首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
The role of ecophysiological traits in the success and expansion of the toxic cyanobacterium Cylindrospermopsis raciborskii is still under debate. One key factor appears to be the high physiological flexibility of this organism when obtaining limiting resources. Recent studies have found that filamentous bloom-forming cyanobacteria are able to optimize their growth by adjusting phosphate uptake during fluctuating nutrient conditions. We investigated the growth response of two phosphate-deficient C. raciborskii isolates (MVCC19 from Uruguay and CCMP1973 from USA) to short-term fluctuations in phosphate supply. These isolates were exposed to five phosphate concentrations which were provided in two supply modes: a single pulse (SingleP) versus the same amount divided in 10 pulses (TenP), with one pulse applied every 6 min. Morphological traits and changes in chlorophyll a and phycocyanin fluorescence were also evaluated. Growth rates of CCMP1973 and MVCC19 almost doubled and tripled, respectively, when exposed to multiple rather than single phosphate additions. Different growth rates were observed with the same total added resource, thus contradicting the classical model of dependence of growth rate on absolute external concentration. Phosphate-deficient C. raciborskii showed a remarkable physiological flexibility in adapting to phosphate availability on a timescale from minutes to hours. The TenP mode provided an extension of phosphate exposure time that allowed the energetic optimization of uptake and growth. The morphological plasticity of the species in response to phosphate supply mode was also shown by differences in trichome length and individual size. Our results are the first evidence of growth optimization of phosphate-deficient C. raciborskii to short-term nutrient fluctuations, revealing its physiological flexibility. This adaptive behaviour may help to explain the invasive success of this diazotrophic cyanobacterium in a wide range of aquatic ecosystems where phosphorus is frequently the limiting resource.  相似文献   

2.
The cyanobacterium Raphidiopsis raciborskii is of environmental and social concern in view of its toxicity, bloom-forming characteristics and increasingly widespread occurrence. However, while availability of macronutrients and micronutrients such as N and Fe are critically important for the growth and metabolism of this organism, the physiological response of toxic and non-toxic strains of R. raciborskii to varying Fe and N availabilities remains unclear. By determining physiological parameters as a function of Fe and N availability, we demonstrate that R. raciborskii growth and N2-fixing activity are facilitated at higher Fe availability under N2-limited conditions with faster growth of the CS-506 (cylindrospermopsin-producing) strain compared with that of CS-509 (the non-toxic) strain. Radiolabelled Fe uptake assays indicated that R. raciborskii acclimated under Fe-limited conditions acquires Fe at significantly higher rates than under Fe replete conditions, principally via unchelated Fe(II) generated as a result of photoreduction of complexed Fe(III). While N2-fixation of both strains occurred during both day and night, the CS-506 strain overall exhibited higher N2-fixing and Fe uptake rates than the CS-509 strain under N-deficient and Fe-limited conditions. The findings of this study highlight that Fe availability is of significance for the ecological advantage of CS-506 over CS-509 in N-deficient freshwaters.  相似文献   

3.
Cylindrospermopsis raciborskii is an invasive and potentially toxic cyanobacterium, which has recently spread worldwide, mainly because of its tolerance to a wide range of climatic conditions. C. raciborskii is able to change several traits in response to environmental changes and its morphology is also affected by these changes (especially in nutrients). We also expected temperature to affect the morphology of this cyanobacterium. We examined the growth and morphology of C. raciborskii at different temperatures and compared laboratory results to the morphology of this cyanobacterium in situ. As expected, growth rates increased with temperature. In addition, a high carrying capacity at 32°C suggests that this cyanobacterium is able to form more dense blooms at high temperatures. Fragile trichomes and low growth rates were observed at 12°C. An increase in the growth rate related to temperature resulted in a decrease in trichome length, with shorter trichomes at 32°C. The same pattern was observed in wild populations of C. raciborskii in a tropical reservoir, where shorter trichomes were observed in warmer months, when biomass was highest. This species' high ability to adapt to different environmental conditions throughout the year (i.e., nutrients, temperature) may have provided it with an additional advantage to increase its perennial blooms, mainly in tropical regions.  相似文献   

