首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Marine mites (Halacaroidea: Acari): a geographical and ecological survey   总被引:2,自引:2,他引:0  
Halacarid mites (Acari), with almost 700 species described, inhabit marine and freshwater habitats. The majority of genera are recorded from at least two ocean basins or continents. There is no evidence of endemic genera, in either littoral faunal provinces or in deep-sea regions. Copidognathus, a genus comprising 1/4 of all species described, is found in almost all geographic regions, depths and habitats. Other genera dominate or are restricted to cold waters, to warm waters or to distinct habitats.Corresponding habitats on either side of the boreal Atlantic Ocean harbour congeneric, identical, sibling or morphologically similar species. The fauna in the western Atlantic is less diverse than that in the eastern. Amphiatlantics are restricted to certain genera. Transatlantic distribution is independent of the niche inhabited.Of the marine halacarid species recorded from the boreal western Atlantic, 41% are amphiatlantics, while only one species is recorded from both the Caribbean and the Mediterranean. The Caribbean and the Mediterranean faunas are dominated by genera in which amphiatlantics are unknown.Most of the Black Sea species of the genus Halacarellus also occur in the Baltic, North Sea or North Atlantic, whereas the Copidognathus fauna of the Black Sea is similar to that of the Mediterranean.Halacarids are thought to be an ancient taxon, with most genera probably having been present since the Mesozoic and with several species having an age of at least 50 million years. Evidence for their antiquity is found in the distributional pattern of marine and limnic genera and species, in the lack of endemic genera despite low fecundity and lack of dispersal stages, and in the fact that amphiatlantics are restricted to certain genera without relationships to the niches inhabited.  相似文献   

2.
The Mediterranean Sea is subject to an ever-increasing arrival of non-indigenous marine organisms. Microcosmus squamiger is a solitary ascidian that inhabits shallow rocky littoral habitats. It probably originated in Australia and it has shown great invasive potential in other parts of the world. In the Mediterranean, M. squamiger has only been reported at a few sites in Spain and Italy. However, the closely related species Microcosmus exasperatus has been reported in several areas of the western Mediterranean. As these species can be easily confused, we re-examined most of the material from previous studies and our personal collections. In addition, sampling was done at several sites along the western Mediterranean and Atlantic coasts. The results showed that the majority of the M. exasperatus reports correspond to M. squamiger, and that M. squamiger is common on the Atlantic shores. This suggests that M. squamiger has entered the Mediterranean through the Gibraltar Strait, while the restricted distribution in the eastern Mediterranean of M. exasperatus suggests that this species is probably a Lessepsian migrant. In the Mediterranean Sea, M. squamiger has the ability to occupy extensive areas of hard substrata and to outcompete native species. Further studies are necessary to assess what impacts this invasive species have on native communities.  相似文献   

3.
Morphological variation was examined in Neomysis integer and Mesopodopsis slabberi, two abundant, low dispersal mysid species (Crustacea, Mysida) along the European coasts. Both species dominate the hyperbenthic communities in the northeast Atlantic, and M. slabberi is also widely distributed in the Mediterranean and Black Sea. Three populations of these species were sampled throughout their distribution range; samples of N. integer were collected in the northeast Atlantic Eems-Dollard, Gironde and Guadalquivir estuaries; in the case of M. slabberi, mysids were sampled in two northeast Atlantic estuaries (Eems-Dollard and Guadalquivir) and one Mediterranean site (Ebro Delta). A total of 12 morphometric and 2 meristic characters were measured from 30–64 mysids per sample. Multivariate analysis showed clear morphometric differences between populations of both species. The morphological differentiation within M. slabberi was highly concordant with the available genetic data from mitochondrial loci, pointing to a large divergence between the Atlantic and Mediterranean populations. However, due to some overlap of individuals between the different populations, the present morphometric analysis does not suffice to assign the different populations to a separate (sub)species status. In the case of N. integer, the morphometric patterns showed a divergence of the Gironde population. Differentiation of populations within this mysid, as in M. slabberi, were mainly related to eye and telson morphology. Potential interactions of the mysid morphology and environmental conditions are discussed.  相似文献   

