首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane translocation is a crucial issue when addressing the activity of both cell-penetrating and antimicrobial peptides. Translocation is responsible for the therapeutic potential of cell-penetrating peptides as drug carriers and can dictate the killing mechanisms, selectivity and efficiency of antimicrobial peptides. It is essential to evaluate if the internalization of cell-penetrating peptides is mediated by endocytosis and if it is able to internalize attached cargoes. The mode of action of an antimicrobial peptide cannot be fully understood if it is not known whether the peptide acts exclusively at the membrane level or also at the cytoplasm. Therefore, experimental methods to evaluate and quantify translocation processes are of first importance. In this work, over 20 methods described in the literature for the assessment of peptide translocation in vivo and in vitro, with and without attached macromolecular cargoes, are discussed and their applicability, advantages and disadvantages reviewed. In addition, a classification of these methods is proposed, based on common approaches to detect translocation.  相似文献   

2.
The spread of multidrug resistant bacteria owing to the intensive use of antibiotics is challenging current antibiotic therapies, and making the discovery and evaluation of new antimicrobial agents a high priority. The evaluation of novel peptide sequences of predicted antimicrobial peptides from different sources is valuable approach to identify alternative antibiotic leads. Two strategies were pursued in this study to evaluate novel antimicrobial peptides from the human β-defensin family (hBD). In the first, a 32-residue peptide was designed based on the alignment of all available hBD primary structures, while in the second a putative 35-residue peptide, hBD10, was mined from the gene DEFB110. Both hBDconsensus and hBD10 were chemically synthesized, folded and purified. They showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Mycobacterium tuberculosis, but were not hemolytic on human red blood cells. The NMR-based solution structure of hBDconsensus revealed that it adopts a classical β-defensin fold and disulfide connectivities. Even though the mass spectrum of hBD10 confirmed the formation of three disulfide bonds, it showed limited dispersion in 1H NMR spectra and structural studies were not pursued. The evaluation of different β-defensin structures may identify new antimicrobial agents effective against multidrug-resistant bacterial strains.  相似文献   

3.
There is an active interest in peptides that readily cross cell membranes without the assistance of cell membrane receptors(1). Many of these are referred to as cell-penetrating peptides, which are frequently noted for their potential as drug delivery vectors(1-3). Moreover, there is increasing interest in antimicrobial peptides that operate via non-membrane lytic mechanisms(4,5), particularly those that cross bacterial membranes without causing cell lysis and kill cells by interfering with intracellular processes(6,7). In fact, authors have increasingly pointed out the relationship between cell-penetrating and antimicrobial peptides(1,8). A firm understanding of the process of membrane translocation and the relationship between peptide structure and its ability to translocate requires effective, reproducible assays for translocation. Several groups have proposed methods to measure translocation into large unilamellar lipid vesicles (LUVs)(9-13). LUVs serve as useful models for bacterial and eukaryotic cell membranes and are frequently used in peptide fluorescent studies(14,15). Here, we describe our application of the method first developed by Matsuzaki and co-workers to consider antimicrobial peptides, such as magainin and buforin II(16,17). In addition to providing our protocol for this method, we also present a straightforward approach to data analysis that quantifies translocation ability using this assay. The advantages of this translocation assay compared to others are that it has the potential to provide information about the rate of membrane translocation and does not require the addition of a fluorescent label, which can alter peptide properties(18), to tryptophan-containing peptides. Briefly, translocation ability into lipid vesicles is measured as a function of the Foster Resonance Energy Transfer (FRET) between native tryptophan residues and dansyl phosphatidylethanolamine when proteins are associated with the external LUV membrane (Figure 1). Cell-penetrating peptides are cleaved as they encounter uninhibited trypsin encapsulated with the LUVs, leading to disassociation from the LUV membrane and a drop in FRET signal. The drop in FRET signal observed for a translocating peptide is significantly greater than that observed for the same peptide when the LUVs contain both trypsin and trypsin inhibitor, or when a peptide that does not spontaneously cross lipid membranes is exposed to trypsin-containing LUVs. This change in fluorescence provides a direct quantification of peptide translocation over time.  相似文献   