4.
Coiled morphotype Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju that forms a water bloom in a shallow pond in northern Taiwan exhibits a negative correlation between trichome size and temperature. To investigate how temperature influences the growth and trichome size of C. raciborskii, two C. raciborskii strains isolated from the pond in August and February were grown at three temperatures (18, 24 and 30°C). Both strains exhibited the lowest and highest specific growth rates at 18°C and 24°C, respectively, and the trichomes became the largest at 18°C. However, specific growth rates of the strain isolated in August exceeded those of the strain isolated in February, and the trichomes of the strain isolated in February were larger than those of the strain isolated in August regardless of temperature. Moreover, although both strains produced larger numbers of akinetes at higher temperatures, the strain isolated in August produced many more akinetes than did the other. These findings suggest that the two strains are not identical, leading to the conclusion that the C. raciborskii population in the pond consists of at least two ecotypes. Large trichome formation and akinete production are thought to be different types of countermeasure against cold of C. raciborskii, and the patterns of investment in developing these functions seemed to vary between the strains.  相似文献   

5.
Phosphorus loading plays an important role in the occurrence of cyanobacterial blooms and understanding how this nutrient affects the physiology of cyanobacteria is imperative to manage these phenomena. Microcystis aeruginosa and Raphidiopsis raciborskii are cyanobacterial species that form potentially toxic blooms in freshwater ecosystems worldwide. Blooms comprise numerous strains with high trait variability, which can contribute to the widespread distribution of these species. Here, we explored the intraspecific variability in response to phosphorus depleted conditions (P-) testing five strains of each species. Strains could be differentiated by cell volume or genetic profiles except for those of the same species, sampling location and date, though these presented differences in their response to (P-). Although differently affected by (P-) over 10 days, all strains were able to grow and maintain photosynthetic activity. For most M. aeruginosa and R. raciborskii strains growth rates were not significantly different comparing (P+) and (P-) conditions. After ten days in (P-), only one M. aeruginosa strain and two R. raciborskii strains showed reduction in biovolume yield as compared to (P+) but in most strains chlorophyll-a concentrations were lower in (P-) than in (P+). Reduced photosystem II efficiency was found for only one R. raciborskii strain while all M. aeruginosa strains were affected. Only two M. aeruginosa and one R. raciborskii strain increased alkaline phosphatase activity under (P-) as compared to (P+). Variation in P-uptake was also observed but comparison among strains yielded homogeneous groups comprised of representatives of both species. Comparing the response of each species as a whole, the (P-) condition affected growth rate, biovolume yield and chlorophyll yield. However, these parameters revealed variation among strains of the same species to the extent that differences between M. aeruginosa and R. raciborskii were not significant. Taken together, these results do not support the idea that R. raciborskii, as a species, can withstand phosphorus limitation better than M. aeruginosa and also point that the level of intraspecific variation may preclude generalizations based on studies that use only one or few strains.  相似文献   

6.
Raphidiopsis raciborskii is a tropical toxic cyanobacterium that is rapidly expanding to diverse lake habitats in different climate zones by sophisticated adaptation mechanisms.This meta-analysis investigated correlations of R. raciborskii with water temperature and N:P (nitrogen to phosphorus)-ratios across four lakes with different climates and trophic states by means of long-term time series and the hybrid evolutionary algorithm HEA. The results have shown that in the lakes with temperate and Mediterranean climate, R. raciborskii is strongly correlated with water temperature since germination and growth rely on rising water temperatures in spring. In contrast, there was a weaker correlation with water temperature in subtropical and tropical lakes where pelagic populations of R. raciborskii are overwintering, and are present all year round. However, the highest abundances of R. raciborskii coincided with highest water temperature for the Mediterranean, subtropical and tropical lakes, whilst in the temperate Langer See the highest abundances of R. raciborskii occurred at 24.1 °C, even though temperatures of up to 27 °C were recorded in 2013 and 2014. The correlation of R. raciborskii with N:P-ratios proved to be strongest for the meso- to eutrophic Lake Kinneret (r2 = 0.8) and lowest for the eutrophic Lake Paranoa (r2 = 0.16). However, the assumption has been confirmed that R. raciborskii is growing fastest when waters are N-limited regardless of trophic states. In terms of phenology, the temperate and Mediterranean lakes displayed “fastest growth” in spring and early summer. In contrast, the growing season in subtropical and tropical lakes lasted from spring to autumn most likely because of overwintering populations, and growing importance of direct and indirect biotic regulating factors such as competition, grazing, remineralisation of nutrients along warming climate. In order to carry out a meta-analysis of time series across four different lakes, HEA served as powerful tool resulting in inferential models with predictive capacity for population dynamics of R. raciborskii just driven by water temperature or N:P-ratios, whilst coefficients of determination r2 served as criteria for hypotheses testing.  相似文献   