4.
Xavier, R., Santos, A. M., Harris, D. J., Sezgin, M., Machado, M., Branco, M. (2012). Phylogenetic analysis of the north‐east Atlantic and Mediterranean species of the genus Stenosoma (Isopoda, Valvifera, Idoteidae). —Zoologica Scripta, 41, 386–399. The marine isopod genus Stenosoma is widespread in the northern hemisphere. However, 12 of its 14 known species are found within the Mediterranean basin and adjacent regions of the north‐east Atlantic and the Black Sea. Such a high level of diversity confined to a limited region of a much larger circumglobal distribution suggests that the Mediterranean region may have played a crucial role in the evolutionary history of this genus. In the present work, the phylogeny of the genus Stenosoma was investigated on the basis of DNA sequencing data from one nuclear (28SrRNA) and two mitochondrial (COI, ND4) gene fragments obtained for nine of 12 Atlantic–Mediterranean species. Divergence time estimates point to a Tethyan origin of Stenosoma and suggest that the speciation events from which stem most of the extant species took place well before the Messinian Salinity Crisis. Stenosoma spinosum and Stenosoma appendiculatum are the only exceptions, as they apparently arose within the Mediterranean during the Pleistocene. Phylogenetic reconstruction agrees with current taxonomic status of most species. However, Stenosoma capito clustered in two distinct and well‐supported clades, one composed of eastern Mediterranean and Black Sea specimens and the other by western Mediterranean and Atlantic ones. Such polyphyly suggests the existence of a previously unrecognized species, Stenosoma sp., which so far has been confounded with S. capito.  相似文献   

5.
We propose the new genus Melyvonnea to accommodate species previously included in Mesophyllum having: a) perithallial protuberances that may branch and dominate over the encrusting base, b) monoecious gametophytes with gametangial conceptacles occasionally developed in superimposition, c) spheroid carposporangial chambers (lacking a central pedestal), and d) filaments lining canals of multiporate roofs composed of 3 to 5 cells with distinctively elongate basal cells. The new genus shares with Mesophyllum the development of a predominantly coaxial hypothallium. Melyvonnea presently accommodates three species in the Central Atlantic, viz. the generitype Melyvonnea canariensis (Foslie) comb. nov. from the Canary Islands, Melyvonnea erubescens (Foslie) comb. nov. ( = Mesophyllum incertum; type locality: Bermuda) from the western Atlantic, Melyvonnea aemulans (Foslie & Howe) comb. nov. from Puerto Rico, and one Indo‐Pacific species, Melyvonnea madagascariensis (Foslie) comb. nov. We also emend Mesophyllum Lemoine to encompass Northern Hemisphere species that lack the above apomorphies of Melyvonnea and in addition develop a central pedestal in carposporangial conceptacles (via dissolution of the surrounding cells) with gonimoblasts bending down to fill the empty space. Mesophyllum sensu stricto currently includes six species in the northeast Pacific (M. aleuticum, M. conchatum, M. crassiusculum, M. lamellatum, M. megagastri, M. vancouveriense), two species in the western Atlantic (M. mesomorphum and M. syntrophicum), and three species in the northeast Atlantic and the Mediterranean Sea (M. expansum, M. lichenoides, M. philippii). Gametophytic species of each genus show a mainly disjunct distribution being restricted to the tropics–subtropics (Melyvonnea) and the temperate waters of the Northern Hemisphere (Mesophyllum s.s.). This classification is supported by a consensus of studies of all well‐known species of Mesophyllum sensu Adey (1970), and is based on a phylogenetic analysis of morphological and anatomical characters in addition to molecular evidence.  相似文献   