4.
Design of a Tumor Homing Cell-Penetrating Peptide for Drug Delivery   总被引:1,自引:0,他引:1  
The major drawbacks with conventional cancer chemotherapy are the lack of satisfactory specificity towards tumor cells and poor antitumor activity. In order to improve these characteristics, chemotherapeutic drugs can be conjugated to targeting moieties e.g. to peptides with the ability to recognize cancer cells. We have previously reported that combining a tumor homing peptide with a cell-penetrating peptide yields a chimeric peptide with tumor cell specificity that can carry cargo molecules inside the cells. In the present study, we have used a linear breast tumor homing peptide, CREKA, in conjunction with a cell-penetrating peptide, pVEC. This new chimeric peptide, CREKA–pVEC, is more convenient to synthesize and moreover it is better in translocating cargo molecules inside cancer cells as compared to previously published PEGA–pVEC peptide. This study demonstrates that CREKA–pVEC is a suitable vehicle for targeted intracellular delivery of a DNA alkylating agent, chlorambucil, as the chlorambucil–peptide conjugate was substantially better at killing cancer cells in vitro than the anticancer drug alone.  相似文献   

5.
Discovery of cargo carrying cell-penetrating peptides has opened a new gate in the development of peptide-based drugs that can effectively target intracellular enzymes. Success in application and development of cell-penetrating peptides in drug design depends on understanding their translocation mechanisms. In this study, our aim was to examine the bacterial translocation mechanism of the cell-penetrating pVEC peptide (LLIILRRRIRKQAHAHSK) using steered molecular dynamics (SMD) simulations. The significance of specific residues or regions for translocation was studied by performing SMD simulations on the alanine mutants and other variants of pVEC. Residue-based analysis showed that positively charged residues contribute to adsorption to the lipid bilayer and to electrostatic interactions with the lipid bilayer as peptides are translocated. Translocation takes place in three main stages; the insertion of the N-terminus into the bilayer, the inclusion of the whole peptide inside the membrane and the exit of the N-terminus from the bilayer. These three stages mirror the three regions on pVEC; namely, the hydrophobic N-terminus, the cationic midsection, and the hydrophilic C-terminus. The N-terminal truncated pVEC, I3A, L5A, R7A mutants and scramble-pVEC make weaker interactions with the lipids during translocation highlighting the contribution of the N-terminal residues and the sequence of the structural regions to the translocation mechanism. This study provides atomistic detail about the mechanism of pVEC peptide translocation and can guide future peptide-based drug design efforts.  相似文献   

6.
7.
Three 18-membered analogues of the N-terminal fragment of the sarcotoxin IA cationic antimicrobial peptide were synthesized by the solid phase method of peptide synthesis with the use of swellographic monitoring. The ability of these peptides to inhibit the growth of various bacteria in culture medium and their hemolytic activity in experiments on human erythrocytes were studied. The analogue completely corresponding to the N-terminal amino acid sequence of the natural sarcotoxin IA with the amide group on its C-terminus exhibited higher antibacterial activity. The presence of carboxyl group on the C-terminus or the substitution of Tyr for Trp2 resulted in a decrease in the antimicrobial activity of the peptide. Our results indicate that the amphiphilic N-terminal peptide corresponding to the 1–18 sequence of sarcotoxin IA involves the moieties responsible for the antimicrobial activity of the antibiotic.  相似文献   

8.
Cationic antimicrobial peptides play important roles in innate immunity. Compared with extensive studies on peptide-bacteria interactions, little is known about peptide-human cell interactions. Using human cervical carcinoma HeLa and fibroblastic TM12 cells, we investigated the cellular uptake of fluorescent analogues of the two representative antimicrobial peptides magainin 2 and buforin 2 in comparison with the representative Arg-rich cell-penetrating Tat-(47-57) peptide (YGRKKRRQRRR). The dose, time, temperature, and energy dependence of translocation suggested that the three peptides cross cell membranes through different mechanisms. The magainin peptide was internalized within a time scale of tens of minutes. The cooperative concentration dependence of uptake suggested that the peptide forms a pore as an intermediate similar to the observations in model membranes. Furthermore, the translocation was coupled with cytotoxicity, which was larger for tumor HeLa cells. In contrast, the buforin peptide translocated within 10 min by a temperature-independent, less concentration-dependent passive mechanism without showing any significant cytotoxicity at the highest concentration investigated (100 microm). The uptake of the Tat peptide was proportional to the peptide concentration, and the concentration dependence was lost upon ATP depletion. The peptide exhibited a moderate cytotoxicity at higher concentrations. The time course did not show saturation even after 120 min. The buforin peptide, covalently attached to the 28-kDa green fluorescent protein, also entered cells, suggesting a potency of the peptide as a vector for macromolecular delivery into cells. However, the mechanism appeared to be different from that of the parent peptide.  相似文献   

