首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolutionary process that transformed a cyanobacterial endosymbiont into contemporary plastids involved not only inheritance but also invention. Because gram-negative bacteria lack a system for polypeptide import, the envelope translocon complex of the general protein import pathway was the most important invention of organelle evolution resulting in a pathway to import back into plastids those nuclear-encoded proteins supplemented with a transit peptide. Genome information of cyanobacteria, phylogenetically diverse plastids, and the nuclei of the first red alga, a diatom, and Arabidopsis thaliana allows us to trace back the evolutionary origin of the twelve currently known translocon components and to partly deduce their assembly sequence. Development of the envelope translocon was initiated by recruitment of a cyanobacterial homolog of the protein-import channel Toc75, which belongs to a ubiquitous and essential family of Omp85/D15 outer membrane proteins of gram-negative bacteria that mediate biogenesis of beta-barrel proteins. Likewise, three other translocon subunits (Tic20, Tic22, and Tic55) and several stromal chaperones have been inherited from the ancestral cyanobacterium and modified to take over the novel function of precursor import. Most of the remaining subunits seem to be of eukaryotic origin, recruited from pre-existing nuclear genes. The next subunits that joined the evolving protein import complex likely were Toc34 and Tic110, as indicated by the presence of homologous genes in the red alga Cyanidioschyzon merolae, followed by the stromal processing peptidase, members of the Toc159 receptor family, Toc64, Tic40, and finally some regulatory redox components (Tic62, Tic32), all of which were probably required to increase specificity and efficiency of precursor import.  相似文献   

2.
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.  相似文献   

3.
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.  相似文献   

4.
Plastids evolved from free‐living cyanobacteria through a process of primary endosymbiosis. The most widely accepted hypothesis derives three ancient lineages of primary plastids, i.e. those of glaucophytes, red algae and green plants, from a single cyanobacterial endosymbiosis. This hypothesis was originally predicated on the assumption that transformations of endosymbionts into organelles must be exceptionally rare because of the difficulty in establishing efficient protein trafficking between a host cell and incipient organelle. It turns out, however, that highly integrated endosymbiotic associations are more common than once thought. Among them is the amoeba Paulinella chromatophora, which harbours independently acquired cyanobacterial endosymbionts functioning as plastids. Sequencing of the Paulinella endosymbiont genome revealed an absence of essential genes for protein trafficking, suggesting their residence in the host nucleus and import of protein products back into the endosymbiont. To investigate this hypothesis, we searched the Paulinella endosymbiont genome for homologues of higher plant translocon proteins that form the import apparatus in two‐membrane envelopes of primary plastids. We found homologues of Toc12, Tic21 and Tic32, but genes for other key translocon proteins (e.g. Omp85/Toc75 and Tic20) were missing. We propose that these missing genes were transferred to the Paulinella nucleus and their products are imported and integrated into the endosymbiont envelope membranes, thereby creating an effective protein import apparatus. We further suggest that other bacterial/cyanobacterial endosymbionts found in protists, plants and animals could have evolved efficient protein import systems independently and, therefore, reached the status of true cellular organelles.  相似文献   

5.
A Caliebe  R Grimm  G Kaiser  J Lübeck  J Soll    L Heins 《The EMBO journal》1997,16(24):7342-7350
Transport of precursor proteins across the chloroplastic envelope membranes requires the interaction of protein translocons localized in both the outer and inner envelope membranes. Analysis by blue native gel electrophoresis revealed that the translocon of the inner envelope membranes consisted of at least six proteins with molecular weights of 36, 45, 52, 60, 100 and 110 kDa, respectively. Tic110 and ClpC, identified as components of the protein import apparatus of the inner envelope membrane, were prominent constituents of this complex. The amino acid sequence of the 52 kDa protein, deduced from the cDNA, contains a predicted Rieske-type iron-sulfur cluster and a mononuclear iron-binding site. Diethylpyrocarbonate, a Rieske-type protein-modifying reagent, inhibits the translocation of precursor protein across the inner envelope membrane, whereas binding of the precursor to the outer envelope membrane is still possible. In another independent experimental approach, the 52 kDa protein could be co-purified with a trapped precursor protein in association with the chloroplast protein translocon subunits Toc86, Toc75, Toc34 and Tic110. Together, these results strongly suggest that the 52 kDa protein, named Tic55 due to its calculated molecular weight, is a member of the chloroplastic inner envelope protein translocon.  相似文献   