6.
7.
Carcinus aestuarii Nardo, 1847 is a widespread coastal crab species throughout the Mediterranean Sea with a pelagic larval phase. This species tolerates a wide range of environmental conditions and typically inhabits fragmented habitats, such as embayments, lagoons and estuaries. It is therefore a good candidate species for studying and testing different phylogeographical hypotheses in the Mediterranean Sea. By contrast to its Atlantic sister species, Carcinus maenas, studies on the population genetic structure of C. aestuarii in its native range are still scarce. In the present study, specimens from along the European Mediterranean Sea were collected and DNA‐sequenced and analyses were applied to discriminate between present day and historical factors influencing the population genetic structure of this species. The results obtained demonstrate the existence of two genetically distinct geographical groups, corresponding to the eastern and western Mediterranean, with further subdivision within the East Mediterranean Basin. A strong asymmetric gene flow was recorded toward the Eastern Basin, which may play a crucial role in shaping the present day biogeographical patterns of this species and potentially other sympatric ones with pelagic larvae. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 771–790.  相似文献   

8.
The fabriciin sabellid species Fabriciola tonerella Banse, 1959 living on gastropod shells inhabited by hermit crabs collected in the western Mediterranean Sea is redescribed. Another species of Fabriciinae, Novafabricia infratorquata (Fitzhugh, 1983), is recorded for the first time from the Mediterranean Sea and found in the same habitat is described as well. The variability of characters depending on size and geographical distribution is given for both species. Moreover, selected characters for all known species of Fabriciola and Novafabricia as well as a simple key for all Fabriciinae of the Mediterranean Sea and the north-east Atlantic are provided.  相似文献   

9.
Members of only a few species of annelids are reported as being incapable of regeneration; of these, Myxicola infundibulum is the only example in the family Sabellidae. Interestingly, its congener Myxicola aesthetica exhibits noteworthy regenerative ability. Unambiguously identifying non‐regenerating species is critical to reconstructing how regenerative abilities evolved within the phylum. However, studies designed specifically to assess the regenerative potential of M. infundibulum have never been performed. In this study, we aimed to confirm the lack of regeneration ability of M. infundibulum, reported previously for Atlantic specimens, or to determine the extent to which regeneration occurs. Our results showed that individuals from the Mediterranean Sea (Adriatic Sea) do undergo regeneration of lost body parts, although to a lesser extent than do other sabellids. Therefore, M. infundibulum should no longer be considered a non‐regenerating species. At present, uncertainties regarding phylogenetic relationships of Sabellidae prevent inferences about the polarity of change in M. infundibulum. Since our findings are counter to those of previous studies which describe Atlantic specimens as non‐regenerating, more extensive analysis is required to ascertain if they could actually belong to a different species than Mediterranean M. infundibulum, accounting for these differences in reported regenerative capacity.  相似文献   

10.
Genetic and some ecophysiological traits of mussels collected in the European Arctic, up to their northeastern distribution limit in the Barents Sea, were studied and compared with traits of mussels from the Mediterranean, Atlantic and Baltic. The genetic traits of these populations were analysed by isoenzyme electrophoresis on seven loci in order to assess the Mytilus complex to which populations in the Arctic region belong. Ecophysiological variables, the weight-index and glycogen were analysed to assess the physiological fitness of the populations. Three distinct groups were recognised: (1) Mytilus (edulis) galloprovincialis in the Mediterranean and Spain, (2) M. (edulis) edulis along the Atlantic coast from the Netherlands northwards into Russia, and (3) the Baltic Mytilus (edulis) trossulus. The mussels from populations in the Russian Arctic all belong to the Atlantic Mytilus (edulis) edulis group. The genetic variability and ecophysiological measures indicated that the sub-Arctic White Sea mussel populations have a relatively lower performance capacity, whereas those in the Arctic at the edge of their northern distribution showed a surprisingly strong performance. Accepted: 14 June 2000  相似文献   

