首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
NO signalling in cytokinin-induced programmed cell death   总被引:6,自引:0,他引:6  
Cell death can be induced by cytokinin 6-benzylaminopurine (BA) at high dosage in suspension-cultured Arabidopsis cells. Herein, we provide evidence that BA induces nitric oxide (NO) synthesis in a dose-dependent manner. A reduction in cell death can be observed when the cytokinin is supplemented with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or the nitric oxide synthase (NOS) inhibitors: 2-aminoethyl-isothiourea (AET) and NG.-monomethyl- l -arginine ( l -NMMA), which suggests that NO is produced via a NOS and is a signalling component of this form of programmed cell death. In BA-treated cells, mitochondrial functionality is altered via inhibition of respiration. This inhibition can be prevented by addition of either cPTIO or AET implying that NO acts at the mitochondrial level.  相似文献   

2.
3.
Programmed cell death occurs in the inner cell mass during blastulation concomitant with the loss of its trophectodermal potential, and blastocele fluid kills malignant inner cell mass cells with trophectodermal potential (ECa 247) but spares those with embryonic potential (P19). A previous study had shown that blastocele-like fluid from embryoid bodies of the teratocarcinoma C44 contains a low-molecular-weight cytotoxin that exhibits the same target-cell selectivity as normal blastocele fluid. The current paper shows that the preferential killing of cells with trophectodermal potential is caused by hydrogen peroxide generated during the oxidation of polyamines in the cyst fluid by amine oxidases. The greater resistance of cells with embryonic potential to hydrogen peroxide is due to glutathione-dependent mechanisms. These data lead to the conclusion that an amine oxidase in the blastocyst oxidizes polyamines in blastocele fluid, generating hydrogen peroxide which causes programmed cell death of normal and malignant cells with trophectodermal potential.  相似文献   

4.
It is recognized now that intrinsically disordered proteins (IDPs), which do not have unique 3D structures as a whole or in noticeable parts, constitute a significant fraction of any given proteome. IDPs are characterized by an astonishing structural and functional diversity that defines their ability to be universal regulators of various cellular pathways. Programmed cell death (PCD) is one of the most intricate cellular processes where the cell uses specialized cellular machinery and intracellular programs to kill itself. This cell-suicide mechanism enables metazoans to control cell numbers and to eliminate cells that threaten the animal''s survival. PCD includes several specific modules, such as apoptosis, autophagy, and programmed necrosis (necroptosis). These modules are not only tightly regulated but also intimately interconnected and are jointly controlled via a complex set of protein–protein interactions. To understand the role of the intrinsic disorder in controlling and regulating the PCD, several large sets of PCD-related proteins across 28 species were analyzed using a wide array of modern bioinformatics tools. This study indicates that the intrinsic disorder phenomenon has to be taken into consideration to generate a complete picture of the interconnected processes, pathways, and modules that determine the essence of the PCD. We demonstrate that proteins involved in regulation and execution of PCD possess substantial amount of intrinsic disorder. We annotate functional roles of disorder across and within apoptosis, autophagy, and necroptosis processes. Disordered regions are shown to be implemented in a number of crucial functions, such as protein–protein interactions, interactions with other partners including nucleic acids and other ligands, are enriched in post-translational modification sites, and are characterized by specific evolutionary patterns. We mapped the disorder into an integrated network of PCD pathways and into the interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathway.  相似文献   

5.
《Autophagy》2013,9(12):1975-1982
The physiological relationship between autophagy and programmed cell death during C. elegans development is poorly understood. In C. elegans, 131 somatic cells and a large number of germline cells undergo programmed cell death. Autophagy genes function in the removal of somatic cell corpses during embryogenesis. Here we demonstrated that autophagy activity participates in germ-cell death induced by genotoxic stress. Upon γ ray treatment, fewer germline cells execute the death program in autophagy mutants. Autophagy also contributes to physiological germ-cell death and post-embryonic cell death in ventral cord neurons when ced-3 caspase activity is partially compromised. Our study reveals that autophagy activity contributes to programmed cell death during C. elegans development.  相似文献   