6.
7.
The import of protein into chloroplasts is mediated by translocon components located in the chloroplast outer (the Toc proteins) and inner (the Tic proteins) envelope membranes. To identify intermediate steps during active import, we used sucrose density gradient centrifugation and blue-native polyacrylamide gel electrophoresis (BN-PAGE) to identify complexes of translocon components associated with precursor proteins under active import conditions instead of arrested binding conditions. Importing precursor proteins in solubilized chloroplast membranes formed a two-peak distribution in the sucrose density gradient. The heavier peak was in a similar position as the previously reported Tic/Toc supercomplex and was too large to be analyzed by BN-PAGE. The BN-PAGE analyses of the lighter peak revealed that precursors accumulated in at least two complexes. The first complex migrated at a position close to the ferritin dimer (approximately 880 kDa) and contained only the Toc components. Kinetic analyses suggested that this Toc complex represented an earlier step in the import process than the Tic/Toc supercomplex. The second complex in the lighter peak migrated at the position of the ferritin trimer (approximately 1320 kDa). It contained, in addition to the Toc components, Tic110, Hsp93, and an hsp70 homolog, but not Tic40. Two different precursor proteins were shown to associate with the same complexes. Processed mature proteins first appeared in the membranes at the same fractions as the Tic/Toc supercomplex, suggesting that processing of transit peptides occurs while precursors are still associated with the supercomplex.  相似文献   

8.
Redox signals play important roles in many developmental and metabolic processes, in particular in chloroplasts and mitochondria. Furthermore, redox reactions are crucial for protein folding via the formation of inter- or intramolecular disulfide bridges. Recently, redox signals were described to be additionally involved in regulation of protein import: in mitochondria, a disulfide relay system mediates retention of cystein-rich proteins in the intermembrane space by oxidizing them. Two essential proteins, the redox-activated receptor Mia40 and the sulfhydryl oxidase Erv1 participate in this pathway. In chloroplasts, it becomes apparent that protein import is affected by redox signals on both the outer and inner envelope: at the level of the Toc complex (translocon at the outer envelope of chloroplasts), the formation/reduction of disulfide bridges between the Toc components has a strong influence on import yield. Moreover, the stromal metabolic redox state seems to be sensed by the Tic complex (translocon at the inner envelope of chloroplasts) that is able to adjust translocation efficiency of a subgroup of redox-related preproteins accordingly. This review summarizes the current knowledge of these redox-regulatory pathways and focuses on similarities and differences between chloroplasts and mitochondria.Key words: protein import, chloroplasts, mitochondria, redox-regulation, disulfide bridges, NADP(H), Toc, Tic, Tom  相似文献   

9.
A subunit of the preprotein translocon of the outer envelope of chloroplasts (Toc complex) of 64 kD is described, Toc64. Toc64 copurifies on sucrose density gradients with the isolated Toc complex. Furthermore, it can be cross-linked in intact chloroplasts to a high molecular weight complex containing both Toc and Tic subunits and a precursor protein. The 0 A cross-linker CuCl(2) yields the reversible formation of disulfide bridge(s) between Toc64 and the established Toc complex subunits in purified outer envelope membranes. Toc64 contains three tetratricopeptide repeat motifs that are exposed at the chloroplast cytosol interface. We propose that Toc64 functions early in preprotein translocation, maybe as a docking protein for cytosolic cofactors of the protein import into chloroplasts.  相似文献   