11.
The Atlantic bluefin tuna is a highly migratory species emblematic of the challenges associated with shared fisheries management. In an effort to resolve the species’ stock dynamics, a genomewide search for spatially informative single nucleotide polymorphisms (SNPs) was undertaken, by way of sequencing reduced representation libraries. An allele frequency approach to SNP discovery was used, combining the data of 555 larvae and young‐of‐the‐year (LYOY) into pools representing major geographical areas and mapping against a newly assembled genomic reference. From a set of 184,895 candidate loci, 384 were selected for validation using 167 LYOY. A highly discriminatory genotyping panel of 95 SNPs was ultimately developed by selecting loci with the most pronounced differences between western Atlantic and Mediterranean Sea LYOY. The panel was evaluated by genotyping a different set of LYOY (n = 326), and from these, 77.8% and 82.1% were correctly assigned to western Atlantic and Mediterranean Sea origins, respectively. The panel revealed temporally persistent differentiation among LYOY from the western Atlantic and Mediterranean Sea (FST = 0.008, p = .034). The composition of six mixed feeding aggregations in the Atlantic Ocean and Mediterranean Sea was characterized using genotypes from medium (n = 184) and large (n = 48) adults, applying population assignment and mixture analyses. The results provide evidence of persistent population structuring across broad geographic areas and extensive mixing in the Atlantic Ocean, particularly in the mid‐Atlantic Bight and Gulf of St. Lawrence. The genomic reference and genotyping tools presented here constitute novel resources useful for future research and conservation efforts.  相似文献   

12.
13.
14.
Aim Ostreopsis is a benthic and epiphytic dinoflagellate producing potent toxins widespread in tropical and warm temperate coastal areas world‐wide. We tested the hypothesis that as it is benthic, it would show distinct biogeographical patterns in comparison with planktonic species. Here, we analyse sequence variability in ribosomal DNA markers to provide the first phylogeographical study of this toxic benthic dinoflagellate. Location Mediterranean Sea, Atlantic Ocean, Pacific Ocean. Methods Ribosomal DNA sequence data from partial nuclear LSU (D1/D2 domains) and 5.8S genes and non‐coding internal transcribed spacer (ITS) regions were obtained from 82 isolates of Ostreopsis species, collected at 26 localities throughout the world. Molecular sequence data were analysed using maximum parsimony, maximum likelihood and Bayesian methods for phylogenetic inference. A statistical parsimony network was obtained based on concatenated LSU and 5.8S rDNA–ITS region sequences of the Mediterranean/Atlantic Ostreopsis cf. ovata isolates to infer haplotype distribution over their geographical range. Light epifluorescence microscopy analyses were performed on cultured and field Ostreopsis material for taxonomic identification, while laboratory experiments for encystment induction were carried out on selected O. cf. ovata isolates. Toxin assays of Ostreopsis species isolates were carried out using the haemolytic‐based method. Results Analyses based on single and concatenated ribosomal genes gave substantially similar results. The rDNA phylogeny revealed different clades corresponding to different species within the genus Ostreopsis. In the species O. cf. ovata, different genetic lineages were correlated with macrogeographical distribution. A network of haplotypes inferred from the Atlantic and Mediterranean isolates of O. cf. ovata revealed that these two areas might host a single panmictic population. The Atlantic/Mediterranean population of O. cf. ovata was differentiated considerably from the Indo‐Pacific populations. Other species of Ostreopsis were found, but they turned out to be restricted to just one of the two main warm‐water oceanic basins, the Mediterranean/Atlantic and the Indo‐Pacific. Main conclusions Ostreopsis cf. ovata was found to be widely dispersed throughout the coastal areas of tropical and some warm temperate seas. In the Atlantic/Mediterranean region it may constitute a panmictic population that is highly distinct from Indo‐Pacific populations. Ostreopsis cf. siamensis was found only in the Mediterranean Sea, and strains identified as Ostreopsis lenticularis and Ostreopsis labens were found only in the Indo‐Pacific region.  相似文献   

