首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palmitoylated proteins have been implicated in several disease states including Huntington's, cardiovascular, T-cell mediated immune diseases, and cancer. To proceed with drug discovery efforts in this area, it is necessary to: identify the target enzymes, establish efficient assays for palmitoylation, and conduct high-throughput screening to identify inhibitors. The primary objectives of this review are to examine the types of assays used to study protein palmitoylation and to discuss the known inhibitors of palmitoylation. Six main palmitoylation assays are currently in use. Four assays, radiolabeled palmitate incorporation, fatty acyl exchange chemistry, MALDI-TOF MS and azido-fatty acid labeling are useful in the identification of palmitoylated proteins and palmitoyl acyltransferase (PAT) enzymes. Two other methods, the in vitro palmitoylation (IVP) assay and a cell-based peptide palmitoylation assay, are useful in the identification of PAT enzymes and are more amenable to screening for inhibitors of palmitoylation. To date, two general types of palmitoylation inhibitors have been identified. Lipid-based palmitoylation inhibitors broadly inhibit the palmitoylation of proteins; however, the mechanism of action of these compounds is unknown, and each also has effects on fatty acid biosynthesis. Conversely, several non-lipid palmitoylation inhibitors have been shown to selectively inhibit the palmitoylation of different PAT recognition motifs. The selective nature of these compounds suggests that they may act as protein substrate competitors, and may produce fewer non-specific effects. Therefore, these molecules may serve as lead compounds for the further development of selective inhibitors of palmitoylation, which may lead to new therapeutics for cancer and other diseases.  相似文献   

2.
The efficacy and success of many cellular processes is dependent on a tight orchestration of proteins trafficking to and from their site(s) of action in a time-controlled fashion. Recently, a dynamic cycle of palmitoylation/de-palmitoylation has been shown to regulate shuttling of several proteins, including the small GTPases H-Ras and N-Ras, and the GABA-synthesizing enzyme GAD65, between the Golgi compartment and either the plasma membrane or synaptic vesicle membranes. These proteins are peripheral membrane proteins that in the depalmitoylated state cycle rapidly on and off the cytosolic face of ER/Golgi membranes. Palmitoylation of one or more cysteines, by a Golgi localized palmitoyl transferase (PAT) results in trapping in Golgi membranes, and sorting to a vesicular pathway in route to the plasma membrane or synaptic vesicles. A depalmitoylation step by an acyl protein thioesterase (APT) releases the protein from membranes in the periphery of the cell resulting in retrograde trafficking back to Golgi membranes by a non-vesicular pathway. The proteins can then enter a new cycle of palmitoylation and depalmitoylation. This inter-compartmental trafficking is orders of magnitude faster than vesicular trafficking. Recent advances in identifying a large family of PATs, their protein substrates, and single PAT mutants with severe phenotypes, reveal their critical importance in development, synaptic transmission, and regulation of signaling cascades. The emerging knowledge of enzymes involved in adding and removing palmitate is that they provide an intricate regulatory network involved in timing of protein function and transport that responds to intracellular and extracellular signals.  相似文献   

3.
Protein palmitoylation, a common post-translational lipid modification, plays an important role in protein trafficking and functions. Recently developed palmitoyl-proteomic methods identified many novel substrates. However, the whole picture of palmitoyl substrates has not been clarified. Here, we performed global in silico screening using the CSS-Palm 2.0 program, free software for prediction of palmitoylation sites, and selected 17 candidates as novel palmitoyl substrates. Of the 17 candidates, 10 proteins, including 6 synaptic proteins (Syd-1, transmembrane AMPA receptor regulatory protein (TARP) γ-2, TARP γ-8, cornichon-2, Ca2+/calmodulin-dependent protein kinase IIα, and neurochondrin (Ncdn)/norbin), one focal adhesion protein (zyxin), two ion channels (TRPM8 and TRPC1), and one G-protein-coupled receptor (orexin 2 receptor), were palmitoylated. Using the DHHC palmitoylating enzyme library, we found that all tested substrates were palmitoylated by the Golgi-localized DHHC3/7 subfamily. Ncdn, a regulator for neurite outgrowth and synaptic plasticity, was robustly palmitoylated by the DHHC1/10 (zDHHC1/11; z1/11) subfamily, whose substrate has not yet been reported. As predicted by CSS-Palm 2.0, Cys-3 and Cys-4 are the palmitoylation sites for Ncdn. Ncdn was specifically localized in somato-dendritic regions, not in the axon of rat cultured neurons. Stimulated emission depletion microscopy revealed that Ncdn was localized to Rab5-positive early endosomes in a palmitoylation-dependent manner, where DHHC1/10 (z1/11) were also distributed. Knockdown of DHHC1, -3, or -10 (z11) resulted in the loss of Ncdn from Rab5-positive endosomes. Thus, through in silico screening, we demonstrate that Ncdn and the DHHC1/10 (z1/11) and DHHC3/7 subfamilies are novel palmitoyl substrate-enzyme pairs and that Ncdn palmitoylation plays an essential role in its specific endosomal targeting.  相似文献   