7.
  • 1 Cylindrospermopsis raciborskii occupies a rapidly expanding geographical area. Its invasive success challenges eutrophication control in many lakes. To understand better the load‐dependent behaviour of this nitrogen fixing cyanobacterium under in situ conditions, we studied P‐dependent growth of a C. raciborskii strain under continuous and pulsed P supply.
  • 2 The Droop model reasonably described P‐dependent growth in the continuously supplied chemostats. Large P pulses, however, caused a delay in growth and cells subject to P pulses grew slower than their counterparts with the same P quota supplied continuously.
  • 3 The kinetics of P uptake indicated that C. raciborskii is opportunistic with respect to P. Its high excess P storage capacity after a saturating P pulse (Qex=95 µg P [mg C]‐1) and P‐specific uptake capacity (Umax = Vmax/QP=150–1200) are indicative of storage adaptation. At the same time, the affinity of the P uptake system (Umax/K = 800–4000) is also high.
  • 4 Rate of leakage exceeded that of the steady state net P uptake by one to two orders of magnitude. Growth affinity of C. raciborskiimax/Kµ≈ 20) was relatively low, presumably due to the substantial leakage.
  • 5 The dynamics of the particular water body determine which trait contributes most to competitive success of C. raciborskii. In deep lakes with vertical nutrient gradients, the cyanobacterium may rely primarily on its high P storage capacity, which is coupled to a lack of short‐term feedback inhibition and efficient buoyancy regulation. In lakes without such gradients, high P uptake affinity may be vitally important.
  相似文献   

8.
9.
Global increases in atmospheric CO2 and temperatures will impact aquatic systems, with freshwater habitats being affected. Some studies suggest that these conditions will promote cyanobacterial dominance. There is a need for a clearer picture of how algal species and strains within species will respond to higher temperatures and CO2, especially in combination. This study examined two chlorophytes (Monoraphidium and Staurastrum), and two strains of the cyanobacterium Raphidiopsis raciborskii (straight S07 and coiled C03), to determine how the combination of higher temperature and CO2 levels will affect their growth and maximum cell concentrations. Continuous cultures were used to compare the steady state cell concentrations at 28 °C and 30 °C, and CO2 partial pressures (pCO2), 400 and 750 ppm for all cultures, and in addition 1000 ppm at 28 °C for R. raciborskii strains. This study showed that, for all species, water temperature had a greater effect than higher pCO2 on cell concentrations. There were clear differences in response between the chlorophyte species, with Monoraphidium preferring 28 °C and Staurastrum preferring 30 °C. There were also differences in response of the R. raciborskii strains to increasing temperature and pCO2, with S07 having a greater increase in cell concentration. Genome analysis of R. raciborskii showed that the straight strain has five additional carbon acquisition genes (β-CA, chpY, cmpB, cmpD and NdhD4), indicative of increased carbon metabolism. These differences in the strains’ response to elevated pCO2 will lead to changes in the species population structure and distribution in the water column. This study shows that it is important to examine the effects of both pCO2 and temperature, and to consider strain variation, to understand how species composition of natural systems may change under future climate conditions.  相似文献   