15.
Aim The Pleistocene glaciations were the most significant historical event during the evolutionary life span of most extant species. However, little is known about the consequences of these climate changes for the distribution and demography of marine animals of the north‐eastern Atlantic. The present study focuses on the phylogeographic and demographic patterns of the sand goby, Pomatoschistus minutus (Teleostei: Gobiidae), a small marine demersal fish. Location North‐eastern Atlantic, Mediterranean, Irish, North and Baltic seas. Methods Analysis was carried out by sequencing the mtDNA cytochrome b gene of sand gobies from 12 localities throughout the species’ range, and using this information in combination with published data of allozyme markers and mtDNA control region sequences. Several phylogenetic methods and a network analysis were used to explore the phylogeographic pattern. The historical demography of P. minutus was studied through a mismatch analysis and a Bayesian skyline plot. Results Reciprocal monophyly was found between a Mediterranean Sea (MS) clade and an Atlantic Ocean (AO) clade, both with a Middle Pleistocene origin. The AO Clade contains two evolutionary significant units (ESUs): the Iberian Peninsula (IB) Group and the North Atlantic (NA) Group. These two groups diverged during Middle Pleistocene glacial cycles. For the NA Group there is evidence for geographic sorting of the ancestral haplotypes with recent radiations in the Baltic Sea, Irish Sea, North Sea and Bay of Biscay. The demographic histories of the Mediterranean Clade and the two Atlantic ESUs were influenced mainly by expansions dated as occurring during the Middle Pleistocene glaciations and post‐Eem, respectively. Main conclusions The pre‐LGM (Last Glacial Maximum) subdivision signals were not erased for P. minutus during the LGM. Middle Pleistocene glaciations yielded isolated and differently evolving sets of populations. In contrast to the case for most other taxa, only the northern Atlantic group contributed to the post‐glacial recolonization. The historical demography of Mediterranean sand gobies was influenced mainly by Middle Pleistocene glaciations, in contrast to that of the Atlantic populations, which was shaped by Late Pleistocene expansions.  相似文献   

16.
Multiple opening-closing nets of 0.05 mm mesh size were employed to study the community structure and vertical distribution of microcopepods at selected stations in the Red Sea, Arabian Sea and Eastern Mediterranean Sea down to a maximum depth of 1850 m. Calanoids, cyclopoids (Oithona and Paroithona) and poecilostomatoids (mainly Oncaea) were the 3 most abundant orders. In the epipelagic zone (0–100 m), these orders occurred at similar abundance levels, whereas in the meso- and bathypelagic zones the poecilostomatoid genus Oncaea dominated numerically by about 60–80% of all copepodids.The species diversity of Oncaea in the Red Sea is compared with preliminary results from the two adjacent regions. In the deep Eastern Mediterranean Sea, the number of species appears to be similar to that in the deep Red Sea and low as compared to the deep Arabian Sea. In this latter area an extremely speciose Oncaea fauna was found at depth below the oxygen-minimum-zone (900–1850 m). The results are related to the differences in the hydrographic conditions of these 3 areas.  相似文献   

17.
The transition zone between the Mediterranean and Atlantic basins has been extensively addressed in phylogeographical studies of marine species. However, biases exist towards the analysis of highly dispersive species, and there is a higher sampling effort in European coasts compared to North Africa. This may be hindering a detailed understanding of the historical and contemporary processes that shaped patterns of population genetic structure in the region. In the present study, we investigated the phylogeographical and phylogenetic patterns of mitochondrial cytochrome c oxidase subunit I sequences from a species with direct development and low dispersal abilities, Stenosoma nadejda (Rezig, 1989). The study area included 13 localities along the Atlantic and Mediterranean North African coasts, as well as the Alboran Sea. A new Stenosoma species, from the coasts of Algeria and Alboran Island, was discovered. For S. nadejda, phylogeographical analyses revealed three distinct clades: one in the Iberian Atlantic plus the Alboran Sea, one in the western Mediterranean, and another in the Atlantic coast of Africa. Haplotypes from the Alboran Island were more related to those from the western Mediterranean coast (east of the Almeria–Oran Front). Given the strong differentiation, it is probable that this species survived in multiple glacial refugia during the Pleistocenic glaciations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 419–431.  相似文献   