9.
Pheromone peptides are an important component of bacterial quorum‐sensing system. The pheromone peptide cOB1 (VAVLVLGA) of native commensal Enterococcus faecalis has also been identified as an antimicrobial peptide (AMP) and reported to kill the prototype clinical isolate strain of E. faecalis V583. In this study, the pheromone peptide cOB1 has shown to form amyloid‐like structures, a characteristic which is never reported for a pheromone peptide so far. With in silico analysis, the peptide was predicted to be highly amyloidogenic. Further, under experimental conditions, cOB1 formed aggregates displaying characteristics of amyloid structures such as bathochromic shift in Congo red absorbance, enhancement in thioflavin T fluorescence, and fibrillar morphology under transmission electron microscopy. This novel property of pheromone peptide cOB1 may have some direct effects on the binding of the pheromone to the receptor cells and subsequent conjugative transfer, making this observation more important for the therapeutics, dealing with the generation of virulent and multidrug‐resistant pathogenic strains.  相似文献   

10.
Cationic cell-penetrating peptides have been widely used to enhance the intracellular delivery of various types of cargoes, such as drugs and proteins. These reagents are chemically similar to the multi-basic peptides that are known to be potent proprotein convertase inhibitors. Here, we report that both HIV-1 TAT47-57 peptide and the Chariot reagent are micromolar inhibitors of furin activity in vitro. In agreement, HIV-1 TAT47-57 reduced HT1080 cell migration, thought to be mediated by proprotein convertases, by 25%. In addition, cyclic polyarginine peptides containing hydrophobic moieties which have been previously used as transfection reagents also exhibited potent furin inhibition in vitro and also inhibited intracellular convertases. Our finding that cationic cell-penetrating peptides exert potent effects on cellular convertase activity should be taken into account when biological effects are assessed.  相似文献   

11.
Aims: To develop an antimicrobial peptide with broad spectrum activity against bacteria implicated in biomaterial infection of low toxicity to mammalian cells and retaining its antimicrobial activity when covalently bound to a biomaterial surface. Methods and Results: A synthetic peptide (melimine) was produced by combining portions of the antimicrobial cationic peptides mellitin and protamine. In contrast to the parent peptide melittin which lysed sheep red blood cells at >10 μg ml?1, melimine lysed sheep red blood cells only at concentrations >2500 μg ml?1, well above bactericidal concentrations. Additionally, melimine was found to be stable to heat sterilization. Evaluation by electron microscopy showed that exposure of both Pseudomonas aeruginosa and Staphylococcus aureus to melimine at the minimal inhibitory concentration (MIC) produced changes in the structure of the bacterial membranes. Further, repeated passage of these bacteria in sub‐MIC concentrations of melimine did not result in an increase in the MIC. Melimine was tested for its ability to reduce bacterial adhesion to contact lenses when adsorbed or covalently attached. Approximately 80% reduction in viable bacteria was seen against both P. aeruginosa and S. aureus for 500 μg per lens adsorbed melimine. Covalently linked melimine (18 ± 4 μg per lens) showed >70% reduction of these bacteria to the lens. Conclusions: We have designed and tested a synthetic peptide melimine incorporating active regions of protamine and mellitin which may represent a good candidate for development as an antimicrobial coating for biomaterials. Significance and Impact of the Study: Infection associated with the use of biomaterials remains a major barrier to the long‐term use of medical devices. The antimicrobial peptide melimine is an excellent candidate for development as an antimicrobial coating for such devices.  相似文献   

12.
Plasma membrane of each micro-organism has a unique set of lipid composition as a consequence of the environmental adaptation or a response to exposure to antimicrobial peptides (AMPs) as antibiotic agents. Understanding the relationship between lipid composition and action of antimicrobial peptides or considering how different lipid bilayers respond to AMPs may help us design more effective peptide drugs in the future. In this contribution, we intend to elucidate how two currently used membrane models, namely palmitoyl-oleoyl-phosphtidylglycerol (POPG) and 1-palmitoyl-oleoyl-glycero-phosphocholine (POPC), respond to antimicrobial peptide Piscidin-1 (Pis-1).The computed density profile of the peptide as it moves from the bulk solvent toward the membrane core suggests that Pis-1 penetrates into the POPG bilayer less than the POPC membrane. Furthermore, we showed that the two model membranes used in this study have different behavior in the presence of Pis-1. Hence, we suggest that membrane composition could be an important factor in determining lytic ability of peptide drugs to kill a unique bacterial species.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:37  相似文献   