10.
  1. Exotic cladoceran Daphnia lumholtzi is a highly invasive species in the north and south American continents and can potentially also invade European freshwaters and outcompete native Daphnia populations. However, European waterbodies are frequently dominated by less edible filamentous cyanobacteria including also invaders such as Raphidiopsis raciborskii, which might affect the fitness of D. lumholtzi. Furthermore, temperature may influence the sensitivity of D. lumholtzi to R. raciborskii filaments.
  2. In this study, we determined whether the presence of R. raciborskii could obstruct the invasion of Europe by D. lumholtzi, through reducing its fitness, and whether this depends on temperature. We compared the population growth rate (r) and the somatic growth rate of D. lumholtzi maintained at two temperatures (20 or 26°C) and fed with two diets: green microalgae alone or green microalgae mixed with filaments of R. raciborskii. Three clones of D. lumholtzi were used to evaluate potential variation in response to the treatments among different clones.
  3. At 20°C, the population growth rate of D. lumholtzi fed with cyanobacterial filaments declined sharply. This reduction was caused by increased egg abortion, egg degeneration, and mortality of newborn daphnids. At 26°C, R. raciborskii lost its harmful effect on the population growth of D. lumholtzi. The presence of cyanobacteria did reduce the somatic growth rate of D. lumholtzi at both temperatures and in all three clones except for one that had a similar somatic growth rate on both diets at 26°C.
  4. The presence of filamentous cyanobacteria does affect growth in D. lumholtzi and may thereby substantially reduce its invasive potential, but only at lower temperatures. Therefore, the presence of filamentous cyanobacteria may not present an obstacle to the invasion of Europe by D. lumholtzi in a warmer future climate.
  相似文献   

11.
The freshwater cyanobacterium Cylindrospermopsis raciborskii spreads from tropical to temperate regions worldwide. This entails acclimation to varied light and temperature conditions. We studied the thermal and light acclimation of the photosynthetic machinery of C. raciborskii by monitoring alteration of the chlorophyll a and carotenoid content in German strains of C. raciborskii, in African and Australian strains of C. raciborskii, and in German strains of Aphanizomenon gracile, a native cyanobacterium belonging to the same order (Nostocales). Our results showed that temperate and tropical C. raciborskii strains did not differ in pigment acclimation to light and temperature. In contrast, the ratio of photoprotective carotenoids (namely the carotenoid glycoside 4-hydroxymyxol glycoside [aphanizophyll]) to chlorophyll a increased significantly more in C. raciborskii in comparison with A. gracile (1) with decreasing temperatures from 20 to 10°C and a moderate light intensity of 80?µmol photons m?2?s?1 and (2) with increasing light intensities at a suboptimal temperature of 15°C, compared to 20°C. We conclude that below 20°C photoinhibition is avoided by greater photoprotection in the invasive species C. raciborskii compared to the native species A. gracile.  相似文献   

12.
The global distribution of the toxic cyanobacterium Cylindrospermopsis raciborskii has recently increased, and it has now been identified in tropical, subtropical and temperate freshwater bodies. The mechanisms underlying its success and expansion are still unknown. Several hypotheses have been proposed, including climate change, natural selection and physiological tolerance to different environmental conditions. In this study, we determined the phenotypic and genotypic characteristics of two recently isolated South American strains of C. raciborskii obtained from Uruguay. We analyzed the morphology, growth preferences, tolerance to low temperature (14 °C) and toxin production of the strains and performed phylogenetic analyses based on the ITS and nifH gene sequences. Both isolates showed significantly different morphology and growth behavior under different light intensities and phosphate supply. When genetic differences were assessed by BOX PCR, cluster analyses revealed that they could also be distinguished genotypically and were clearly distinct from C. raciborskii isolated from other continents. Phylogenetic analysis showed that the Uruguayan strains were closely affiliated to other C. raciborskii isolated from the Americas, especially to those from Brazil. Similar to previous studies, we found three solid clusters (Africa-Australia, Europe and America) according to the geographical origin of the isolates. Interestingly, based on nifH sequences, subclusters were identified in American populations indicating an early spread of the species within the continent. We propose that phenotypic and genetic variability of C. raciborskii populations is linked to the existence of different ecotypes whose success is subject to the local environmental conditions.  相似文献   

