首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Myriogramme group of Kylin contains two distinct clusters of genera that merit recognition at the tribal level. We previously established the tribe Myriogrammeae, and in this paper we erect the Schizoserideae based on a study of the type species of Schizoseris, S. laciniata (=S. condensata), from the southern hemisphere. The Schizoserideae is characterized by 1) marginal and diffuse intercalary meristems; 2) nuclei initially arranged in a plate in the median plane in meristematic and mature cells; 3) chloroplasts one to few, lobed or dissected; 4) microscopic veins absent; 5) procarps scattered, formed singly on either side of the blade with cover cells absent and consisting of a one- to two-celled lateral sterile group, a one- to two-celled basal sterile group, and a four-celled carpogonial branch in which the trichogyne passes beneath the lateral sterile group and emerges anterior to it; 6) auxiliary cell diploidized by a connecting cell cut off posteriolaterally from the fertilized carpogonium; 7) gonimoblast initial cut off laterally from one side of the auxiliary cell and giving rise to unilaterally branched gonimoblast filaments bearing carposporangia in branched chains; 8) gonimoblast fusion cell highly branched, candelabra-like, incorporating all but the basalmost cells of the carposporangial chains and radiating through the central cells in the floor of the cystocarp; 9) spermatangial and tetrasporangial sori formed from surface cells in both monostromatic and polystromatic portions on both sides of the blade; and 10) tetrasporangia formed primarily from cortical rather than from central cells. The Schizoserideae presently includes Schizoseris Kylin, Neuroglossum Kützing, Abroteia J. Agardh, and Polycoryne Skottsberg in Kylin and Skottsberg.  相似文献   

2.
Leachiella pacifica, gen. et sp. nov., a marine alloparasitic red alga is described from Washington and California. Several species of Polysiphonia and Pterosiphonia are hosts for this parasite. The thallus is a white, multiaxial, unbranched pustule with rhizoidal filaments that ramify between host cells, forming numerous secondary pit connections with host cells. All reproductive structures develop from outer cortical cells. Tetrasporocytes, situated on stalk cells, undergo simultaneous, tetrahedral cleavage to form tetraspores. Spermatia are formed continuously by oblique cleavages of the elongate spermatial generating cells. This results in spermatial clusters consisting of 4–8 spermatia in an alternate arrangement. Carposporophyte development is procarpial. The carpogonium is part of a six-celled branch including a sterile cell that is formed by the basal cell. The carpogonial branch is attached laterally to an obovate supporting cell that also forms an auxiliary cell, presumably formed prior to fertilization. After fertilization the carpogonium temporarily fuses with the auxiliary cell apparently to transfer the diploid nucleus and initiate further fusion with the subtending supporting cell to form an incipient fusion cell. The auxiliary cell portion of this fusion cell divides to form gonimoblast initials that continue to divide, forming gonimoblast filaments whose terminal cells differentiate into carpospores. The remainder of the fusion cell enlarges by continual fusion with adjacent vegetative cells. The resultant carposporophyte consists of a basal, multinucleate fusion cell supporting a hemispherical cluster of gonimoblast filaments with terminally borne carpospores. Vegetatively, Leachiella resembles several other parasitic red algae but it is clearly separated by the procarp, carposporophyte development and structure, and tetrasporocyte cleavage.  相似文献   