13.
The overuse of antibiotics has resulted in the emergence of antibiotic‐resistant bacteria, which presents an urgent need for new antimicrobial agents. At present, antimicrobial peptides have attracted a great deal of attention from researchers. However, antimicrobial peptides often affect a broad range of microorganisms, including the normal flora in a host organism. In the present study, we designed a novel hybrid antimicrobial peptide, expressed the hybrid peptide, and studied its specific target. The hybrid peptide, named T‐catesbeianin‐1, which includes the FyuA‐binding domain of pesticin and the peptide catesbeianin‐1, was designed and expressed in Pichia pastoris X‐33. Then, we determined the antimicrobial activity, cytotoxicity, and specific target of the peptide. T‐catesbeianin‐1 has strong antimicrobial activity and binds to FyuA to inhibit or kill Escherichia coli present in clinical specimens and mixed‐species culture. In summary, these findings suggested that T‐catesbeianin‐1 might be promising and specific antibiotic agent for therapeutic application against fyuA+ E. coli.  相似文献   

14.
We recently reported the primary structures, antimicrobial activities and cDNA precursors of nine novel antimicrobial peptides from the skin of the endangered anuran species, Odorranaishikawae. Their cDNA clones revealed a highly conserved approximately 60 bp region upstream of the start codon. This conserved region was used in the “shotgun” cDNA cloning method to reveal additional cDNAs encoding novel antimicrobial peptides of O.ishikawae. After sequencing 344 clones, we identified novel 13 cDNAs encoding dermal peptides in addition to the previously identified nine antimicrobial peptides. These 13 unique cDNAs encoded precursor proteins each containing a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg/Lys processing site and a dermal peptide at the C-terminus. The dermal peptides were members of the palustrin-2 (two peptides; termed palustrin-2ISc and palustrin-2ISd), nigrocin-2 (one peptide; nigrocin-2ISc), brevinin-1 (one peptide; brevinin-1ISa), odorranain-M (one peptide; odorranain-MISa) and entirely novel peptides (eight peptides; ishikawain-1-8). Although palustrin-2ISd and odorranain-MISa had few antimicrobial activities, palustrin-2ISc and nigrocin-2ISc possessed a broad-spectrum of growth inhibition against bacteria. Brevinin-1ISa had the most potent antimicrobial activities against the Gram-positive bacteria and the fungus but not the Gram-negative bacterium, Escherichiacoli. However, eight novel peptides showed no growth inhibition against these microorganisms.  相似文献   

15.
Specific binding of antimicrobial peptides to titanium (Ti) surfaces may serve to prevent biofilm formation, leading to a reduction in peri-implantitis. This study evaluated the binding behavior of conjugated molecules consisting of antimicrobial and hexapeptidic Ti-binding peptides (minTBP-1) using the quartz crystal microbalance (QCM-D) technique, and investigated the effect of modification of Ti surfaces with these peptides on the bioactivity of Porphyromonas gingivalis. Four kinds of peptide were prepared: histatin 5 (DSHAKRHHGYKRKFHEKHHSHRGY), minTBP-1 + histatin 5 (RKLPDAPDSHAKRHHGYKRKFHEKHHSHRGY), lactoferricin (FQWQRNMRKVR), and minTBP-1 + lactoferricin (RKLPDAPGGFQWQRNMRKVR). The QCM-D analysis demonstrated that significantly larger increases in peptide adsorption were observed in the conjugated peptides than in antimicrobial peptides alone. In addition, ATP activity in P. gingivalis in peptide-modified specimens significantly decreased compared to that in the Ti control. These results indicate that surface modification with conjugated molecules consisting of antimicrobial and Ti-binding peptides is a promising method for reduction of biofilm formation on Ti surfaces.  相似文献   

