首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outer membrane β-barrel proteins differ from α-helical inner membrane proteins in lipid environment, secondary structure, and the proposed processes of folding and insertion. It is reasonable to expect that outer membrane proteins may contain primary sequence information specific for their folding and insertion behavior. In previous work, a depth-dependent insertion potential, E(z) , was derived for α-helical inner membrane proteins. We have generated an equivalent potential for TM β-barrel proteins. The similarities and differences between these two potentials provide insight into unique aspects of the folding and insertion of β-barrel membrane proteins. This potential can predict orientation within the membrane and identify functional residues involved in intermolecular interactions.  相似文献   

2.
A great interest exists in producing and/or improving two-dimensional (2D) crystals of membrane proteins amenable to structural analysis by electron crystallography. Here we report on the use of the detergent n-octyl beta-d-thioglucopyranoside in 2D crystallization trials of membrane proteins with radically different structures including FhuA from the outer membrane of Escherichia coli, light-harvesting complex II from Rubrivivax gelatinosus, and Photosystem I from cyanobacterium Synechococcus sp. We have analyzed by electron microscopy the structures reconstituted after detergent removal from lipid-detergent or lipid-protein-detergent micellar solutions containing either only n-octyl beta-d-thioglucopyranoside or n-octyl beta-d-thioglucopyranoside in combination with other detergents commonly used in membrane protein biochemistry. This allowed the definition of experimental conditions in which the use of n-octyl beta-d-thioglucopyranoside could induce a considerable increase in the size of reconstituted membrane structures, up to several micrometers. An other important feature was that, in addition to reconstitution of membrane proteins into large bilayered structures, this thioglycosylated detergent also was revealed to be efficient in crystallization trials, allowing the proteins to be analyzed in large coherent two-dimensional arrays. Thus, inclusion of n-octyl beta-d-thioglucopyranoside in 2D crystallization trials appears to be a promising method for the production of large and coherent 2D crystals that will be valuable for structural analysis by electron crystallography and atomic force microscopy.  相似文献   

3.
Outer mitochondrial membrane was purified from rat liver. Its constituent proteins were analyzed by SDS-polyacrylamide gel electrophoresis and by electrophoretic immunoblotting employing antibodies raised against total outer mitochondrial membrane. Anti-outer mitochondrial membrane antiserum reacted with only one polypeptide (15 kDa) in rough microsomes, whereas no immunological cross-reactivity was observed with other mitochondrial compartments (intermembrane space, inner membrane, or matrix) or with lysosomes or total cytosol. The antiserum was employed to characterize precursors of outer mitochondrial membrane proteins synthesized in vitro in a rabbit reticulocyte cell-free system. One product (a 68 kDa polypeptide designated OMM-68) bound efficiently to mitochondria in vitro but did not interact with either dog pancreas or rat liver microsomes, either co-translationally or post-translationally. OMM-68 was synthesized exclusively by the membrane-free class of polyribosomes. Attachment of precursor OMM-68 to mitochondria was not accompanied by processing of the polypeptide to a different size.  相似文献   

4.
Outer membrane materials prepared from three independently isolated spontaneous Escherichia coli tolF mutants contained no detectable protein Ia. The loss of this protein was nearly completely compensated for by an increase in other major outer membrane proteins, Ib and II. Thus, the major outer membrane proteins accounted for 40% of the total cell envelope protein in both tol+ and tolF strains. No changes were found in the levels of inner membrane proteins prepared from tolF strains when compared with similar preparations from the tol+ strain. Phage-resistant mutants were selected starting with a tolF strain by using either phage TuIb or phage PA2. These phage-resistant tolF strains contained neither protein Ia nor protein Ib. The mutation leading to the loss of protein Ib in these strains is independent of the tolF mutation and is located near malP on the E. coli genetic map.  相似文献   