3.
The Chondrymeniaceae Rodríguez-Prieto, G. Sartoni, S.-M. Lin & Hommersand, fam. nov., is proposed for Chondrymenia lobata. Analyses of rbcL sequences place the new family in a large gigartinalean assemblage that comprises the Cystocloniaceae–Solieriaceae complex. Plants are decumbent and growth takes place by division of multiple apical cells at the margin of the blade. Thalli consist of an outer cortex of subspherical to elongate cortical cells arranged in anticlinal rows, a subcortex of cells cross-linked by lateral arms, and a large central medulla composed of primary medullary filaments intermixed with numerous rhizoidal filaments. Male stages are reported in monoecious individuals. Inactive carpogonial branches consist of a two-celled filament that is directed inwards from the supporting cell. Functional carpogonial branches are oriented outwardly, with the carpogonia and trichogynes pointed towards the thallus surface. After presumed fertilization, the carpogonium fuses with the hypogynous cell and transfers the zygote nucleus. The hypogynous cell, in turn, fuses with the supporting cell which contains many haploid nuclei. The resulting fusion cell functions as an auxiliary cell that cuts off a single gonimoblast initial, which produces the gonimoblast filaments. Gametophytic cells close to the auxiliary cell unite with it to form a placental fusion network of variable size and outline, and a placental fusion cell. Proximal gonimoblast cells fuse with the placental fusion cell, while the distal cells differentiate into branched chains of subspherical carposporangia. The superficial similarity of the outwardly developed osteolate cystocarp is responsible for Kylin's (1956) placement of Chondrymenia in his family Sarcodiaceae; however, the manner in which the placenta is formed is more like that seen in the Cystocloniaceae–Solieriaceae complex.  相似文献   

4.
Sphondylothamnion multifidum (Huds.) Naeg., while a typical member of the Ceramiaceae in its structure and reproduction, differs in post-fertilisation details from other known genera. The sterile cells associated with the procarp system, i.e. the apical cell, the sterile cell on the supporting cell, and the sterile pericentral cell, all divide actively after fertilisation to produce branched involucral systems which surround the gonimoblast.  相似文献   

5.
The ultrastructure of carposporophyte development is described for the red alga Gloiosiphonia verticillaris Farl. The auxiliary cell produces gonimoblast initials, which divide to produce two types of gonimoblast cells—the nondividing vacuolate cells and terminal generative gonimoblast cells. The generative gonimoblast cells form clusters of carpospore initials, which eventually differentiate into carpospores. After gonimoblast filaments are formed, the auxiliary cell undergoes autolysis, causing degeneration of septal plugs between the auxiliary cell and adjacent cells, thus forming a fusion cell. Since this cell lacks starch and appears degenerate throughout carposporophyte development, a nutritive function cannot be ascribed to the fusion cell. Carpospore differentiation is simple and proceeds through three developmental stages. Young carpospores structurally resemble gonimoblast cells, because they contain undeveloped plastids, large quantities of floridean starch, and are surrounded by extensive mucilage instead of a distinct wall. In addition, dictyosomes form and begin to produce vesicles with fibrous contents representing carpospore wall material. During the intermediate stage, dictyosomes continue to produce vesicles that contribute additional carpospore wall material, thereby compressing the mucilage and creating a darker-staining layer outside the carpospore wall. Plastids form internal thylakoids by invaginations of the inner membrane of the peripheral thylakoid. The endoplasmic reticulum forms large granular vacuoles that appear to be degraded during subsequent stages of development. Mature carpospores form cored vesicles. They also contain mature chloroplasts, large amounts of floridean starch, and occasionally granular vacuoles. During this stage, interconnecting carpospore-carpospore and carpospore-gonimoblast cell septal plugs begin to undergo degeneration. This process may be mediated by tubular structures.  相似文献   

6.
The red alga Cubiculosporum koronicarpis gen. et sp. nov. is described from material collected during 1968 in the Philippines. The species differs substantially in regard to its carposporophyte development from other red algae in the order Gigartinales, and a new family is created based on its unique combination of reproductive features. A single, short, connecting filament is formed between the fertilized carpogonium and a nearby auxiliary cell. The latter produces several ramifying gonimoblast filaments towards the interior of the thallus. No fusion cell is formed and the gonimoblast filaments grow inward among the cells of the central axis, form secondary connections to them, and give rise to outwardly directed carposporangial filaments that develop within peripheral chambers formed between elongating inner cortical cells. The alga is a low, clump-forming species of well-washed intertidal reef platforms at the one Philippine locality where it has been found. There it contributed a uniform but very minor amount to the wet weight of the standing crops that were studied during two separate seasons of the year.  相似文献   