4.
The attachment of palmitic acid to the amino acid cysteine via thioester linkage (S-palmitoylation) is a common post-translational modification of eukaryotic proteins. In this review, we discuss the role of palmitoylation as a versatile protein sorting signal, regulating protein trafficking between distinct intracellular compartments and the micro-localization of proteins within membranes.  相似文献   

5.
Ras proteins have become paradigms for isoform- and compartment-specific signaling. Recent work has shown that Ras isoforms are differentially distributed within cell surface signaling nanoclusters and on endomembranous compartments. The critical feature regulating Ras protein localization and isoform-specific functions is the C-terminal hypervariable region (HVR). In this review we discuss the differential post-translational modifications and reversible targeting functions of Ras isoform HVR motifs. We describe how compartmentalized Ras signaling has specific functional consequences and how cell surface signaling nanoclusters generate precise signaling outputs.  相似文献   

6.
Two cDNAs encoding putative type 1 acyl-CoA: diacylglycerol acyltransferases (DGAT1, EC 2.3.1.20), were cloned from Tetraena mongolica, an extreme xerophyte with high oil content in the stems. The 1 488-bp and 1 485-bp of the open reading frame (ORF) of the two cDNAs, designated as TmDGAT1a and TmDGAT1b, were both predicted to encode proteins of 495 and 494 amino acids, respectively. Southern blot analysis revealed that TmDGAT1a and TmDGAT1b both had low copy numbers in the T. mongolica genome. In addition to ubiquitous expression with different intensity in different tissues, including stems, leaves and roots, TmDGAT1a and TmDGAT1b, were found to be strongly induced by high salinity, drought and osmotic stress, resulting in a remarkable increase of triacylglycerol (TAG) accumulation in T. mongolica plantlets. TmDGAT1a and TmDGAT1b activities were confirmed in the yeast H1246 quadruple mutant (DGA1, LRO1, ARE1, ARE2) by restoring DGAT activity of the mutant host to produce TAG. Overexpression of TmDGAT1a and TmDGAT1b in soybean hairy roots as well as in T. mongolica calli both resulted in an increase in oil content (ranging from 37% to 108%), accompanied by altered fatty acid profiles.  相似文献   

7.
The intrinsic pathway of apoptotic cell death is mainly mediated by the BCL-2-associated X (BAX) protein through permeabilization of the mitochondrial outer membrane (MOM) and the concomitant release of cytochrome c into the cytosol. In healthy, non-apoptotic cells, BAX is predominantly localized in the cytosol and exhibits a dynamic shuttle cycle between the cytosol and the mitochondria. Thus, the initial association with mitochondria represents a critical regulatory step enabling BAX to insert into MOMs, promoting the release of cytochrome c and ultimately resulting in apoptosis. However, the molecular mode of how BAX associates with MOMs and whether a cellular regulatory mechanism governs this process is poorly understood. Here we show that in both primary tissues and cultured cells, the association with MOMs and the proapoptotic action of BAX is controlled by its S-palmitoylation at Cys-126. A lack of BAX palmitoylation reduced BAX mitochondrial translocation, BAX oligomerization, caspase activity and apoptosis. Furthermore, ectopic expression of specific palmitoyl transferases in cultured healthy cells increases BAX S-palmitoylation and accelerates apoptosis, whereas malignant tumor cells show reduced BAX S-palmitoylation consistent with their reduced BAX-mediated proapoptotic activity. Our findings suggest that S-palmitoylation of BAX at Cys126 is a key regulatory process of BAX-mediated apoptosis.  相似文献   

