首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dengue fever is one of the most widespread tropical diseases in the world. The disease is caused by a virus member of the Flaviviridae family, a group of enveloped positive sense single-stranded RNA viruses. Dengue virus infection is mediated by virus glycoprotein E, which binds to the cell surface. After uptake by endocytosis, this protein induces the fusion between viral envelope and endosomal membrane at the acidic environment of the endosomal compartment. In this work, we evaluated by steady-state and time-resolved fluorescence spectroscopy the interaction between the peptide believed to be the dengue virus fusion peptide and large unilamellar vesicles, studying the extent of partition, fusion capacity and depth of insertion in membranes. The roles of the bilayer composition (neutral and anionic phospholipids), ionic strength and pH of the medium were also studied. Our results indicate that dengue virus fusion peptide has a high affinity to vesicles composed of anionic lipids and that the interaction is mainly electrostatic. Both partition coefficient and fusion index are enhanced by negatively charged phospholipids. The location determined by differential fluorescence quenching using lipophilic probes demonstrated that the peptide is in an intermediate depth in the hemilayers, in-between the bilayer core and its surface. Ultimately, these data provide novel insights on the interaction between dengue virus fusion peptide and its target membranes, namely, the role of oligomerization and specific types of membranes.  相似文献   

2.
The possible contribution of the mature portion of a mitochondrial precursor protein to its interaction with membrane lipids is unclear. To address this issue, we examined the interaction of the precursor to mitochondrial aspartate aminotransferase (pmAAT) and of a synthetic peptide corresponding to the 29-residue presequence peptide (mAAT-pp) with anionic phospholipid vesicles. The affinity of mAAT-pp and pmAAT for anionic vesicles is nearly identical. Results obtained by analyzing the effect of mAAT-pp or full-length pmAAT on either the permeability or microviscosity of the phospholipid vesicles are consistent with only a shallow insertion of the presequence peptide in the bilayer. Analysis of the quenching of Trp-17 fluorescence by brominated phospholipids reveals that this presequence residue inserts to a depth of approximately 9 A from the center of the bilayer. Furthermore, in membrane-bound pmAAT or mAAT-pp, both Arg-8 and Arg-28 are accessible to the solvent. These results suggest that the presequence segment lies close to the surface of the membrane and that the mature portion of the precursor protein has little effect on the affinity or mode of binding of the presequence to model membranes. In the presence of vesicles, mAAT-pp adopts considerable alpha-helical structure. Hydrolysis by trypsin after Arg-8 results in the dissociation of the remaining 21-residue C-terminal peptide fragment from the membrane bilayer, suggesting that the N-terminal portion of the presequence is essential for membrane binding. Based on these results, we propose that the presequence peptide may contain dual recognition elements for both the lipid and import receptor components of the mitochondrial membrane.  相似文献   

3.
We have used fluorescence measurements and assays of vesicle disruption (contents leakage) to monitor the interaction between lipid vesicles and a synthetic peptide corresponding to the N-terminal 27 amino acids of rat mitochondrial pre-ornithine carbamyltransferase (pOCT). This peptide and two fluorescent derivatives bind reversibly to vesicles composed of neutral and anionic phospholipids with increasing affinity as the proportion of anionic lipids in the vesicles increases. The affinity of the peptide for lipid vesicles is unaffected by the presence of a transbilayer potential (inside negative) of at least -80 mV across the vesicle membranes. Our results support the proposal that the signal sequence of pOCT may promote an initial association of the precursor protein with mitochondrial membranes prior to binding to a specific receptor. However, we find no evidence that the pOCT signal sequence can subsequently undergo transfer into or across the lipid bilayer, even in the presence of a transmembrane potential of the magnitude previously found to support the import of precursor proteins into mitochondria.  相似文献   

4.
We have examined the interaction of the human immunodeficiency virustype 1 fusion peptide (23 amino acid residues) and of a Trp-containing analog with vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine and cholesterol (molar ratio, 1:1:1). Both the native and the Trp-substituted peptides bound the vesicles to the same extent and induced intervesicular lipid mixing with comparable efficiency. Infrared reflection-absorption spectroscopy data are compatible with the adoption by the peptide of a main beta-sheet structure in a cospread lipid/peptide monolayer. Cryo-transmission electron microscopy observations of peptide-treated vesicles reveal the existence of a peculiar morphology consisting of membrane tubular elongations protruding from single vesicles. Tryptophan fluorescence quenching by brominated phospholipids and by water-soluble acrylamide further indicated that the peptide penetrated into the acyl chain region closer to the interface rather than into the bilayer core. We conclude that the differential partition and shallow penetration of the fusion peptide into the outer monolayer of a surface-constrained bilayer may account for the detected morphological effects. Such single monolayer-restricted interaction and its structural consequences are compatible with specific predictions of current theories on viral fusion.  相似文献   