6.
Cadmium-induced cell death was studied in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells (line MsK8) treated with CdSO(4). Within 24 h, cadmium treatment induced cell death in a concentration-dependent manner. Cell cultures showed recovery after 2-3 days which indicates the existence of an adaptation mechanism. Cadmium-induced cell death was alleviated by the addition of sub muM concentrations of peptide inhibitors specific to human caspases indicating that cell death proceeds through a mechanism with similarities to animal programmed cell death (PCD, apoptosis). Cadmium-induced cell death was accompanied by an increased production of hydrogen peroxide (H(2)O(2)) and simultaneous addition of antioxidants greatly reduced cell death. Inhibitors of phospholipase C (PLC) and phospholipase D (PLD) signalling pathway intermediates reduced cadmium-induced cell death. Treatment with the G-protein activator mastoparan and a cell permeable analogue of the lipid signal second messenger phosphatidic acid (PA) induced cell death. Ethylene, while not inducing cell death when applied alone, stimulated cadmium-induced cell death. Application of the ethylene biosynthesis inhibitor aminoethoxy vinylglycine (AVG) reduced cadmium-induced cell death, and this effect was alleviated by simultaneous treatment with ethylene. Together the results show that cadmium induces PCD exhibiting apoptotic-like features. The cell death process requires increased H(2)O(2) production and activation of PLC, PLD and ethylene signalling pathways.  相似文献   

7.
Developmental programmed cell death in plants   总被引:16,自引:0,他引:16  
Mechanisms of plant developmental programmed cell death (PCD) have been intensively studied in recent years. Most plant developmental PCD is triggered by plant hormones, and the 'death signal' may be transduced by hormonal signaling pathways. Although there are some fundamental differences in the regulation of developmental PCD in various eukaryotes of different kingdoms, hormonal control and death signal transduction via pleiotropic signaling pathways constitute a common framework. However, plants possess a unique process of PCD execution that depends on vacuolar lytic function. Comparisons of the developmental PCD mechanisms of plants and other organisms are providing important insights into the detailed characteristics of developmental PCD in plants.  相似文献   

8.
Fusaric acid (FA) is a nonhost-selective toxin mainly produced by Fusarium oxysporum, the causal agent of plant wilt diseases. We demonstrate that FA can induce programmed cell death (PCD) in tobacco suspension cells and the FA-induced PCD is modulated by nitric oxide (NO) signalling. Cells undergoing cell death induced by FA treatment exhibited typical characteristics of PCD including cytoplasmic shrinkage, chromatin condensation, DNA fragmentation, membrane plasmolysis, and formation of small cytoplasmic vacuoles. In addition, caspase-3-like activity was activated upon the FA treatment. The process of FA-induced PCD was accompanied by a rapid accumulation of NO in a FA dose-dependent manner. Pre-treatment of cells with NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or NO synthase inhibitor N G-monomethyl-arginine monoacetate (L-NMMA) significantly reduced the rate of FA-induced cell death. Furthermore, the caspase-3-like activity and the expression of PAL and Hsr203J genes were alleviated by application of cPTIO or L-NMMA to FA-treated tobacco cells. This indicates that NO is an important factor involved in the FA-induced PCD. Our results also show that pre-treatment of tobacco cells with a caspase-3-specific inhibitor, Ac-DEVD-CHO, can reduce the rate of FA-induced cell death. These results demonstrate that the FA-induced cell death is a PCD and is modulated by NO signalling through caspase-3-like activation.  相似文献   