8.
Methylation of specific chemoreceptor glutamyl residues by methyltransferase CheR mediates sensory adaptation and gradient sensing in bacterial chemotaxis. Enzyme action is a function of chemoreceptor signaling conformation: kinase‐off receptors are more readily methylated than kinase‐on, a feature central to adaptational and gradient‐sensing mechanisms. Differential enzyme action could reflect differential binding, catalysis or both. We investigated by measuring CheR binding to kinase‐off and kinase‐on forms of Escherichia coli aspartate receptor Tar deleted of its CheR‐tethering, carboxyl terminus pentapeptide. This allowed characterization of the low‐affinity binding of enzyme to the substrate receptor body, otherwise masked by high‐affinity interaction with pentapeptide. We quantified the low‐affinity protein–protein interactions by determining kinetic rate constants of association and dissociation using bio‐layer interferometry and from those values calculating equilibrium constants. Whether Tar signaling conformations were shifted by ligand occupancy or adaptational modification, there was little or no difference between the two signaling conformations in kinetic or equilibrium parameters of enzyme‐receptor binding. Thus, differential methyltransferase action does not reflect differential binding. Instead, the predominant determinants of binding must be common to different signaling conformations. Characterization of the dependence of association rate constants on Deybe length, a measure of the influence of electrostatics, implicated electrostatic interactions as a common binding determinant. Taken together, our observations indicate that differential action of methyltransferase on kinase‐off and kinase‐on chemoreceptors is not the result of differential binding and suggest it reflects differential catalytic propensity. Differential catalysis rather than binding could well be central to other enzymes distinguishing alternative conformations of protein substrates.  相似文献   

9.
Mammalian proteins that contain an aspartate-histidine-histidine-cysteine-(DHHC) motif have been recently identified as a group of membrane-associated palmitoyl acyltransferases (PATs). Among the several protein substrates known to become palmitoylated by DHHC PATs are small GTPases prenylated at their carboxy-terminal end, such as H-Ras or N-Ras, eNOS, kinases myristoylated at their N-terminal end, such as Lck, and many transmembrane proteins and channels. We have focused our studies on the product of the human gene DHHC19, a putative palmitoyl transferase that, interestingly, displays a conserved CaaX box at its carboxy-terminal end. We show herein that the amino acid sequence present at the carboxy-terminus of DHHC19 is able to exclude a green fluorescent protein (GFP) reporter from the nucleus and direct it towards perinuclear regions. Transfection of full-length DHHC19 in COS7 cells reveals a perinuclear distribution, in analogy to other palmitoyl transferases, with a strong colocalization with the trans-Golgi markers Gal-T and TGN38. We have tested several small GTPases that are known to be palmitoylated as possible substrates of DHHC19. Although DHHC19 failed to increase the palmitoylation of H-Ras, N-Ras, K-Ras4A, RhoB or Rap2 it increased the palmitoylation of R-Ras approximately two-fold. The increased palmitoylation of R-Ras cotransfected with DHHC19 is accompanied by an augmented association with membranes as well as with rafts/caveolae. Finally, using both wild-type and an activated GTP bound form of R-Ras (G38V), we also show that the increased palmitoylation of R-Ras due to DHHC19 coexpression is accompanied by an enhanced viability of the transfected cells.  相似文献   

10.
Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of the childhood caused by mutations in the gene encoding palmitoyl protein thioesterase 1 (PPT1). PPT1 localizes to late endosomes/lysosomes of non-neuronal cells and in neurons also to presynaptic areas. PPT1-deficiency causes massive death of cortical neurons and most tissues show an accumulation of saposins A and D. We have here studied endocytic pathways, saposin localization and processing in PPT1-deficient fibroblasts to elucidate the cellular defects resulting in accumulation of specific saposins. We show that PPT1-deficiency causes a defect in fluid-phase and receptor-mediated endocytosis, whereas marker uptake and recycling endocytosis remain intact. Furthermore, we show that saposins A and D are more abundant and relocalized in PPT-deficient fibroblasts and mouse primary neurons. Metabolic labeling and immunoprecipitation analyses revealed hypersecretion and abnormal processing of prosaposin, implying that the accumulation of saposins may result from endocytic defects. We show for the first time a connection between saposin storage and a defect in the endocytic pathway of INCL cells. These data provide new insights into the metabolism of PPT1-deficient cells and offer a basis for further studies on cellular processes causing neuronal death in INCL and other neurodegenerative diseases.  相似文献   

11.
Peroxisomes, glyoxysomes and glycosomes are related organelles found in different organisms. The morphology and enzymic content of the different members of this organelle family differ considerably, and may also be highly dependent on the cell's environmental conditions or life cycle. However, all peroxisome-like organelles have in common a number of characteristic enzymes or enzyme systems, notably enzymes dealing with reactive oxygen species. All organelles of the family follow essentially the same route of biogenesis, but with species-specific differences. Sets of proteins called peroxins are involved in different aspects of the formation and proliferation of peroxisomes such as import of proteins in the organellar matrix, insertion of proteins in the membrane, etc. In different eukaryotic lineages these functions are carried out by often – but not always – homologous yet poorly conserved peroxins. The process of biogenesis and the nature of the proteins involved suggest that all members of the peroxisome family evolved from a single organelle in an ancestral eukaryotic cell. This original peroxisome was possibly derived from a cellular membrane system such as the endoplasmic reticulum. Most of the organism-specific functions of the extant organelles have been acquired later in evolution.  相似文献   