13.
The cyanobacterium Raphidiopsis raciborskii is a nuisance in freshwater ecosystems. Strains vary in their physiological responses to environmental drivers, thus a greater understanding of the magnitude of strain variation is required to characterize the species. In this study, two strains of R. raciborskii isolated from a tropical Australian water reservoir were grown with and without phosphorus (P) to determine any relative response to P stress. The strains had the same growth rates and under P free conditions, cells grew at the same rate as P replete conditions until day 9 when cell growth ceased. There was no difference in the alkaline phosphatase activity per cell for the P replete and P free conditions, but the level of activity per cell was greater in CS-505 than CS-506. P acquisition genes were identified from the sequenced genomes; both strains contained the same genes, but with differences in copy number of phoA (7 and 6), phnK (3 and 1) and phnH (2 and 1) between CS-505 and CS-506 (respectively). The expression of P acquisition genes under P stress was measured throughout the experiment and shown to vary in magnitude and timing across strains, and in P replete versus P free cultures. In strain CS-505, upregulation of the pstS1 and phoA genes occurred late in the growth phase and into senescence. These genes are involved in phosphate uptake and use of various forms of organic P. For strain CS-506, there was upregulation of the phosphate uptake gene, pit, and organic P utilization genes, phoA, phoU, phnD and phnK, commencing late in the growth phase. Our study shows that despite the fact that these two strains were isolated from the same waterbody, they differed markedly in their gene expression response to P free conditions. This capacity of R. raciborskii to vary in strain responses to P conditions gives the organism flexibility in responding to environmental change, particularly P stress conditions.  相似文献   

14.
Rising lake temperatures and changing nutrient inputs are believed to favour the spread of a toxic invasive cyanobacterium, Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju, in temperate lakes. However, most evidence for these hypotheses is observational or based on physiological measurements in monocultures. We lack clear experimental evidence relating temperature and nutrients to the competitive success of C. raciborskii. To address this, we performed a 2 × 2 factorial laboratory experiment to study the dynamics of mixed phytoplankton communities subjected to different levels of temperature and phosphorus over 51 days. We allowed C. raciborskii to compete with ten different species from major taxonomic groups (diatoms, green algae, cryptophytes, and cyanobacteria) typical of temperate lakes, under low and high summer temperatures (25 and 30 °C) at two levels of phosphorus supply (1 and 25 µmol L?1). Cylindrospermopsis raciborskii dominated the communities and strongly decreased diversity under low-phosphorus conditions, consistent with the hypothesis that it is a good phosphorus competitor. In contrast, it remained extremely rare in high-phosphorus conditions, where fast-growing green algae dominated. Surprisingly, temperature played a negligible role in influencing community composition, suggesting that changes in summer temperature may not be important in determining C. raciborskii’s spread.  相似文献   

15.
The toxic cyanobacterium Cylindrospermopsis raciborskii can form large blooms in freshwater systems, causing water quality problems. The availability of the essential macronutrient phosphorus (P), has a big impact on bloom formation but the variation in physiological response of different strains of C. raciborskii to available P has not previously been examined. This study investigated the carbon:phosphorus (C:P) ratio of two toxic Australian strains of C. raciborskii, AWT205 and NPD, under a range of P concentrations in batch and continuous cultures. P was added as a single dose to batch cultures and in continuous cultures at P concentrations of 0.032, 0.16, 0.64 and 16 μmol P l?1. Cellular carbon and phosphorus content of both strains increased under P-limited conditions (0 μmol P l?1 addition) with zero growth. Strain NPD had a lower C:P ratio (34:1) than AWT205 (150:1) indicating higher P storage capacity, and strain NPD survived P-limited conditions for longer. There was no significant difference in exponential growth rates (0.2 d?1, P ≥ 0.5) under all P concentrations for both strains, with the exception of no P, demonstrating non-P-limited growth even at the lowest concentration (0.032 µmol P l?1) and no increase in growth rate with additional P. 33P uptake measurements were used to show that these strains both have very low half saturation constants (Ks = 0.02 μmol P l?1) compared with other phytoplankton and strains of C. raciborskii. This is indicative of high uptake affinities and suggests that these strains are highly adapted to a low P supply. Overall the results of this study are consistent with the P strategy of storage prioritization over growth rate, and demonstrate differences between the strains in the C:P ratio under P-limitation, indicating variation in P storage.  相似文献   