5.
In order to characterize the protein composition of the outer membrane of Borrelia burgdorferi, we have isolated inner and outer membranes by using discontinuous sucrose density step gradients. Outer and inner membrane fractions isolated by this method contained less than 1 and 2%, respectively, of the total lactate dehydrogenase activity (soluble marker) in cell lysate. More importantly, the purified outer membranes contained less than 4% contamination by the C subunit of F1/F0 ATPase (inner membrane marker). Very little flagellin protein was present in the outer membrane sample. This indicated that the outer membranes were relatively free of contamination by cytoplasmic, inner membrane or flagellar components. The outer membrane fractions (rho = 1.19 g/cm3) contained 0.15 mg (dry weight) of protein per mg. Inner membrane samples (rho = 1.12 g/cm3) contained 0.60 mg (dry weight) of protein per mg. Freeze-fracture electron microscopy revealed that the outer membrane vesicles contained about 1,700 intramembranous particles per micron 2 while inner membrane densities for inner and outer membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nonequilibrium pH gel electrophoresis-SDS-PAGE analyses of inner and outer membrane samples revealed several proteins unique to the inner membrane and 20 proteins that localized specifically to the outer membrane. This analysis clearly shows that the inner and outer membranes isolated by this technique are unique structures.  相似文献   

6.
Vibrio parahaemolyticus and V. alginolyticus, marine foodborne pathogens, were treated with UVC-radiation (240 J/m2) to evaluate alterations in their outer membrane protein profiles. Outer membrane protein patterns of UVC-irradiated bacteria were found altered when analyzed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Altered proteins were identified by mass spectrometry (MS and MS/MS) and analysis revealed that OmpW, OmpA, Long-chain fatty acid transport protein, Outer membrane receptor protein, Putative uncharacterized protein VP0167, Maltoporin (lamB), Polar flagellin B/D, Agglutination protein Peptidoglycan-associated lipoprotein and MltA-interacting protein MipA were appeared, thereby they can be considered as UVC-stress proteins in some vibrios. In addition, expression of OmpK decreased to non-detectable level. Furthermore, we observed a decrease or an increase in the expression level of other outer membrane proteins.  相似文献   

7.
Mitochondrial protein import   总被引:60,自引:0,他引:60  
Most mitochondrial proteins are synthesized as precursor proteins on cytosolic polysomes and are subsequently imported into mitochondria. Many precursors carry amino-terminal presequences which contain information for their targeting to mitochondria. In several cases, targeting and sorting information is also contained in non-amino-terminal portions of the precursor protein. Nucleoside triphosphates are required to keep precursors in an import-competent (unfolded) conformation. The precursors bind to specific receptor proteins on the mitochondrial surface and interact with a general insertion protein (GIP) in the outer membrane. The initial interaction of the precursor with the inner membrane requires the mitochondrial membrane potential (delta psi) and occurs at contact sites between outer and inner membranes. Completion of translocation into the inner membrane or matrix is independent of delta psi. The presequences are cleaved off by the processing peptidase in the mitochondrial matrix. In several cases, a second proteolytic processing event is performed in either the matrix or in the intermembrane space. Other modifications can occur such as the addition of prosthetic groups (e.g., heme or Fe/S clusters). Some precursors of proteins of the intermembrane space or the outer surface of the inner membrane are retranslocated from the matrix space across the inner membrane to their functional destination ('conservative sorting'). Finally, many proteins are assembled in multi-subunit complexes. Exceptions to this general import pathway are known. Precursors of outer membrane proteins are transported directly into the outer membrane in a receptor-dependent manner. The precursor of cytochrome c is directly translocated across the outer membrane and thereby reaches the intermembrane space. In addition to the general sequence of events which occurs during mitochondrial protein import, current research focuses on the molecules themselves that are involved in these processes.  相似文献   

8.
《The Journal of cell biology》1993,121(6):1233-1243
Nuclear-encoded proteins destined for mitochondria must cross the outer or both outer and inner membranes to reach their final sub- mitochondrial locations. While the inner membrane can translocate preproteins by itself, it is not known whether the outer membrane also contains an endogenous protein translocation activity which can function independently of the inner membrane. To selectively study the protein transport into and across the outer membrane of Neurospora crassa mitochondria, outer membrane vesicles were isolated which were sealed, in a right-side-out orientation, and virtually free of inner membranes. The vesicles were functional in the insertion and assembly of various outer membrane proteins such as porin, MOM19, and MOM22. Like with intact mitochondria, import into isolated outer membranes was dependent on protease-sensitive surface receptors and led to correct folding and membrane integration. The vesicles were also capable of importing a peripheral component of the inner membrane, cytochrome c heme lyase (CCHL), in a receptor-dependent fashion. Thus, the protein translocation machinery of the outer mitochondrial membrane can function as an independent entity which recognizes, inserts, and translocates mitochondrial preproteins of the outer membrane and the intermembrane space. In contrast, proteins which have to be translocated into or across the inner membrane were only specifically bound to the vesicles, but not imported. This suggests that transport of such proteins involves the participation of components of the intermembrane space and/or the inner membrane, and that in these cases the outer membrane translocation machinery has to act in concert with that of the inner membrane.  相似文献   