12.
Colorectal cancer (CRC) is a common malignant tumour of human digestive tract. The high mortality rate of CRC is closely related to the limitations of existing treatments. Thus, there is an urgent need to search for new anti-CRC agents. In this work, twenty novel coumarin-dithiocarbamate derivatives (IDs) were designed, synthesized and evaluated in vitro. The results suggest that the most active compound ID-11 effectively inhibited the proliferation of CRC cell lines while shown little impact on normal colon epithelial cells. Mechanism studies revealed that ID-11 displayed bromodomain-containing protein 4 inhibitory activity, and induced G2/M phase arrest, apoptosis as well as decreased the expression levels of the key genes such as c-Myc and Bcl-2 in CRC cell lines. Moreover, the ADMET properties prediction results shown that ID-11 possess well metabolic characteristics without obvious toxicities. Our data demonstrated that compound ID-11 may be a promising anti-CRC agent and deserved for further development.  相似文献   

13.
Calf skin and rat tendon type I, bovine cartilage type II, and human amnion type III collagens have been radiolabeled by reaction with [3H]acetic anhydride, [3H]formaldehyde, and succinimidyl 2,3-[3H]propionate. All three reactions produce collagens with high specific activities that are suitable for use as substrates in collagenase assays. The identity of the radiolabel and the labeling indices do not alter the molecular weights or thermal stabilities of the collagens or the solubilities of the collagens or gelatins in dioxane-water mixtures at 4 degrees C. However, in contrast to native or sparsely labeled collagens, those with 40 or more lysine + hydroxylysine residues labeled per molecule do not undergo fibrillogenesis in the presence of 0.2-0.4 M NaCl in the 4-35 degree C temperature range. Thus, the modification reactions not only serve to introduce the radiolabel, but also to keep the collagens soluble over a wide range of temperatures and concentrations. The TCA, TCB fragments produced on partial reaction of each collagen type with tissue collagenases can be selectively denatured by a 10-minute incubation under specific conditions and the intact collagens selectively precipitated by addition of 50% v/v dioxane. This serves as the basis for soluble collagenase assays. The effect of labeling index on the properties of the collagens has been investigated and the results establish the range of conditions over which these collagens can be used as substrates for soluble versus fibrillar collagenase assays.  相似文献   

14.
苯丙氨酸CoA酰基转移酶原核表达系统的构建和表达   总被引:1,自引:0,他引:1  
曹红  仇燕  王刚 《生物技术》2004,14(5):13-15
目的:获得大量的重组红豆杉苯丙基转移酶(BAPT),为紫杉醇半合成代谢提供廉价的催化剂。方法:根据DNA重组技术,构建原核表达载体pET-BAFF,使目的基因位于原核T7启动子下游,IPTG诱导基因表达。结果:BAPT高效表达,重组蛋白主要以包涵体的形式存在。结论:为获得可溶性重组蛋白BAFF奠定了理论基础。  相似文献   

15.
The examination of insulin exocytosis at the single cell level by conventional electrophysiologic and amperometric methods possesses inherent limitations, and may not accurately reflect the morphologic events of exocytosis of the insulin granule. To overcome some of these limitations, we show by epifluorescent microscopy of a fluorescent dye, FM1-43, its incorporation into the plasma membrane and oncoming insulin granules undergoing exocytosis, and their core proteins. Using this method, we tracked exocytosis in real-time in insulinoma INS-1 and single rat islet beta cells in response to KCl and glucose. We observed both single transient and multi-stepwise increases in membrane FM1-43 fluorescence, suggesting single granule exocytosis as well as sequential and compound exocytosis, respectively. Confocal microscopy of nonpermeabilized cells shows that some of the exocytosed insulin granules labeled by the FM1-43 dye could also be labeled with insulin antibodies, suggesting prolonged openings of the fusion pores and slow dissolution of the granule core proteins on the membrane surface.  相似文献   