7.
A minute parasite of Neosiphonia poko (Hollenberg) Abbott from a shallow lagoon on the central-Pacific Johnston Atoll is described as Neotenophycus ichthyosteus Kraft et Abbott, gen. et sp. nov. The infective parasite cell first connects to a central-axial cell of the host, then emerges from between host pericentral cells at a node before dividing into a three- or four-celled primary axis. Epibasal cells of the parasite divide to form three pericentral cells whose derivatives produce a globular head on the basal cell and on which reproductive structures differentiate almost immediately. Trichoblasts on any life-history stage are completely lacking. Spermatangia are borne on mother cells across the whole thallus surface. Procarps consist of four pericentral cells that encircle a subapical fertile-axial cell in an ampullar configuration, one of the pericentral cells serving as the supporting cell and bearing a four-celled carpogonial branch and a single sterile cell. Diploidization results in a longitudinal/concave division of the auxiliary cell and formation of an arching linear series of inner gonimoblast cells, each dividing toward the thallus surface into gonimoblast filaments of very narrow, horizontally aligned cells terminated by initially monopodial, later by sympodial, carposporangia, the whole of the mature female gametophyte consisting of an amalgam of several cystocarps within a lax jacket of sterile gametophytic tissue. Tetrasporophytes are composed of lobes of pericentral-cell-derived filaments, each axial cell of which is ringed by three pericentral cells producing tetrahedral tetrasporangia enclosed by two pre-sporangial cover cells. Affinities of the new genus are discussed and comparison is made particularly to the enigmatic parasite Episporium centroceratis Möbius. It is concluded that relationships with any previously described tribe are so remote or obscure that the new tribe Neotenophyceae should be proposed for it.  相似文献   

8.
A new genus, Augophyllum Lin, Fredericq et Hommersand gen. nov. related to Nitophyllum, tribe Nitophylleae, subfam. Nitophylloideae of the Delesseriaceae, is established to contain the type species Augophyllum wysorii Lin, Fredericq et Hommersand sp. nov. from Caribbean Panama; Augophyllum kentingii Lin, Fredericq et Hommersand sp. nov. from Taiwan; Augophyllum marginifructum (R. E. Norris et Wynne) Lin, Fredericq et Hommersand comb. nov. (Myriogramme marginifructa R. E. Norris et Wynne 1987) from South Africa, Tanzania, and the Sultanate of Oman; and Augophyllum delicatum (Millar) Lin, Fredericq et Hommersand comb. nov. (Nitophyllum delicatum Millar 1990 ) from southeastern Australia. Like Nitophyllum, Augophyllum is characterized by a diffuse meristematic region, the absence of macro‐ and microscopic veins, procarps consisting of a supporting cell bearing a slightly curved four‐celled carpogonial branch flanked laterally by a cover cell and a sterile cell, a branched multicellular sterile group after fertilization, absence of cell fusions between gonimoblast cells, and tetrasporangia transformed from multinucleate surface cells. Augophyllum differs from Nitophyllum by the blades becoming polystromatic inside the margins, often with a stipitate cylindrical base, the possession of aggregated discoid plastids neither linked by fine strands nor forming bead‐like branched chains, spermatangia and procarps initiated at the margins of blades, not diffuse, and a cystocarp composed of densely branched gonimoblast filaments borne on a conspicuous persistent auxiliary cell with an enlarged nucleus. Analyses of the rbcL gene support the separation of Augophyllum from Nitophyllum. An investigation of species attributed to Nitophyllum around the world is expected to reveal other taxa referable to Augophyllum.  相似文献   