16.
Cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii are two harmful species which co-occur and successively dominate in freshwaters globally. Within-species strain variability affects cyanobacterial population responses to environmental conditions, and it is unclear which species/strain would dominate under different environmental conditions. This study applied a Monte Carlo approach to a phytoplankton dynamic growth model to identify how growth variability of multiple strains of these two species affects their competition.Pairwise competition between four M. aeruginosa and eight C. raciborskii strains was simulated using a deterministic model, parameterized with laboratory measurements of growth and light attenuation for all strains, and run at two temperatures and light intensities. 17 000 runs were simulated for each pair using a statistical distribution with Monte Carlo approach.The model results showed that cyanobacterial competition was highly variable, depending on strains present, light and temperature conditions. There was no absolute ‘winner’ under all conditions as there were always strains predicted to coexist with the dominant strains, which were M. aeruginosa strains at 20 °C and C. raciborskii strains at 28 °C. The uncertainty in prediction of species competition outcomes was due to the substantial variability of growth responses within and between strains. Overall, this study demonstrates that within-species strain variability has a potentially large effect on cyanobacterial population dynamics, and therefore this variability may substantially reduce confidence in predicting outcomes of phytoplankton competition in deterministic models, that are based on only one set of parameters for each species or strain.  相似文献   

17.
Cylindrospermopsis raciborskii is a diazotrophic and potentially toxic cyanobacterium that was initially thought to be confined to tropical freshwaters. Recently it appears to have expanded its range to more temperate regions of the globe. There are contrasting hypotheses to explain this spread including; dispersal of highly adapted strains or localised spread from warm refuges as climatic or environmental conditions change. C. raciborskii was first detected in the isolated island nation of New Zealand in 2003, providing a unique opportunity to explore whether this recent identification is due to a new incursion or resultant from climatic or environmental change. Phylogenetic analysis (nifH, ITS1-L, ITS1-S, and rpoC1) of six strains isolated from two New Zealand lakes showed they were most closely related to those from South America, and suggest that the recent detection of this species was not due to a new incursion. Ten years of environmental data from three lakes (Waaki, Waikare and Whangape) experiencing blooms were analysed to identify potential reasons for recent C. raciborskii blooms. This analysis showed that the relatively recent (within the last 20–30 years) collapses of extensive macrophyte stands in lakes Waaki, Waikare and Whangape have resulted in increased turbidity’, low water column dissolved reactive phosphorus and seasonal shifts in the dissolved inorganic nitrogen availability, all conditions known to facilitate C. raciborskii dominance. Collectively these data indicate that C. raciborskii has always been present in New Zealand, and that recent changes in environmental conditions in these lakes are now facilitating bloom events.  相似文献   