16.
Lipid transfer inhibitor protein (LTIP) exists in both active and inactive forms. Incubation (37°C) of plasma causes LTIP to transfer from a 470 kDa inactive complex to LDL where it is active. Here, we investigate the mechanisms underlying this movement. Inhibiting LCAT or cholesteryl ester transfer protein (CETP) reduced incubation-induced LTIP translocation by 40-50%. Blocking both LCAT and CETP completely prevented LTIP movement. Under appropriate conditions, either factor alone could drive maximum LTIP transfer to LDL. These data suggest that chemical modification of LDL, the 470 kDa complex, or both facilitate LTIP movement. To test this, LDL and the 470 kDa fraction were separately premodified by CETP and/or LCAT activity. Modification of the 470 kDa fraction had no effect on subsequent LTIP movement to native LDL. Premodification of LDL, however, induced spontaneous LTIP movement from the native 470 kDa particle to LDL. This transfer depended on the extent of LDL modification and correlated negatively with changes in the LDL phospholipid + cholesterol-to-cholesteryl ester + triglyceride ratio. We conclude that LTIP translocation is dependent on LDL lipid composition, not on its release from the inactive complex. Compositional changes that reduce the surface-to-core lipid ratio of LDL promote LTIP binding and activation.  相似文献   

17.
Sensitive and specific HPLC assays for APCP363 in biological matrices (rat plasma, urine and feces) were developed. The recovery of APCP363 ranged from 81.2 to 99.9% in plasma, from 82.1 to 92.8% in urine, and from 65 to 68% in feces. Standard deviations were below 10% for all analyses. The limits of quantitation were 0.1, 10 and 30 μg/ml in plasma, urine and feces, respectively. The HPLC assays, which are the first reports for APCP363 analysis in biological matrices, have been successfully applied to preliminary pharmacokinetic studies in rats. The stool assay is the first non-radiolabeled method for hydroxypyridinones in feces.  相似文献   

18.
Protein kinase C (PKC), a phospholipid-dependent serine/threonine kinase, appears to be involved in the signal transduction response to many hormones and growth factors; there are 11 different PKC isozymes. Because PKC isozymes directly and/or indirectly participate in signal transduction pathways of normal and transformed cells through phosphorylation of target proteins, it is critical to understand the diversity of the intracellular signaling pathways regulated by each PKC isozyme. Thus, PKC isozyme-specific substrates are useful to understand the characterization of the intracellular signaling pathways for each PKC isozyme. Consensus sequences and sequence information obtained from PKC target proteins are very important to design PKC isozyme-specific peptide substrates. Moreover, computational prediction programs of phosphorylation sites using a library of peptide substrates aid in the fast design of PKC isozyme-specific peptide substrates. Although a large number of target proteins and synthetic peptides for PKCs are known, only two peptide substrates (peptide 422–426 of murine elongation factor-1α and Alphatomega peptide) have been reported as PKC isozyme-specific peptide substrates. This discussion will review the literature concerning these native and synthetic PKC isozyme-specific peptide substrates and their design.  相似文献   

19.
酯类物质是许多果实香气的主要成分。醇酰基转移酶(AATs)是酯类化合物合成的关键酶。本研究通过反转录PCR,从番茄的成熟果实中克隆了SlAAT1基因(GenBank登录号为JQ070977),其编码一个含有442个氨基酸残基的蛋白,含有醇酰转移酶BAHD家族的H-x-x-x-D和DFGWG保守基序。系统进化分析表明,SlAAT1与苹果MpAAT1,山字草的BEBT及烟草Hsr201等聚在同一分支,进化关系较近。SDS-PAGE电泳分析表明,转化SlAAT1基因的大肠杆菌BL21(DE3)在22℃、0.8 mmol·L-1 IPTG条件下可获得大量的可溶性目标蛋白。同时,纯化的SlAAT1大肠杆菌重组蛋白的体外酶活性分析表明了SlAAT1重组蛋白具有醇酰基转移酶活性,可能参与了酯类挥发性成分的合成。  相似文献   

20.
The plasma HDLs represent a major class of cholesterol-transporting lipoprotein that can be divided into two distinct subfractions, HDL(2) and HDL(3), by ultracentrifugation. Existing methods for the subfractionation of HDL requires lengthy ultracentrifugations, making them unappealing for large-scale studies. We describe a method that subfractionates HDL from plasma in only 6 h, representing a substantial decrease in total isolation time. The subfractions so isolated were assessed for a variety of lipid and protein components, in addition to their susceptibility to oxidation, both alone and in combination with VLDL and LDL. We report for the first time a prooxidant role for HDL during VLDL oxidation, in which HDL donates preformed hydroperoxides to VLDL in a cholesteryl ester transfer protein (CETP)-dependent process. Examination of the participation of HDL in LDL oxidation has reinforced its classic role as a potent antioxidant. Furthermore, we have also implicated the second major HDL-associated enzyme, LCAT, in these processes, whereby it acts as a potent prooxidant during VLDL oxidation but as an antioxidant during LDL oxidation. Thus, we have identified a potentially duplicitous role for HDL in the pathogenesis of atherosclerosis, attributable to both CETP and LCAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号