5.
Dengue virus C protein, essential in the dengue virus life cycle, possesses a segment, peptide PepC, known to bind membranes composed of negatively charged phospholipids. To characterize its interaction with the membrane, we have used the molecular dynamics HMMM membrane model system. This approach is capable of achieving a stable system and sampling the peptide/lipid interactions which determine the orientation and insertion of the peptide upon membrane binding. We have been able to demonstrate spontaneous binding of PepC to the 1,2-divaleryl-sn-glycero-3-phosphate/1,2-divaleryl-sn-glycero-3-phosphocholine membrane model system, whereas no binding was observed at all for the 1,2-divaleryl-sn-glycero-3-phosphocholine one. PepC, adopting an α-helix profile, did not insert into the membrane but did bind to its surface through a charge anchor formed by its three positively charged residues. PepC, maintaining its three-dimensional structure along the whole simulation, presented a nearly parallel orientation with respect to the membrane when bound to it. The positively charged amino acid residues Arg-2, Lys-6, and Arg-16 are mainly responsible for the peptide binding to the membrane stabilizing the structure of the bound peptide. The segment of dengue virus C protein where PepC resides is a fundamental protein–membrane interface which might control protein/membrane interaction, and its positive amino acids are responsible for membrane binding defining its specific location in the bound state. These data should help in our understanding of the molecular mechanism of DENV life cycle as well as making possible the future development of potent inhibitor molecules, which target dengue virus C protein structures involved in membrane binding.  相似文献   

6.
Membrane fusion is the central molecular event during the entry of enveloped viruses into cells. The critical agents of this process are viral surface proteins, primed to facilitate cell bilayer fusion. The important role of Dendritic-cell-specific ICAM3-grabbing non-integrin (DC-SIGN) in Dengue virus transmission makes it an attractive target to interfere with Dengue virus Propagation. Receptor mediated endocytosis allows the entry of virions due to the presence of endosomal membranes and low pH-induced fusion of the virus. DC-SIGN is the best characterized molecule among the candidate protein receptors and is able to mediate infection with the four serotypes of dengue virus (DENV). Unrestrained pair wise docking was used for the interaction of dengue envelope protein with DC-SIGN and monoclonal antibody 2G12. Pre-processed the PDB coordinates of dengue envelope glycoprotein and other candidate proteins were prepared and energy minimized through AMBER99 force field distributed in MOE software. Protein-protein interaction server, ZDOCK was used to find molecular interaction among the candidate proteins. Based on these interactions it was found that antibody successfully blocks the glycosylation site ASN 67 and other conserved residues present at DC-SIGN-Den-E complex interface. In order to know for certain, the exact location of the antibody in the envelope protein, co-crystallize of the envelope protein with these compounds is needed so that their exact docking locations can be identified with respect to our results.  相似文献   

7.
M Myers  O L Mayorga  J Emtage  E Freire 《Biochemistry》1987,26(14):4309-4315
The interactions of the targeting sequence of the mitochondrial enzyme ornithine transcarbamylase with phospholipid bilayers of different molecular compositions have been studied by high-sensitivity heating and cooling differential scanning calorimetry, high-sensitivity isothermal titration calorimetry, fluorescence spectroscopy, and electron microscopy. These studies indicate that the leader peptide interacts strongly with dipalmitoylphosphatidylcholine (DPPC) bilayer membranes containing small mole percents of the anionic phospholipids dipalmitoylphosphatidylglycerol (DPPG) or brain phosphatidylserine (brain PS) but not with pure phosphatidylcholines. For the first time, the energetics of the leader peptide-membrane interaction have been measured directly by using calorimetric techniques. At 20 degrees C, the association of the peptide with the membrane is exothermic and characterized by an association constant of 2.3 X 10(6) M-1 in the case of phosphatidylglycerol-containing and 0.35 X 10(6) M-1 in the case of phosphatidylserine-containing phospholipid bilayers. In both cases, the enthalpy of association is -60 kcal/mol of peptide. Additional experiments using fluorescence techniques suggest that the peptide does not penetrate deeply into the hydrophobic core of the membrane. The addition of the leader peptide to DPPC/DPPG (5:1) or DPPC/brain PS (5:1) small sonicated vesicles results in vesicle fusion. The fusion process is dependent on peptide concentration and is maximal at the phase transition temperature of the vesicles and minimal at temperatures below the phase transition.  相似文献   