9.
The primary amine coupling reagents succinimidyl-6-biotinamido-hexanoate (NHS-A-biotin) and sulfosuccinimidyl-6-biotinamido-hexanoate (NHS-LC-biotin) were tested for their ability to selectively label Escherichia coli cell envelope proteins in vivo. Probe localization was determined by examining membrane, periplasmic, and cytosolic protein fractions. Both hydrophobic NHS-A-biotin and hydrophilic NHS-LC-biotin were shown to preferentially label outer membrane, periplasmic, and inner membrane proteins. NHS-A- and NHS-LC-biotin were also shown to label a specific inner membrane marker protein (Tet-LacZ). Both probes, however, failed to label a cytosolic marker (the omega fragment of beta-galactosidase). The labeling procedure was also used to label E. coli cells grown in low-salt Luria broth medium supplemented with 0, 10, and 20% sucrose. Outer membrane protein A (OmpA) and OmpC were labeled by both NHS-A- and NHS-LC-biotin at all three sucrose concentrations. In contrast, OmpF was labeled by NHS-A-biotin but not by NHS-LC-biotin in media containing 0 and 10% sucrose. OmpF was not labeled by either NHS-A- or NHS-LC-biotin in E. coli cells grown in medium containing 20% sucrose. Coomassie-stained gels, however, revealed similar quantities of OmpF in E. coli cells grown at all three sucrose concentrations. These data indicate that there was a change in outer membrane structure due to increased osmolarity, which limits accessibility of NHS-A-biotin to OmpF.  相似文献   

10.
Chlamydia outer membrane protein discovery using genomics   总被引:3,自引:0,他引:3  
Outer membrane proteins of microbial pathogens serve essential roles in engaging the host environment and can be important immunotherapeutic targets. Because of the difficulty of growing large quantities of chlamydiae suitable for biochemical fractionation, little was known about their outer membrane protein composition prior to the recent sequencing of the C. trachomatis and C. pneumoniae genomes. Using bioinformatic approaches to characterize chlamydial open reading frames, novel outer membrane proteins were predicted. Several of the predicted outer membrane proteins recently have been shown to be translated and localized to the surface of the chlamydial outer membrane.  相似文献   

11.
The goal of this review is to highlight recent developments in the field of mitochondrial membrane processes, which provide new insights into the relation between mitochondrial fission/fusion events and the mitochondrial permeability transition (MPT). First, we distinguish between pore opening events at the inner and outer mitochondrial membranes. Inner membrane pore opening, or iMPT, leads to membrane depolarization, release of low molecular weight compounds, cristae reorganization and matrix swelling. Outer membrane pore opening, or oMPT, allows partial release of apoptotic proteins, while complete release requires additional remodeling of inner membrane cristae. Second, we summarize recent data that supports a similar temporal and physical separation between inner and outer mitochondrial membrane fusion events. Finally, we focus on cristae remodeling, which may be the intersection between oMPT and iMPT events. Interestingly, components of fusion machinery, such as mitofusin 2 and OPA1, appear to play a role in cristae remodeling as well. Special issue dedicated to John P. Blass.  相似文献   

12.
To determine whether certain outer membrane proteins are associated with growth of Bacteroides thetaiotaomicron on polysaccharides, we developed a procedure for separating outer membranes from inner membranes by sucrose density centrifugation. Cell extracts in 10% (wt/vol) sucrose-10 mM HEPES buffer (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) (pH 7.4) were separated into two fractions on a two-step (37 and 70% [wt/vol]) sucrose gradient. These fractions were further resolved into outer membranes (p = 1.21 g/cm3) and inner membranes (p = 1.14 g/cm3) on sucrose gradients. About 20 to 26% of the total 3-hydroxy fatty acids from lipopolysaccharide and 2 to 3% of the total cellular succinate dehydrogenase activity were recovered in the outer membrane preparation. The inner membrane preparation contained 22 to 49% of the total succinate dehydrogenase activity and 2 to 3% of the total 3-hydroxy fatty acids from lipopolysaccharide. Outer membranes contained a lower concentration of protein (0.34 mg/mg [dry weight]) than did the inner membranes (0.68 mg/mg [dry weight]). Molecular weights of inner membrane polypeptides ranged from 11,000 to 133,000. The most prominent polypeptides had molecular weights ranging from 11,000 to 26,000. In contrast, the molecular weights of outer membrane polypeptides ranged from 17,000 to 117,000. The most prominent polypeptides had molecular weights ranging from 42,000 to 117,000. There were several polypeptides in the outer membranes of bacteria grown on polysaccharides (chondroitin sulfate, arabinogalactan, or polygalacturonic acid) which were not detected or were not as prominent in outer membranes of bacteria grown on monosaccharide components of these polysaccharides.  相似文献   