9.
The Myriogramme group of Kylin was found to contain two distinct clusters of genera that merit recognition at the tribal level. In this paper, we establish the tribe Myriogrammae based on a study of the type species of Myriogramme, M. livida, from the Southern Hemisphere. The Myriogrammae is characterized by 1) marginal and diffuse intercalary meristems; 2) nuclei arranged in a ring bordering the side walls of vegetative cells; 3) microscopic veins absent; 4) procarps scattered, formed opposite one another on both sides of the blade posterior to one or more vegetative pericentral cells (cover cells) and consisting of a carpogonial branch, a one-/to two-celled lateral sterile group and a one-celled basal sterile group; 5) auxiliary cell diploidized by a connecting cell cut off posteriolaterally from the fertilized carpogonium; 6) gonimoblast initial cut off distally from the auxiliary cell, generating one distal and one to two lateral gonimoblast filaments that branch in the plane of the expanding cystocarp cavity and later fuse to from an extensive, branched fusion cell; 7) spermatangial and tatrasporangial sori formed inside the margin on both sides of the blade by resumption of meristematic activity; and 8) tetrasporangia produced primarily from the central cells. The Myriogrammae currently includes Myriogramme Kylin , Gonimocolax Kylin , Haraldiophyllum A. Zinova , Hideophyllum A. Zinova, and a possible undescribed genus from Pacific North and South America. Genera are separated based primarily on features of gonimoblast and carposporangial development .  相似文献   

10.
The ultrastructure sequence for the complete post-fertilization development is described in Cryptopleura ruprechtiana (C. Agardh) Kylin, a member of the Delesseriaceae. Following fertilization the diploid nucleus is transferred to the auxiliary cell. This contains typical red algal proplastids, cytoplasmic concentric membranes, numerous small vacuoles and lipid bodies. Crystalline inclusions and virus-like particles are also present. In addition darkly staining spherical masses possibly represent dehydrated haploid chromatin. The multinucleate auxiliary cell produces initially one large gonimoblast initial and subsequently many smaller gonimoblast initials. The first formed generative gonimoblast cell is similar in cellular structure to the auxiliary cell. Gonimoblast initials are uninucleate but through caryokinesis they become multinucleate. They undergo repeated cleavage to form more gonimoblast cells. Subsequent, centripetal cytokinesis results in the formation of clusters of gonimoblast cells. A new type structural cap or association is observed in the septal plugs that interconnect gonimoblast initials. Terminal or generative gonimoblast cells cleave to form additional gonimoblast cells. Only terminal gonimoblast cells are differentiated to carpospores.  相似文献   

11.
Solieria chordalis (C. Agardh) J. Agardh and S. tenera (J. Agardh) Wynne et Taylor exhibit multiaxial growth from a cluster of four to eight obconical apical cells. A single periaxial cell is cut off from each axial cell and successive periaxial cells are rotated 120° in a zig-zag pattern along each axial filament. Periaxial cells produce branched, laterally diverging filaments which form the cortex. The medulla is composed of axial cells, elongate cells of lateral filaments, stretched interconnecting cells, and secondary rhizoids. The two species are nonprocarpic. Carpogonial branches are 3-celled, inwardly directed, with a reflexed trichogyne. The auxiliary cell together with associated darkly-staining inner cortical cells form an association, the auxiliary cell complex, that is recognizable prior to diploidization. A single, unbranched, non-septate connecting filament issues from the fertilized carpogonium and fuses with the inner, lateral side of an auxiliary cell. Production of an involucre from surrounding vegetative cells is stimulated and a gonimoblast initial is cut off toward the interior of the thallus which divides to form a compact cluster of gonimoblast cells. A fusion cell is produced through fusion of inner gonimoblast cells with the auxiliary cell that, in turn, fuses progressively with cells of the lateral file bearing the auxiliary cell. Mature cystocarps have terminal carposporangia cut off from gonimoblast cells at the periphery of the fusion cell and are surrounded by an involucre with a distinct ostiole. Tetrasporangia are cut off laterally from surface cortical cells which then cut off one or two additional derivatives toward the outside. A lectotype is designated for Solieria chordalis, but the lectotypification of S. tenera is questioned. We conclude that Solieria is closely related to Rhabdonia and place the Rhabdoniaceae in synonomy with the Solieriaceae.  相似文献   