8.
Influenza infection requires fusion between the virus envelope and a host cell endosomal membrane. The influenza hemagglutinin fusion peptide (FP) is essential to viral membrane fusion. It was recently proposed that FPs would fuse membranes by increasing lipid tail protrusion, a membrane fusion transition state. The details of how FPs induce lipid tail protrusion, however, remain to be elucidated. To decipher the molecular mechanism by which FPs promote lipid tail protrusion, we performed molecular dynamics simulations of the wild‐type (WT) FP, fusogenic mutant F9A, and nonfusogenic mutant W14A in model bilayers. This article presents the peptide–lipid interaction responsible for lipid tail protrusion and a related lipid perturbation, polar head intrusion, where polar heads are sunk under the membrane surface. The backbone amides from the four N‐terminal peptide residues, deeply inserted in the membrane, promoted both perturbations through H bonding with lipid phosphates. Polar head intrusion correlated with peptides N‐terminal insertion depth and activity: the N‐termini of WT and F9A were inserted deeper into the membrane than nonfusogenic W14A. Based on these results, we propose that FP‐induced polar head intrusion would complement lipid tail protrusion in catalyzing membrane fusion by reducing repulsions between juxtaposed membranes headgroups. The presented model provides a framework for further research on membrane fusion and influenza antivirals. Proteins 2014; 82:2118–2127. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Summary The adhesion to horizontal, planar lipid membranes of lipid vesicles containing calcein in the aqueous compartment or fluorescent phospholipids in the membranes has been examined by phase contrast, differential interference contrast and fluorescence microscopy. With water-immersion lenses, it was possible to study the interactions of vesicles with planar bilayers at magnifications up to the useful limit of light microscopy. In the presence of 15 mM calcium chloride, vesicles composed of phosphatidylserine and either phosphatidylethanolamine or soybean lipids adhere to the torus, bilayer and lenses of planar bilayers of the same composition. Lenses of solvent appear, at the site where vesicles attach to decane-based bilayers and lipid fluorophores move from the vesicles to the lenses. Because the calcein contained in such vesicles is not released, we interpret this as indicating fusion of only the outer monolayer (hemifusion) of the vesicles with the decane lenses. In the case of squalene-based black lipid membranes (BLMs), in contrast, vesicles do not nucleate lenses but they apparently do fuse with the torus at the bilayer boundary. Interactions leading to hemifusions between vesicles and planar membranes thus occur predominantly in regions where hydrocarbon solvent is present. Osmotic water flow, induced by addition of urea to the compartment containing vesicles, causes coalescence of lenses in decane-based, BLMs as well as coalescence of the aqueous spaces of the vesicles that have undergone hemifusion with the lenses. We did not observe transfer of the aqueous phase of vesicles to therans side of either decane-or squalene-based planar membranes; however, we cannot rule out the possibility particularly in the latter case, that rupture of the planar membrane may have been an immediate result of vesicle fusion and thus precluded its detection.  相似文献   

10.
Summary The human immunodeficiency virus type-1 (HIV-1) fusion peptide, corresponding to a sequence of 23 amino acid residues at the N-terminus of the spike transmembrane subunit gp41, has the capacity to destabilize negatively charged and neutral large unilamellar vesicles, representing, respectively, the acidic and the neutral fraction of the plasma membrane lipids of viral target cells. As revealed by infrared spectroscopy, the peptide associated with the vesicles may exist in different conformations. In negatively charged membranes the structure is mainly an α-helix, while in Ca2+-neutralized negatively charged membranes the conformation switches to a predominantly extended conformation. In membranes composed of zwitterionic phospholipids and cholesterol, the peptide also adopts a predominant extended structure. The α-helical structure permeabilizes negatively charged vesicles but does not induce membrane fusion. The peptide in β-type conformation, on the other hand, permeabilizes neutral membranes and triggers fusion. As seen by31P NMR, the latter structure also exhibits the capacity to alter the lamellar organization of the membrane.  相似文献   