10.
Transit peptides are N-terminal extensions that facilitate the targeting and translocation of cytosolically synthesized precursors into plastids via a post-translational mechanism. With the complete Arabidopsis genome in hand, it is now evident that transit peptides direct more than 3500 different proteins into the plastid during the life of a typical plant. Deciphering a common mechanism for how this multitude of targeting sequences function has been hampered by the realization that at a primary sequence level, transit peptides are highly divergent in length, composition, and organization. This review addresses recent findings on several of the diverse functions that transit peptides must perform, including direct interaction with envelope lipids, association with a cis-acting guidance complex, recognition by envelope receptors, insertion into the Toc/Tic translocon, interaction with molecular motors, and finally, recognition/cleavage by the stromal processing peptidase. In addition to higher plants, transit peptides also direct the import of proteins into complex plastids derived from secondary endosymbiosis. An emerging concept suggests that transit peptides contain multiple domains that provide either distinct or possibly overlapping functions. Although still poorly characterized, evolutionary processes could yield transit peptides with alternative domain organizations.  相似文献   

11.
Endosymbiotic theory suggests that plastids originated from a photosynthetic bacterium that was engulfed by a primitive eukaryotic cell. In consequence, the chloroplast genome remains affected by this ancestral event, although it is reduced in size and the number of constituent genes. Most parts of the plastid genome have been transferred to the host cell nuclear genome and are nuclear-encoded. Thus, chloroplast proteins are synthesized in the cytosol as precursors with N-terminal extensions called transit peptides. The evolution of import machinery was required to transfer transit peptides to the stroma. Until the present, two protein complexes have been found to mediate the import process: the Toc (outer) and Tic (inner) envelope membrane translocons. The evolutionary origin of many Tic and Toc proteins has been established, but not for the Tic110 subunit. Tic110 binds signal peptides and serves as a scaffold for the recruitment of stromal components. In this study, we analyzed hydrophobic clusters, protein folds, and protein structure homology and we conclude that Tic110 is composed of fourteen repeated motifs related to HEAT-repeats. The explanation for the presence of such repeats in Tic110 is that membrane arrangement is found in separate domains and their probable function in the chloroplast import process is discussed.  相似文献   

12.
《Plant science》2001,161(3):379-389
There is broad evidence that an endosymbiotic uptake of a cyanobacterial-type organism was the point of origin for the evolution of chloroplasts. During organelle evolution extensive gene transfer from the symbiont to the host genome occurred, which raises the question of how these gene products, namely proteins, which are still functional in chloroplasts, find their way back ‘home’. Nuclear-encoded proteins enter plastids via a complex import machinery that requires the coordinate interplay of a variety of soluble and membrane-bound factors on the cytosolic site as well as on the stromal side of the chloroplast envelope membranes. We define that the process called ‘import of chloroplast precursor proteins’ begins with the release of the polypeptide from the ribosomes and binding to cytosolic factors, such as a guidance complex, which accompanies (chaperones) proteins to chloroplasts. The translocation across the envelope membranes engages distinct translocation machineries at the outer and the inner envelope membranes. Additionally subsequent sorting events to different subcompartments within the plastids are operated by a number of distinct pathways, all of which seem to involve multiple subunits, which are largely of bacterial (symbiotic) origin. The evolutionary history of proteins mediating the import of chloroplast constituents across the envelope membranes seems more diverse. Since cyanobacteria lack a protein import pathway, it is not surprising that only a few subunits of the chloroplast translocon seem to be of symbiotic origin while others seem to be eukaryotic additions.  相似文献   