12.
Two new taxa of Liagoraceae (Nemaliales) are described from Western Australia. Gloiotrichus fractalis gen. et sp. nov. has been collected from 3–20 m depths at the Houtman Abrolhos, Western Australia. Plants are calcified, extremely lubricous, and grow to 17 cm in length. Carpogonial branches are straight, 6 or 7 cells in length, arise from the basal or lower cells of cortical fascicles, and are occasionally compound. Branched sterile filaments of narrow elongate cells arise on the lower cells of the carpogonial branch prior to gonimoblast initiation, at first on the basal cells, then on progressively more distal cells. Following presumed fertilisation the carpogonium divides transversely, with both cells giving rise to gonimoblast filaments. The distal cells of the carpogonial branch then begin to fuse, with fusion progressing proximally until most of the cells of the carpogonial branch are included. As fusion extends, the filaments on the carpogonial branch are reduced to the basal 2 or 3 cells. The gonimoblast is compact and bears terminal carposporangia. Spermatangial clusters arise on subterminal cells of the cortex, eventually displacing the terminal cells. The sequence of pre- and post-fertilisation events occurring in the new genus separates it from all others included in the Liagoraceae, although it appears to have close affinities with the uncalcified genus Nemalion. Ganonema helminthaxis sp. nov. was collected from 12 m depths at Rottnest Island, Western Australia. Plants are uncalcified and mucilaginous, the axes consisting of a few (< 10) primary medullary filaments, each cell of which gives rise to a cortical fascicle at alternate forks of the pseudodichotomies borne on successive medullary cells. Subsidiary (adventitious) filaments and rhizoids comprise the bulk of the thallus. Carpogonial branches are straight, (3-)4(-6) cells in length, arise on the basal 1–4 cells of the cortical fascicles, and are frequently compound. Carposporophytes develop from the upper of two daughter cells formed by a transverse division of the fertilised carpogonium. Ascending and descending sterile filaments girdle the carpogonial branch cells and arise mostly on the supporting cell prior to fertilisation. Ganonema helminthaxis is the first completely non-calcified member of the genus, and its reproductive and vegetative morphology supports the recognition of Ganonema as a genus independent from Liagora. Liagora codii Womersley is a southern Australian species displaying features of Ganonema, to which it is transferred.  相似文献   

13.
Following fertilization, the carposporophyte of Nemalion helminthoides (Velley in With.) Batters differentiates into four distinct regions: the fusion cell, the sterile gonimoblast cells, the carposporangial mother cells and the carposporangia. The gonimoblast is formed by apically dividing, monopodial filaments of limited growth which may later become pseudodichotomous. Upon differentiation of a terminal carposporangium, a gonimoblast filament may continue to grow sympodially. A single carposporangial mother cell may produce carposporangia in several different directions as well as proliferate successive carposporangia within the sporangial walls that remain after carpospore liberation. As the carposporophyte matures, the gonimoblast initial, the stalk cell, the hypogynous and subhypogynous cells fuse. Except for the fusion cell, all cells of the carposporophyte show organelle polarity and contain a distally located, lobed chloroplast and proximal nucleus.  相似文献   

14.
The life history of the red alga Ahnfeltiopsis paradoxa (Suringar) Masuda (Phyllophoraceae, Gigartinales) from Japan was completed in laboratory culture. Carpospores isolated from field-collected plants germinated to form circular crusts that were composed of a monostromatic hypothallium consisting of radiating filaments, a polystromatic perithallium consisting of tightly coalescent erect filaments, and hypobasal tissue derived from the hypothallium. The crusts were induced to sporulate by transferring them from short-day to long-day regimes at 15° and 2°C. Each crust produced several nemathecia along 1-4 concentric rings. Intercalary, cruciately or decussately divided tetrasporangia were formed in 4-6 (1-2 at the margin of the nemathecium) successive cells of a single filament of the nemathecia. Tetraspore germlings gave rise to basal discs from which upright axes developed. The upright axes first grew without branches or were sparsely branched and later bore many marginal reproductive proliferations. Procarps and spermatangia were formed in the proliferations on different individuals. Carposporophytes developed on female plants that were co-cultured with male plants. Gonimoblast filaments were formed from an auxiliary cell that fused with a carpogonium. Carposporangia developed from gonimoblast filaments and medullary cells contacted by the gonimoblast filaments. Carpospores were discharged through carpostomes formed in the thickened cortex. Tetraspores were cultured from field-collected crusts of a morphology similar to that of cultured tetrasporophytes. They gave rise to upright gametophytic axes similar in morphology to this species as seen in the field.  相似文献   