11.
The binding of the positively charged antimicrobial peptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK4) to various lipid bilayer model membranes was investigated using isothermal titration calorimetry. GS14dK4 is a diastereomeric lysine ring-size analogue of the naturally occurring antimicrobial peptide gramicidin S which exhibits enhanced antimicrobial and markedly reduced hemolytic activities compared with GS itself. Large unilamellar vesicles composed of various zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine [POPC]) and anionic phospholipids {1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(glycerol)] [POPG] and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phosphoserine] [POPS]}, with or without cholesterol, were used as model membrane systems. Dynamic light scattering results indicate the absence of any peptide-induced major alteration in vesicle size or vesicle fusion under our experimental conditions. The binding of GS14dK4 is significantly influenced by the surface charge density of the phospholipid bilayer and by the presence of cholesterol. Specifically, a significant reduction in the degree of binding occurs when three-fourths of the anionic lipid molecules are replaced with zwitterionic POPC molecules. No measurable binding occurs to cholesterol-containing zwitterionic vesicles, and a dramatic drop in binding is observed in the cholesterol-containing anionic POPG and POPS membranes, indicating that the presence of cholesterol markedly reduces the affinity of this peptide for phospholipid bilayers. The binding isotherms can be described quantitatively by a one-site binding model. The measured endothermic binding enthalpy (DeltaH) varies dramatically (+6.3 to +26.5 kcal/mol) and appears to be inversely related to the order of the phospholipid bilayer system. However, the negative free energy (DeltaG) of binding remains relatively constant (-8.5 to -11.5 kcal/mol) for all lipid membranes examined. The relatively small variation of negative free energy of peptide binding together with a pronounced variation of positive enthalpy produces an equally strong variation of TDeltaS (+16.2 to +35.0 kcal/mol), indicating that GS14dK4 binding to phospholipids bilayers is primarily entropy driven.  相似文献   

12.
Vesicular stomatitis virus (VSV) infection depends on the fusion of viral and cellular membranes, which is mediated by virus spike glycoprotein G at the acidic environment of the endosomal compartment. VSV G protein does not contain a hydrophobic amino acid sequence similar to the fusion peptides found among other viral glycoproteins, suggesting that membrane recognition occurs through an alternative mechanism. Here we studied the interaction between VSV G protein and liposomes of different phospholipid composition by force spectroscopy, isothermal titration calorimetry (ITC), and fluorescence spectroscopy. Force spectroscopy experiments revealed the requirement for negatively charged phospholipids for VSV binding to membranes, suggesting that this interaction is electrostatic in nature. In addition, ITC experiments showed that VSV binding to liposomes is an enthalpically driven process. Fluorescence data also showed the lack of VSV interaction with the vesicles as well as inhibition of VSV-induced membrane fusion at high ionic strength. Intrinsic fluorescence measurements showed that the extent of G protein conformational changes depends on the presence of phosphatidylserine (PS) on the target membrane. Although the increase in PS content did not change the binding profile, the rate of the fusion reaction was remarkably increased when the PS content was increased from 25 to 75%. On the basis of these data, we suggest that G protein binding to the target membrane essentially depends on electrostatic interactions, probably between positive charges on the protein surface and negatively charged phospholipids in the cellular membrane. In addition, the fusion is exothermic, indicating no entropic constraints to this process.  相似文献   

13.
Sifuvirtide, a 36 amino acid negatively charged peptide, is a novel HIV-1 fusion inhibitor with improved antiretroviral activity. In this work we evaluated the physical chemistry foundation of the interaction of sifuvirtide with biomembrane model systems. Since this peptide has aromatic residues, fluorescence spectroscopy techniques were mostly used. The interaction was assessed by partition and quenching experiments. Results showed no significant interaction with large unilamellar vesicles composed by sphingomyelin and ceramide. In contrast, sifuvirtide presented selectivity towards vesicles composed by phosphatidylcholines (PC) in the gel phase, in opposition to fluid phase PC vesicles. The interaction of this peptide with gel phase PC membranes (Kp = 1.2 × 102) is dependent on the ionic strength, which indicates the mediation of electrostatic interactions at an interfacial level. The effects of sifuvirtide on the lipid membranes' structural properties were further evaluated using dipole-potential membrane probes, zeta-potential, dynamic light scattering and atomic force microscopy measurements. The results show that sifuvirtide does not cause a noticeable effect on lipid bilayer structure, except for membranes composed by cationic phospholipids. Altogether, we can conclude that sifuvirtide presents a specific affinity towards rigid PC membranes, and the interaction is mediated by electrostatic factors, not affecting the membrane architecture.  相似文献   