13.
Chloroplasts are organelles essential for the photoautotrophic growth of plants. Their biogenesis from undifferentiated proplastids is triggered by light and requires the import of hundreds of different precursor proteins from the cytoplasm. Cleavable N-terminal transit sequences target the precursors to the chloroplast where translocon complexes at the outer (Toc complex) and inner (Tic complex) envelope membranes enable their import. In pea, the Toc complex is trimeric consisting of two surface-exposed GTP-binding proteins (Toc159 and Toc34) involved in precursor recognition and Toc75 forming an aequeous protein-conducting channel. Completion of the Arabidopsis genome has revealed an unexpected complexity of predicted components of the Toc complex in this plant model organism: four genes encode homologs of Toc159, two encode homologs of Toc34, but only one encodes a likely functional homolog of Toc75. The availability of the genomic sequence data and powerful molecular genetic techniques in Arabidopsis set the stage to unravel the mechanisms of chloroplast protein import in unprecedented depth.  相似文献   

14.
15.
Abstract: Plastids with four‐membrane envelopes have evolved by several independent endosymbioses involving a eukaryotic alga as the endosymbiont and a protozoan predator as the host. It is assumed that their outermost membrane is derived from the phagosomal membrane of the host and that protein targeting to and across this membrane proceeds co‐translationally, including ER and the Golgi apparatus (e.g., chlorarachniophytes) or only ER (e.g., heterokonts). Since the two inner membranes (or the plastid envelope) of such a complex plastid are derived from the endosymbiont plastid, they are probably provided with Toc and Tic systems, enabling post‐translational passage of the imported proteins into the stroma. The third envelope membrane, or the periplastid one, originates from the endosymbiont plasmalemma, but what import apparatus operates in it remains enigmatic. Recently, Cavalier‐Smith (1999[5]) has proposed that the Toc system, pre‐existing in the endosymbiont plastid, has been relocated to the periplastid membrane, and that plastids having four envelope membranes contain two Toc systems operating in tandem and requiring the same targeting sequence, i.e., the transit peptide. Although this model is parsimonious, it encounters several serious obstacles, the most serious one resulting from the complex biogenesis of Toc75 which forms a translocation pore. In contrast to most proteins targeted to the outer membrane of the plastid envelope, this protein carries a complex transit peptide, indicating that a successful integration of the Toc system into the periplastid membrane would have to be accompanied by relocation of the stromal processing peptidase to the endosymbiont cytosol. However, such a relocation would be catastrophic because this enzyme would cleave the transit peptide off all plastid‐destined proteins, thus disabling biogenesis of the plastid compartment. Considering these difficulties, I suggest that in periplastid membranes two Toc‐independent translocation apparatuses have evolved: a porin‐like channel in chlorarachniophytes and cryptophytes, and a vesicular pathway in heterokonts and haptophytes. Since simultaneous evolution of a new transport system in the periplastid membrane and in the phagosomal one would be complicated, it is argued that plastids with four‐membrane envelopes have evolved by replacement of plastids with three‐membrane envelopes. I suggest that during the first round of secondary endosymbioses (resulting in plastids surrounded by three membranes), myzocytotically‐engulfed eukaryotic alga developed a Golgi‐mediated targeting pathway which was added to the Toc/Tic‐based apparatus of the endosymbiont plastid. During the second round of secondary endosymbioses (resulting in plastids surrounded by four membranes), phagocytotically‐engulfed eukaryotic alga exploited the Golgi pathway of the original plastid, and a new translocation system had to originate only in the periplastid membrane, although its emergence probably resulted in modification of the import machinery pre‐existing in the endosymbiont plastid.  相似文献   