13.
Mitochondrial membrane permeabilization: the sine qua non for cell death   总被引:13,自引:0,他引:13  
Mitochondria are essential for maintaining cell life but they also play a role in regulating cell death, which occurs when their membranes become permeabilized. Mitochondria possess two distinct membrane systems including an outer membrane in close communication with the cytosol and an inner membrane involved in energy transduction. Outer membrane permeabilization is regulated by Bcl-2 family proteins, which control the release of proteins from the mitochondrial intermembrane space; these proteins then activate apoptosis. Inner membrane permeabilization is regulated by the mitochondrial permeability transition (MPT), which is activated by calcium and oxidative stress and leads to bioenergetic failure and necrosis. The purpose of this review is to discuss the biochemical mechanisms regulating mitochondrial membrane permeabilization; this is crucial to our understanding of the role of cell death in diseases such as cancer and the neurodegenerative diseases.  相似文献   

14.
β-barrel membrane proteins play an important role in controlling the exchange and transport of ions and organic molecules across bacterial and mitochondrial outer membranes. They are also major regulators of apoptosis and are important determinants of bacterial virulence. In contrast to β-helical membrane proteins, their evolutionary pattern of residue substitutions has not been quantified, and there are no scoring matrices appropriate for their detection through sequence alignment. Using a Bayesian Monte Carlo estimator, we have calculated the instantaneous substitution rates of transmembrane domains of bacterial β-barrel membrane proteins. The scoring matrices constructed from the estimated rates, called bbTM for β-barrel Transmembrane Matrices, improve significantly the sensitivity in detecting homologs of β-barrel membrane proteins, while avoiding erroneous selection of both soluble proteins and other membrane proteins of similar composition. The estimated evolutionary patterns are general and can detect β-barrel membrane proteins very remote from those used for substitution rate estimation. Furthermore, despite the separation of 2-3 billion years since the proto-mitochondrion entered the proto-eukaryotic cell, mitochondria outer membrane proteins in eukaryotes can also be detected accurately using these scoring matrices derived from bacteria. This is consistent with the suggestion that there is no eukaryote-specific signals for translocation. With these matrices, remote homologs of β-barrel membrane proteins with known structures can be reliably detected at genome scale, allowing construction of high quality structural models of their transmembrane domains, at the rate of 131 structures per template protein. The scoring matrices will be useful for identification, classification, and functional inference of membrane proteins from genome and metagenome sequencing projects. The estimated substitution pattern will also help to identify key elements important for the structural and functional integrity of β-barrel membrane proteins, and will aid in the design of mutagenesis studies.  相似文献   

15.
Crystallizing membrane proteins remains a challenging endeavor despite the increasing number of membrane protein structures solved by X-ray crystallography. The critical factors in determining the success of the crystallization experiments are the purification and preparation of membrane protein samples. Moreover, there is the added complication that the crystallization conditions must be optimized for use in the presence of detergents although the methods used to crystallize most membrane proteins are, in essence, straightforward applications of standard methodologies for soluble protein crystallization. The roles that detergents play in the stability and aggregation of membrane proteins as well as the colloidal properties of the protein-detergent complexes need to be appreciated and controlledbefore and during the crystallization trials. All X-ray quality crystals of membrane proteins were grown from preparations of detergent-solubilized protein, where the heterogeneous natural lipids from the membrane have been replaced by ahomogeneous detergent environment. It is the preparation of such monodisperse, isotropic solutions of membrane proteins that has allowed the successful application of the standard crystallization methods routinely used on soluble proteins. In this review, the issues of protein purification and sample preparation are addressed as well as the new refinements in crystallization methodologies for membrane proteins. How the physical behavior of the detergent, in the form of micelles or protein-detergent aggregates, affects crystallization and the adaptation of published protocols to new membrane protein systems are also addressed. The general conclusion is that many integral membrane proteins could be crystallized if pure and monodisperse preparations in a suitable detergent system can be prepared.In memory of Glenn D. Garavito.  相似文献   