14.
Cholesterol was found to inhibit full fusion of oppositely charged phospholipid bilayer vesicles by stabilizing the contacting membranes at the stage of the hemifused intermediate. Vesicles of opposite charge containing different amounts of cholesterol were prepared using cationic (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine) and anionic (dioleoylphosphatidylglycerol) phospholipids. Pairwise interactions between such vesicles were observed by fluorescence video microscopy in real time after electrophoretically maneuvering the vesicles into contact. Hemifusion accounted for more than 80% of the observed events when the vesicles contained 33-50 mole% cholesterol. In contrast, vesicles containing only a small proportion of cholesterol (相似文献   

15.
A number of carbobenzoxy-dipeptide-amides raise the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine (stabilizes the bilayer). The potency of the peptides in stabilizing the bilayer phase is Z-Tyr-Leu-NH2= Z-Gly-Phe-NH2>Z-Ser-Leu-NH2>Z-Gly-Leu-NH2>Z-Gly-Gly-NH2. A linear correlation was found between the respective HPLC retention time parameterk for the peptide and the slope of the bilayer stabilization curve determined with model membranes by differential scanning calorimetry. One dipeptide, Z-Ser-Leu-NH2, reduces measles virus cytopathic effect (CPE) in Vero cells. The mechanism by which this peptide reduces the CPE is not known, although some peptides which raise the bilayer to hexagonal phase transition temperature of phospholipids inhibit membrane fusion.Abbreviations Z carbobenzoxy - DEPE dielaidoylphosphatidylethanolamine - DSC differential scanning calorimetry - HPLC high pressure liquid chromatography - CPE cytopathic effect To whom correspondence should be addressed.  相似文献   

16.
A detailed knowledge of the mechanism of virus entry represents one of the most promising approaches to develop new therapeutic strategies. However, viral fusion is a very complex process involving fusion glycoproteins present on the viral envelope. In the two hepatitis C virus envelope proteins, E1 and E2, several membranotropic regions with a potential role in the fusion process have been identified. Among these, we have selected the 314-342 E1 region. Circular Dichroism data indicate that the peptide exhibits a clear propensity to adopt a helical folding in different membrane mimicking media, such as mixtures of water with fluorinated alcohols and phospholipids, with a slight preference for negative charged bilayers. The 3D structure of E1314-342 peptide, calculated by 2D-NMR in a low-polarity environment, consists of two helical stretches encompassing residues 319-323 and 329-338 respectively. The peptide, presenting a largely apolar character, interacts with liposomes, as indicated by fluorescence and electron spin resonance spectra. The strength of the interaction and the deepness of peptide insertion in the phospholipid membrane are modulated by the bilayer composition, the interaction with anionic phospholipids being among the strongest ever observed. The presence of cholesterol also affects the peptide-bilayer interaction, favoring the peptide positioning close to the bilayer surface. Overall, the experimental data support the idea that this region of E1 might be involved in membrane destabilization and viral fusion; therefore it may represent a good target to develop anti-viral molecules.  相似文献   

17.
We studied the interaction of the cell-penetrating peptide penetratin with mixed dioleoylphosphatidylcholine/dioleoylphoshatidylglycerol (DOPC/DOPG) unilamellar vesicles as a function of the molar fraction of anionic lipid, X(PG), by means of isothermal titration calorimetry. The work was aimed at getting a better understanding of factors that affect the peptide binding to lipid membranes and its permeation through the bilayer. The binding was well described by a surface partitioning equilibrium using an effective charge of the peptide of z(P) approximately 5.1 +/- 0.5. The peptide first binds to the outer surface of the vesicles, the effective binding capacity of which increases with X(PG). At X(PG) approximately 0.5 and a molar ratio of bound peptide-to-lipid of approximately 1/20 the membranes become permeable and penetratin binds also to the inner monolayer after internalization. The results were rationalized in terms of an "electroporation-like" mechanism, according to which the asymmetrical distribution of the peptide between the outer and inner surfaces of the charged bilayer causes a transmembrane electrical field, which alters the lateral and the curvature stress acting within the membrane. At a threshold value these effects induce internalization of penetratin presumably via inversely curved transient structures.  相似文献   