18.
1. Filamentous green algae (FGA) may represent an alternative state in high‐nutrient shallow temperate lakes. Furthermore, a clear water state is sometimes associated with the dominance of FGA; however, the mechanisms involved remain uncertain. 2. We hypothesised that FGA may promote a clear water state by directly suppressing phytoplankton growth, mostly via the release of allelochemicals, and that this interaction may be affected by temperature. 3. We examined the relationships between FGA, phytoplanktonic chlorophyll a concentrations and zooplankton in a series of mesocosms (2.8 m3) mimicking enriched shallow ponds now and in a future warmer climate (0 and c. 5 °C above ambient temperatures). We then tested the potential allelopathic effects of FGA (Cladophora sp. and Spirogyra sp.) on phytoplankton using several short‐term microcosms and laboratory experiments. 4. Mesocosms with FGA evidenced lower phytoplanktonic chlorophyll a concentrations than those without. Zooplankton and zooplankton : phytoplankton biomass ratios did not differ between mesocosms with and without FGA, suggesting that grazing was not responsible for the negative effects on phytoplanktonic biomass (chlorophyll a). 5. Our field microcosm experiments demonstrated that FGA strongly suppressed the growth of natural phytoplankton at non‐limiting nutrient conditions and regardless of phytoplankton initial concentrations or micronutrients addition. Furthermore, we found that the negative effect of FGA on phytoplankton growth increased up to 49% under high incubation temperatures. The experiment performed using FGA filtrates confirmed that the inhibitory effect of FGA on phytoplankton may be attributed to allelochemicals. 6. Our results suggest that FGA control of phytoplankton growth may be an important mechanism for stabilising clear water in shallow temperate lakes dominated by FGA and that FGA may play a larger role when lakes get warmer.  相似文献   

19.
Cylindrospermopsis raciborskii is a toxic bloom forming cyanobacteria that is a common component of the phytoplankton assemblage in temperate freshwaters, as well as in temperate climates. This species is of major concern in public health, due to its known ability to produce toxins, including cylindrospermopsin and paralytic shellfish poisoning toxin (PSP).In this study, M13 PCR fingerprinting, ERIC PCR fingerprinting and amplification of the internal transcribed spacer (ITS) region were used to characterize nine cultured strains of C. raciborskii, sourced from several freshwater lakes and rivers in Portugal, and two other Australian. Strains belonging to other taxa including Microcystis aeruginosa, Aphanizomenon spp., Planktothrix agardhii and Oscillatoria neglecta were also analysed to evaluate the taxonomical potential of the fingerprinting methods.Data obtained from genomic fingerprinting were used to perform hierarchical cluster analysis and demonstrated ability to differentiate strains at intra-specific level. However, the high level of variability prevents their use as an identification tool. ITS amplification displayed intra-specific polymorphism both in number and length of the obtained amplicons, but revealed itself as a good method for strain clustering. The unsuccessful amplification of peptide synthetase (PS) and polyketide synthase (PKS) genes pointed to the inability of Portuguese C. raciborskii strains to produce cylindrospermopsin. HPLC analysis further confirmed this lack of toxicity, since negative results were obtained for cylindrospermopsin and PSP toxins.  相似文献   

20.
1. Shallow lakes may switch from a state dominated by submerged macrophytes to a phytoplankton‐dominated state when a critical nutrient concentration is exceeded. We explore how climate change may affect this critical nutrient concentration by linking a graphical model to data from 83 lakes along a large climate gradient in South America. 2. The data indicate that in warmer climates, submerged macrophytes may tolerate more underwater shade than in cooler lakes. By contrast, the relationship between phytoplankton biomass [approximated by chlorophyll‐a (chl‐a) or biovolume] and nutrient concentrations did not change consistently along the climate gradient. In warmer climates, the correlation between phytoplankton biomass and nutrient concentrations was overall weak, especially at low total phosphorus (TP) concentrations where the chl‐a/ TP ratio could be either low or high. 3. Although the enhanced shade tolerance of submerged plants in warmer lakes might promote the stability of their dominance, the potentially high phytoplankton biomass at low nutrient concentrations suggests an overall low predictability of climate effects. 4. We found that near‐bottom oxygen concentrations are lower in warm lakes than in cooler lakes, implying that anoxic P release from eutrophic sediment in warm lakes likely causes higher TP concentrations in the water column. Subsequently, this may lead to a higher phytoplankton biomass in warmer lakes than in cooler lakes with similar external nutrient loadings. 5. Our results indicate that climate effects on the competitive balance between submerged macrophytes and phytoplankton are not straightforward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号