16.
NADPH:protochlorophyllide oxidoreductase (POR) A is a key enzyme of chlorophyll biosynthesis in angiosperms. It is nucleus-encoded, synthesized as a larger precursor in the cytosol and imported into the plastids in a substrate-dependent manner. Plastid envelope membrane proteins, called protochlorophyllide-dependent translocon proteins, Ptcs, have been identified that interact with pPORA during import. Among them are a 16-kDa ortholog of the previously characterized outer envelope protein Oep16 (named Ptc16) and a 33-kDa protein (Ptc33) related to the GTP-binding proteins Toc33 and Toc34 of Arabidopsis. In the present work, we studied the interactions and roles of Ptc16 and Ptc33 during pPORA import. Radiolabeled Ptc16/Oep16 was synthesized from a corresponding cDNA and imported into isolated Arabidopsis plastids. Crosslinking experiments revealed that import of 35S-Oep16/Ptc16 is stimulated by GTP. 35S-Oep16/Ptc16 forms larger complexes with Toc33 but not Toc34. Plastids of the ppi1 mutant of Arabidopsis lacking Toc33, were unable to import pPORA in darkness but imported the small subunit precursor of ribulose-1,5-bisphosphate carboxylase/oxygenase (pSSU), precursor ferredoxin (pFd) as well as pPORB which is a close relative of pPORA. In white light, partial suppressions of pSSU, pFd and pPORB import were observed. Our results unveil a hitherto unrecognized role of Toc33 in pPORA import and suggest photooxidative membrane damage, induced by excess Pchlide accumulating in ppi1 chloroplasts because of the lack of pPORA import, to be the cause of the general drop of protein import.  相似文献   

17.
A single general import pathway in vascular plants mediates the transport of precursor proteins across the two membranes of the chloroplast envelope, and at least four pathways are responsible for thylakoid protein targeting. While the transport systems in the thylakoid are related to bacterial secretion systems, the envelope machinery is thought to have arisen with the endosymbiotic event and to be derived, at least in part, from proteins present in the original endosymbiont. Recently the moss Physcomitrella patens has gained worldwide attention for its ability to undergo homologous recombination in the nuclear genome at rates unseen in any other land plants. Because of this, we were interested to know whether it would be a useful model system for studying chloroplast protein transport. We searched the large database of P. patens expressed sequence tags for chloroplast transport components and found many putative homologues. We obtained full-length sequences for homologues of three Toc components from moss. To our knowledge, this is the first sequence information for these proteins from non-vascular plants. In addition to identifying components of the transport machinery from moss, we isolated plastids and tested their activity in protein import assays. Our data indicate that moss and pea (Pisum sativum) plastid transport systems are functionally similar. These findings identify P. patens as a potentially useful tool for combining genetic and biochemical approaches for the study of chloroplast protein targeting. Abbreviations: EST, expressed sequence tag; LHCP, light-harvesting chlorophyll-binding protein; NIBB, National Institute for Basic Biology; OE17, 17 kDa subunit of the oxygen-evolving complex; PC, plastocyanin; PEP, Physcomitrella EST Programme; SPP, stromal processing peptidase; SRP, signal recognition particle; Tat, twin-arginine translocation; Tic, translocon at the inner membrane of the chloroplast envelope; Toc, translocon at the outer membrane of the chloroplast envelope; TPP, thylakoid processing peptidase; TPR, tetratricopeptide repeatSupplementary material to this paper is available in electronic form at .This revised version was opublished online in July 2005 with corrected page numbers.  相似文献   

18.
Chloroplast protein import across the inner envelope is facilitated by the translocon of the inner envelope of chloroplasts (Tic). Here we have identified Tic32 as a novel subunit of the Tic complex. Tic32 can be purified from solubilized inner envelope membranes by chromatography on Tic110 containing affinity matrix. Co-immunoprecipitation experiments using either Tic32 or Tic110 antisera indicated a tight association between these polypeptides as well as with other Tic subunits, e.g. Tic40, Tic22, or Tic62, whereas the outer envelope protein Toc75 was not found in this complex. Chemical cross-linking suggests that Tic32 is involved late in the overall translocation process, because both the precursor form as well as the mature form of Rubisco small subunit can be detected. We were unable to isolate Arabidopsis null mutants of the attic32 gene, indicating that Tic32 is essential for viability. Deletion of the attic32 gene resulted in early seed abortion because the embryo was unable to differentiate from the heart stage to the torpedo stage. The homology of Tic32 to short-chain dehydrogenases suggests a dual role of Tic32 in import, one as a regulatory component and one as an important subunit in the assembly of the entire complex.  相似文献   