16.
K Nakai  M Kanehisa 《Proteins》1991,11(2):95-110
We have developed an expert system that makes use of various kinds of knowledge organized as "if-then" rules for predicting protein localization sites in Gram-negative bacteria, given the amino acid sequence information alone. We considered four localization sites: the cytoplasm, the inner (cytoplasmic) membrane, the periplasm, and the outer membrane. Most rules were derived from experimental observations. For example, the rule to recognize an inner membrane protein is the presence of either a hydrophobic stretch in the predicted mature protein or an uncleavable N-terminal signal sequence. Lipoproteins are first recognized by a consensus pattern and then assumed present at either the inner or outer membrane. These two possibilities are further discriminated by examining an acidic residue in the mature N-terminal portion. Furthermore, we found an empirical rule that periplasmic and outer membrane proteins were successfully discriminated by their different amino acid composition. Overall, our system could predict 83% of the localization sites of proteins in our database.  相似文献   

17.
The synthesis of membrane protein after infection with bacteriophage T4 was examined. Protein constituents of both the cytoplasmic and outer membrane are made during the infective cycle. In addition, newly synthesized membrane protein is found in material which has a buoyant density greater than that of either of the two host membrane fractions. Polyacrylamide gel analyses and solubilization studies using the detergent Sarkosyl indicate that synthesis of most of the membrane proteins made during the first 5 min of infection is directed by bacterial genes. New membrane proteins synthesized at times greater than 6 min after infection appear to be distinct from those of the host, and new proteins of the outer membrane are different from those of the inner. Proteins in the new dense membrane fraction are similar to those of the outer membrane.  相似文献   

18.
In Gram-negative bacteria, β-lactam antibiotics must overcome two barriers, the outer membrane and the periplasmic β-lactamase, before they reach the targets of their action, penicillin-binding proteins. Although the barrier property of the outer membrane and catalytic property of the β-lactamases have been studied and their significance in creating β-lactam resistance emphasized, the interaction between these two barriers has not been treated quantitatively. Such treatment shows that the sensitivity, to a variety of β-lactams, of the Escherichia coli K-12 cells containing very different levels of chromosomally coded AmpC β-lactamase, or a plasmid-coded TEM-type β-lactamase, can be predicted rather accurately from the penetration rate through the outer membrane and the hydrolysis rate in the periplasm. We further propose a new parameter,‘target access Index', which is a quantitative expression of the result of interaction between the two barriers, and reflects the probability of success for the antibiotic to reach the targets.  相似文献   

19.
Outer membranes, free of cytoplasmic or thylakoid membranes and peptidoglycan components, were obtained from Synechocystis sp. strain PCC6714. Electron microscope studies revealed double-track outer membrane vesicles with a smooth-appearing exoplasmic surface, an exoplasmic fracture face covered by closely packed particles and a corresponding plasmic fracture face with regularly distributed holes. Lipopolysaccharide, proteins, lipids, and carotenoids were the constituents of the outer membrane of Synechocystis sp. PCC6714. Twelve polypeptides were found in outer membrane fractions, among them two dominant outer membrane proteins (Mrs, 67,000 and 61,000). Lipopolysaccharide-specific components were GlcN and an unidentified heptose. Outer membrane lipid extracts contained phosphatidylglycerol, sulfolipid, phosphatidylcholine, and unknown lipids. The carotenoids, myxoxanthophyll, related carotenoid-glycosides, zeaxanthin, echinenone, and beta-carotene were found to be true constituents of the outer membrane of Synechocystis sp. PCC6714.  相似文献   

20.
Outer membrane vesicles were reconstituted from phospholipids, lipopolysaccharide, and outer membrane proteins isolated from Salmonella typhimurium. The vesicles appeared to be permeable to sucrose and other small oligosaccharides only when membrane proteins were added to the reconstitution system. The size of saccharides that could pass through the vesicle membranes was found to be close to the size of saccharides that penetrate through the intact outer membrane of S. typhimurium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号