18.
《水生昆虫》2012,34(2):45-55
Sea-skaters in the genus Halobates Eschscholtz 1822 include some of the most specialised water striders and are found in tropical and subtropical seas around the world. Even though species of Halobates occur in both the Atlantic Ocean and the Red Sea, no extant sea-skater has been reported from the Mediterranean Sea. A fossil, Halobates ruffoi Andersen et al., 1994, described from Middle–Upper Eocene (45 Ma) Italy indicates that sea skaters were present in this part of the world in the past. Other geological evidence points to dramatic changes in the Mediterranean Sea during the Tertiary and Quaternary that may have led to their later extinction. In this paper we review briefly the distribution, systematics, evolution and ecology of Halobates, and discuss the potential for the Mediterranean to be recolonised following expected environmental changes due to global warming.  相似文献   

19.
Aim To investigate biogeographical patterns based on published dinoflagellate records from the Mediterranean and Black Seas, and to provide a tentative list of endemic and Indo‐Pacific dinoflagellates in the Mediterranean Sea. Location Mediterranean Sea, Black Sea. Methods Checklists of dinoflagellates of the Mediterranean and Black Seas were compared with worldwide literature records. Only species reported in the Indo‐Pacific Ocean or exclusively known in the Mediterranean Sea were selected for biogeographical analysis. Results Dinoflagellates in the Mediterranean Sea comprised c. 43% of the world marine species and c. 88% of the dinoflagellate genera. Species richness among the Mediterranean sub‐basins showed marked differences due to the less reliable records of unarmoured (athecate) and rare dinoflagellates. These differences disappeared when only the more easily identifiable taxa were considered. Of the 673 dinoflagellates cited in the Mediterranean, 87% were also reported in the Atlantic Ocean. Only 40 taxa (6% of the total) were considered to be potential Indo‐Pacific species. Most were reported from the Ligurian Sea (21), and only two species from the Levantine basin. The other 48 taxa (7% of total) were known exclusively from the Mediterranean Sea, mainly from the Ligurian Sea. Half of these taxa were reported by a single author. Main conclusions Substantial dinoflagellates species richness can be attributed, in part, to the historical tradition of taxonomic studies in the Mediterranean Sea. The list of species of both Indo‐Pacific and exclusively Mediterranean species included taxa of dubious taxonomic validity or that were insufficiently known. The exclusion of these questionable taxa revealed the near absence of endemic dinoflagellates in the Mediterranean Sea compared with macroscopic organisms. This could be related to: (1) continuous replenishment of the plankton populations by the inflow of Atlantic water through the Strait of Gibraltar, (2) the possibility that species introduced during the Pliocenic flooding after the Messinian salinity crisis have not had enough time to diverge from their Atlantic ancestors, and/or (3) the reliance on traditional taxonomy based on morphological characters, which precludes the detection of cryptic speciation.  相似文献   

20.
Data on the distribution and biology of the deep-sea portunid crab Bathynectes maravigna are reported for the Mediterranean Sea, based on several fisheries research surveys. Densities are low and, therefore, biological data are scarce. In the western Mediterranean, the species is much commoner in Alborán Sea than in the Catalano-Balearic Sea. Occurrences are also scarce in the southern Adriatic and northwestern Thyrrenian Sea, as well as in the Ionian Sea. The Alborán Sea and the seas surrounding the southern Italian peninsula are the areas where densities are the highest. The occurrence depth range was found to be 245–786 m, but most of the occurrences took place deeper than 500 m. Sizes ranged between 9 and 51 mm carapace length in males and between 12 and 51 mm in females. Ovigerous females have been only reported in October–December and March–May. Eighty three percent of both males and females are right-handed. Sexual dimorphism was present in cheliped length with males having longer chelae than females. The species appears to be much commoner in those areas where Atlantic influence is the highest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号