16.
The enzymatic breakdown of milk proteins releases bioactive peptides. Two such peptides are the 11-residue antimicrobial peptide from bovine lactoferrin (BL-11) and the 12-residue hypotensive peptide from αs1-casein (C-12). These two peptides have now been cloned in Streptococcus thermophilus to develop strains that enhance the functionality and nutritional value of dairy food products. Nucleic acid sequences encoding the peptides were generated by overlapping PCR and were subsequently cloned into a new expression vector under control of the ST2201 promoter. S. thermophilus transformants were successfully identified using GFP as a selectable marker. The presence of the synthetic gene constructs in S. thermophilus was confirmed by PCR. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
In this study, peptidomics and genomics analyses were used to study antimicrobial peptides from the skin of Hylarana spinulosa. Twenty-nine different antimicrobial peptide precursors were characterized from the skin of H. spinulosa, which produce 23 mature antimicrobial peptides belonging to 12 different families. To confirm the actual presence and characteristics of these antimicrobial peptides in the skin tissue extractions from H. spinulosa, we used two distinct methods, one was peptide purification method that combined gel filtration chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), and the other was peptidomics approach based on liquid chromatography in conjunction with tandem mass spectrometry (LC–MS/MS). In the peptidomics approach, incomplete tryptic digestion and gas-phase fractionation (GPF) analysis were used to increase peptidome coverage and reproducibility of peptide ion selection. Multiple species of microorganisms were chosen to test and analyze the antimicrobial activities and spectrum of these antimicrobial peptides.  相似文献   

18.
Antimicrobial peptides are small molecule polypeptides with biological activity, which can avoid the drug resistance. Magainin and thanatin are antimicrobial peptides with a broad spectrum of inhibitory microbes, and the core sequence of magainin is linked to a core sequence of thanatin. Here, the hybrid magainin–thanatin (MT) antimicrobial peptide was designed through bioinformatics analysis. The recombinant MT antimicrobial peptide was successfully expressed and purified in Escherichia coli BL21 (DE3). The molecular weight of the hybrid MT antimicrobial peptide was about 3.35?kDa. Moreover, the target protein indeed has an inhibitory effect on Staphylococcus aureus, E. coli DH5α, and Bacillus subtilis, with the minimum inhibitory concentrations 16.5, 20, and 9?μM, respectively. The rational designed hybrid MT antimicrobial peptide will hopefully provide large-scale fermentable antimicrobial peptides in the industrial production in the future.  相似文献   

19.
Cell-penetrating peptides have proven themselves as valuable vectors for intracellular delivery. Relatively little is known about the frequency of cell-penetrating sequences in native proteins and their functional role. By computational comparison of peptide sequences, we recently predicted that intracellular loops of G-protein coupled receptors (GPCR) have high probability for occurrence of cell-penetrating motifs. Since the loops are also receptor and G-protein interaction sites, we postulated that the short cell-penetrating peptides, derived from GPCR, when applied extracellularly can pass the membrane and modulate G-protein activity similarly to parent receptor proteins. Two model systems were analyzed as proofs of the principle. A peptide based on the C-terminal intracellular sequence of the rat angiotensin receptor (AT1AR) is shown to internalize into live cells and elicit blood vessel contraction even in the presence of AT1AR antagonist Sar1-Thr8-angiotensin II. The peptide interacts with the same selectivity towards G-protein subtypes as agonist-activated AT1AR and blockade of phospholipase C abolishes its effect. Another cell-penetrating peptide, G53-2 derived from human glucagon-like peptide receptor (GLP-1R) is shown to induce insulin release from isolated pancreatic islets. The mechanism was again found to be shared with the original GLP-1R, namely G11-mediated inositol 1,4,5-triphosphate release pathway. These data reveal a novel possibility to mimic the effects of signalling transmembrane proteins by application of shorter peptide fragments.  相似文献   

20.
Recently, we identified nine novel antimicrobial peptides from the skin of the endangered anuran species, Odorrana ishikawae, to assess its innate immune system. In this study an additional antimicrobial peptide was initially isolated based on antimicrobial activity against Escherichia coli. The new antimicrobial peptide belonging to the palustrin-2 family was named palustrin-2ISb. It consists of 36 amino acid residues including 7 amino acids C-terminal to the cyclic heptapeptide Rana box domain. The peptide's primary structure suggests a close relationship with the Chinese odorous frog, Odorrana grahami. The cloned cDNA encoding the precursor protein contained a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg processing site and the C-terminal precursor antimicrobial peptide. It also contained 3 amino acid residues at the C-terminus not found in the mature peptide. Finally, the antimicrobial activities against four microorganisms (E. coli, Staphylococcus aureus, methicillin-resistant S. aureus and Candida albicans) were investigated using several synthetic peptides. A 29 amino acid truncated form of the peptide, lacking the 7 amino acids C-terminal to the Rana box, possessed greater antimicrobial activities than the native structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号