19.
Chloroplast function is largely dependent on its resident proteins, most of which are encoded by the nuclear genome and are synthesized in cytosol. Almost all of these are imported through the translocons located in the outer and inner chloroplast envelope membranes. The motor protein that provides the driving force for protein import has been proposed to be Hsp93, a member of the Hsp100 family of chaperones residing in the stroma. Combining in vivo and in vitro approaches, recent publications have provided multiple lines of evidence demonstrating that a stromal Hsp70 system is also involved in protein import into this organelle. Thus it appears that protein import into chloroplasts is driven by two motor proteins, Hsp93 and Hsp70. A perspective on collaboration between these two chaperones is discussed.Key words: stromal Hsp70, chloroplast protein import, stromal motor complex, ATPase, Physcomitrella patens, Hsp93, Toc, Tic, transit peptide, translocationChloroplasts are plant and algal specific organelles where photosynthesis and many other cellular processes take place. Chloroplasts contain ∼3,000 proteins,1,2 with about 100 encoded by the chloroplast genome. In other words, more than 90% of chloroplast proteins are encoded by nuclear genes, synthesized in the cytosol and post-translationally imported into plastids. Most imported proteins are synthesized as precursors with a cleavable N-terminal signal, called a transit peptide. Such precursors are recognized by receptors in the outer envelope membrane, translocated through translocons in the outer and inner envelope membranes of chloroplasts (Toc and Tic), and processed to either their mature- or intermediate-sized forms in the chloroplast stroma.38 Thylakoid proteins are further transported to their final destinations via one of four pathways, the cpSec, cpSRP, cpTAT and spontaneous pathways.911 It is believed that the precursors are translocated across the envelope membranes in at least partially unfolded conformations and that the import machinery possesses some degree of unfolding activity.12Three proteins make up the core Toc complex, Toc159, Toc34 and Toc75. The Toc159 and Toc34 proteins are receptors possessing GTPase activities and recognizing transit peptides. Toc75 is a ß-barrel protein that forms the protein-translocating channel across the outer envelope membrane.13 The Tic complex is also formed from multiple subunits. Tic110, Tic21 and Tic20 have each been suggested to function as the channel of the Tic complex.1416 A ternary complex containing the stroma-facing domain of Tic110, Tic40 and a stromal factor, Hsp93 (a member of the Hsp100 family, possessing two ATPase domains), interacts with incoming precursor proteins.1726 Hsp93 has been proposed to serve as the import motor.27 Other Tic components include regulatory subunits Tic62, Tic55 and Tic32 that are purported to facilitate redox- and calcium/calmodulin-dependent precursor translocation across the inner envelope membrane (reviewed in ref. 3). Tic22 is a peripheral membrane protein associated with the inner envelope and exposed to the intermembrane space.28 It is suggested that Tic22 connects the Toc and Tic translocons during protein import.  相似文献   

20.
Protein translocation across membranes is assisted by translocation machineries present in the membrane targeted by the precursor proteins. Translocon subunits can be functionally divided into receptor proteins warranting the specificity of this machine and a translocation channel. At the outer envelope of chloroplasts two sets of receptor proteins regulate protein translocation facing the cytosol or acting in the intermembrane space. One, Toc64 is a receptor of the translocon at the outer envelope of chloroplasts (Toc complex) with dual function. Toc64 recognizes Hsp90 delivered precursor proteins via a cytosolic exposed domain containing three tetratrico-peptide repeat motifs and as demonstrated in here, Toc64 functions also as a major component of a complex facing the intermembrane space. The latter complex is composed of an Hsp70 localized in the intermembrane space, its interaction partner Toc12, a J-domain containing protein and the intermembrane space protein Tic22. We analyzed the intermembrane space domain of Toc64. This domain is involved in preprotein recognition and association with the Toc-complex independent of the cytosolic domain of the Toc64 receptor. Therefore, Toc64 is involved in preprotein translocation across the outer envelope at both sites of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号