18.
The effect of lysophosphatidylcholine (LPC) on lipid vesicle fusion and leakage induced by influenza virus fusion peptides and the peptide interaction with lipid membranes were studied by using fluorescence spectroscopy and monolayer surface tension measurements. It was confirmed that the wild-type fusion peptide-induced vesicle fusion rate increased several-fold between pH 7 and 5, unlike a mutated peptide, in which valine residues were substituted for glutamic acid residues at positions 11 and 15. This mutated peptide exhibited a much greater ability to induce lipid vesicle fusion and leakage but in a less pH-dependent manner compared to the wild-type fusion peptide. The peptide-induced vesicle fusion and leakage were well correlated with the degree of interaction of these peptides with lipid membranes, as deduced from the rotational correlation time obtained for the peptide tryptophan fluorescence. Both vesicle fusion and leakage induced by the peptides were suppressed by LPC incorporated into lipid vesicle membranes in a concentration-dependent manner. The rotational correlation time associated with the peptide’s tryptophan residue, which interacts with lipid membranes containing up to 25 mole % LPC, was virtually the same compared to lipid membranes without LPC, indicating that LPC-incorporated membrane did not affect the peptide interaction with the membrane. The adsorption of peptide onto a lipid monolayer also showed that the presence of LPC did not affect peptide adsorption.  相似文献   

19.
The entry of enveloped animal viruses into their host cells always depends on membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion between the viral envelope and the endosomal membrane at the acidic environment of this compartment. In this work, we evaluated VSV interactions with membranes of different phospholipid compositions, at neutral and acidic pH, using atomic force microscopy (AFM) operating in the force spectroscopy mode, isothermal calorimetry (ITC) and molecular dynamics simulation. We found that the binding forces differed dramatically depending on the membrane phospholipid composition, revealing a high specificity of G protein binding to membranes containing phosphatidylserine (PS). In a previous work, we showed that the sequence corresponding amino acid 164 of VSV G protein was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Here, we used this sequence to explore VSV–PS interaction using ITC. We found that peptide binding to membranes was exothermic, suggesting the participation of electrostatic interactions. Peptide–membrane interaction at pH 7.5 was shown to be specific to PS and dependent on the presence of His residues in the fusion peptide. The application of the simplified continuum Gouy–Chapman theory to our system predicted a pH of 5.0 at membrane surface, suggesting that the His residues should be protonated when located close to the membrane. Molecular dynamics simulations suggested that the peptide interacts with the lipid bilayer through its N-terminal residues, especially Val145 and His148. Fabiana A.Carneiro and Pedro A. Lapido-Loureiro contributed equally to this work An erratum to this article can be found at  相似文献   

20.
The structure and membrane interaction of the internal fusion peptide (IFP) fragment of the avian sarcoma and leucosis virus (ASLV) envelope glycoprotein was studied by an array of biophysical methods. The peptide was found to induce lipid mixing of vesicles more strongly than the fusion peptide derived from the N-terminal fusion peptide of influenza virus (HA2-FP). It was observed that the helical structure was enhanced in association with the model membranes, particularly in the N-terminal portion of the peptide. According to the infrared study, the peptide inserted into the membrane in an oblique orientation, but less deeply than the influenza HA2-FP. Analysis of NMR data in sodium dodecyl sulfate micelle suspension revealed that Pro13 of the peptide was located near the micelle-water interface. A type II beta-turn was deduced from NMR data for the peptide in aqueous medium, demonstrating a conformational flexibility of the IFP in analogy to the N-terminal FP such as that of gp41. A loose and multimodal self-assembly was deduced from the rhodamine fluorescence self-quenching experiments for the peptide bound to the membrane bilayer. Oligomerization of the peptide and its variants can also be observed in the electrophoretic experiments, suggesting a property in common with other N-terminal FP of class I fusion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号