9.
Lipoxygenases and their involvement in programmed cell death   总被引:4,自引:0,他引:4  
Lipoxygenases are a family of enzymes which dioxygenate unsaturated fatty acids, thus initiating lipoperoxidation of membranes and the synthesis of signaling molecules. Consequently, they induce structural and metabolic changes in the cell in a number of pathophysiological conditions. Recently, a pro-apoptotic effect of lipoxygenase, and of the hydroperoxides produced thereof, has been reported in different cells and tissues, leading to cell death. Anti-apoptotic effects of lipoxygenases have also been reported; however, this has often been based on the use of enzyme inhibitors. Here we review the characteristics of the lipoxygenase family and its involvement in the initiation of oxidative stress-induced apoptosis. Finally, we discuss the role of lipoxygenase activation in apoptosis of animal and plant cells, suggesting a common signal transduction pathway in cell death conserved through evolution of both kingdoms.  相似文献   

10.
The structure of an artificial pulmonary surfactant was studied by scanning force- and fluorescence light microscopy (SFM, and FLM, respectively). The surfactant – a mixture of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and recombinant surfactant-associated protein C (SP-C) – was prepared at the air-water interface of a Langmuir film balance and imaged by FLM under various states of compression. In order to visualize their topography by SFM, the films were transferred onto a solid mica support by the Langmuir-Blodgett (LB) technique. We found that a region of high film compressibility of the spread monolayer close to its equilibrium surface pressure (π=50 mN/m) was due to the exclusion of layered protrusions with each layer 5.5 to 6.5 nm thick. They remained associated with the monolayer and readily reinserted upon expansion of the film. Comparison with the FLM showed that the protrusions contained the protein in high concentration. The more the film was compressed, the larger was the number of layers on top of each other. The protrusions arose from regions of the monolayer with a distinct microstructure that may have been responsible for their formation. The molecular architecture of the microstructure remains to be elucidated, although some of it can be inferred from spectroscopic data in combination with the SFM topographical images. We illustrate our current understanding of the film structure with a molecular model. Received: 20 September 1996 / Accepted: 22 May 1997  相似文献   

11.
We elucidated the extracellular ATP (eATP) signalling cascade active in programmed cell death (PCD) using cell cultures of Populus euphratica. Millimolar amounts of eATP induced a dose‐ and time‐dependent reduction in viability, and the agonist‐treated cells displayed hallmark features of PCD. eATP caused an elevation of cytosolic Ca2+ levels, resulting in Ca2+ uptake by the mitochondria and subsequent H2O2 accumulation. P. euphratica exhibited an increased mitochondrial transmembrane potential, and cytochrome c was released without opening of the permeability transition pore over the period of ATP stimulation. Moreover, the eATP‐induced increase of intracellular ATP, essential for the activation of caspase‐like proteases and subsequent PCD, was found to be related to increased mitochondrial transmembrane potential. NO is implicated as a downstream component of the cytosolic Ca2+ concentration but plays a negligible role in eATP‐stimulated cell death. We speculate that ATP binds purinoceptors in the plasma membrane, leading to the induction of downstream intermediate signals, as the proposed sequence of events in PCD signalling was terminated by the animal P2 receptor antagonist suramin.  相似文献   

12.
Lipid rafts in T cell signalling and disease   总被引:3,自引:0,他引:3  
Lipid rafts is a blanket term used to describe distinct areas in the plasma membrane rich in certain lipids and proteins and which are thought to perform diverse functions. A large number of studies report on lipid rafts having a key role in receptor signalling and activation of lymphocytes. In T cells, lipid raft involvement was demonstrated in the early steps during T cell receptor (TCR) stimulation. Interestingly, recent evidence has shown that signalling in these domains differs in T cells isolated from patients with autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Here, we discuss these findings and explore the potential of lipid rafts as targets for the development of a new class of agents to downmodulate immune responses and for the treatment of autoimmune diseases.  相似文献   

