his4-260 leu2-2 trp1-1 to prototrophy. Transformants were isolated at a low frequency; they lost the ability to grow in minimal medium after passaging in non-selective media. This suggested the presence of the suppressor gene on the non-integrative plasmid. Plasmid DNA, isolated from the transformed S. cerevisiae cells and subsequently amplified in E. coli, transformed S. cerevisiae his4-260 leu2-2 trp1-1 to prototrophy. In this way a 2.4 kb S. pombe DNA fragment carrying the sup3-e gene was isolated. Sequence analysis revealed the presence of two tRNA coding regions separated by a spacer of only seven nucleotides. The sup3-e tRNA Ser UGA tRNA gene is followed by a sequence coding for the initiator tRNAMet. The transformation results demonstrate that the cloned S. pombe UGA suppressor is active in S. cerevisiae UGA mutant strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号