13.
Lysosomal cathepsins in embryonic programmed cell death   总被引:1,自引:0,他引:1  
During limb development, expression of cathepsin D and B genes prefigure the pattern of interdigital apoptosis including the differences between the chick and the webbed digits of the duck. Expression of cathepsin L is associated with advanced stages of degeneration. Analysis of Gremlin-/- and Dkk-/- mouse mutants and local treatments with BMP proteins reveal that the expression of cathepsin B and D genes is regulated by BMP signaling, a pathway responsible for triggering cell death. Further cathepsin D protein is upregulated in the preapoptotic mesenchyme before being released into the cytosol, and overexpression of cathepsin D induces cell death in embryonic tissues by a mechanism including mitochondrial permeabilization and nuclear translocation of AIF. Combined inhibition of cathepsin and caspases suggests a redundancy in the apoptotic molecular machinery, providing evidence for compensatory activation mechanisms in the cathepsin pathway when caspases are blocked. It is concluded that lysosomal enzymes are functionally implicated in embryonic programmed cell death.  相似文献   

14.
昆虫细胞程序性死亡的研究进展   总被引:3,自引:0,他引:3  
在昆虫发育和抵抗病原微生物的入侵过程中,细胞凋亡与自噬性死亡现象十分常见。昆虫细胞凋亡的研究已经取得了许多的成果,但是有关细胞自噬程序性死亡的研究还正在深入。昆虫细胞凋亡的信号通路至少有3条:一条类似于线虫细胞的凋亡信号通路,另一条类似于哺乳动物细胞的凋亡信号通路, 还有一条不依赖于胱天蛋白酶的凋亡信号通路。在昆虫的多种组织细胞中,细胞凋亡与自噬程序性死亡在信号通路上存在互串(cross talking),可以相互促进、抑制或替代。了解昆虫细胞程序性死亡对防治害虫具有一定的意义。  相似文献   

15.
Mechanistic target of rapamycin (mTOR), a highly conserved serine/threonine kinase, is involved in cellular metabolism, protein synthesis, and cell death. Programmed cell death (PCD) assists in eliminating aging, damaged, or neoplastic cells, and is indispensable for sustaining normal growth, fighting pathogenic microorganisms, and maintaining body homeostasis. mTOR has crucial functions in the intricate signaling pathway network of multiple forms of PCD. mTOR can inhibit autophagy, which is part of PCD regulation. Cell survival is affected by mTOR through autophagy to control reactive oxygen species production and the degradation of pertinent proteins. Additionally, mTOR can regulate PCD in an autophagy-independent manner by affecting the expression levels of related genes and phosphorylating proteins. Therefore, mTOR acts through both autophagy-dependent and -independent pathways to regulate PCD. It is conceivable that mTOR exerts bidirectional regulation of PCD, such as ferroptosis, according to the complexity of signaling pathway networks, but the underlying mechanisms have not been fully explained. This review summarizes the recent advances in understanding mTOR-mediated regulatory mechanisms in PCD. Rigorous investigations into PCD-related signaling pathways have provided prospective therapeutic targets that may be clinically beneficial for treating various diseases.  相似文献   

16.
17.
Traditionally, programmed cell death (PCD) is associated with eukaryotic multicellular organisms. However, recently, PCD systems have also been observed in bacteria. Here we review recent research on two kinds of genetic programs that promote bacterial cell death. The first is mediated by mazEF, a toxin–antitoxin module found in the chromosomes of many kinds of bacteria, and mainly studied in Escherichia coli. The second program is found in Bacillus subtilis, in which the skf and sdp operons mediate the death of a subpopulation of sporulating bacterial cells. We relate these two bacterial PCD systems to the ways in which bacterial populations resemble multicellular organisms.  相似文献   

18.
19.
Motoneurons (MN) as well as most neuronal populations undergo a temporally and spatially specific period of programmed cell death (PCD). Several factors have been considered to regulate the survival of MNs during this period, including availability of muscle-derived trophic support and activity. The possibility that target-derived factors may also negatively regulate MN survival has been considered, but not pursued. Neurotrophin precursors, through their interaction with p75(NTR) and sortilin receptors have been shown to induce cell death during development and following injury in the CNS. In this study, we find that muscle cells produce and secrete proBDNF. ProBDNF through its interaction with p75(NTR) and sortilin, promotes a caspase-dependent death of MNs in culture. We also provide data to suggest that proBDNF regulates MN PCD during development in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号