15.
Leptofauchea rhodymenioides Taylor (Faucheaceae, Rhodymeniales) is reported from Japan for the first time, based on detailed morphological studies and molecular phylogenetic analyses of nuclear‐encoded small subunit ribosomal RNA (SSU rRNA) and plastid‐encoded rbcL gene sequences. This is the first report of male gametophytes and detailed carposporophyte development in the genus Leptofauchea. This species is characterized as follows: (i) flat, membranous, and regularly and dichotomously branched thalli; (ii) the older blades are constricted below the apices; (iii) the cortex is composed of a continuous layer with an irregularly arranged outer layer, and the medulla of two to three incomplete layers; (iv) gametophytes are dioecious; (v) in males, the cortical cells cut off two to three spermatangial mother cells, which produce terminal spermatangia; (vi) in females, the procarp is composed of a three‐celled carpogonial branch and a two‐celled auxiliary cell branch; (vii) upon fertilization, the carpogonium directly contacts the auxiliary cell; (viii) the auxiliary mother cell fuses with vegetative cells, and forms a large trunk‐like fusion cell; (ix) gonimoblast filaments develop outwardly, and transform completely into carposporangia; (x) the carposporophyte is covered with a pericarp with a well‐defined tela arachnoidea; (xi) the mature cystocarp is spherical, has an ostiole, and protrudes from the blade margins; and (xii) the cruciately divided tetrasporangia are formed in nemathecia, produced laterally from paraphyses or terminally on short filaments. Molecular analyses suggest that Leptofauchea forms a strong sister alliance with the genus Webervanbossea. The families Faucheaceae and Lomentariaceae, and the genera Leptofauchea and Webervanbossea are monophyletic, but the latter two genera are not included in the Faucheaceae.  相似文献   

16.
The development of two red algal parasites was examined in laboratory culture. The red algal parasite Bostrychiocolax australis gen. et sp. nov., from Australia, originally misidentified as Dawsoniocolax bostrychiae (Joly et Yamaguishi-Tomita) Joly et Yamaguishi-Tomita, completes its life history in 6 weeks on its host Bostrychia radicans (Montagne) Montagne. Initially the spores divide to form a small lenticular cell, and then a germ tube grows from the opposite pole. Upon contact with the host cuticle, the germ tube penetrates the host cell wall. The tip of the germ tube expands, and the spore cytoplasm moves into this expanded tip. The expanded germ tube tip becomes the first endophytic cell from which a parasite cell is cut off that fuses with a host tier cell. The nuclei of this infected host cell enlarge. As parasite development continues, other host-parasite cell fusions are formed, transferring more parasite nuclei into host cells. The erumpent colorless multicellular parasite develops externally on the host, and reproductive structures are visible within 2 weeks. Tetrasporangia are superficial and cruciately or tetra-hedrally divided. Spermatia are formed in clusters. The carpogonial branches are four-celled, and the carpogonium fuses directly with the auxiliary (support) cell. The mature carposporophyte has a large central fusion cell and sympodially branched gonimoblast filaments. Early stages of development differ markedly in Dawsoniocolax bostrychiae from Brazil. Upon contact with the host, the spore undergoes a nearly equal division, and a germ tube elongates from the more basal of the two spore cells, penetrates the host cell wall, and fuses with a host tier cell. Subsequent development involves enlargement of the original spore body and division to form a multicellular cushion, from which descending rhizoidal filaments form that fuse with underlying host cells. This radically different development is in marked contrast to the final reproductive morphology, which is similar to B. australis and has lead to taxonomic confusion between these two entities. The different spore germination patterns and early germ-ling development of B. australis and D. bostrychiae warrant the formation of a new genus for the Australian parasite.  相似文献   

17.
A morphological-anatomical study of Australian populations of Metamastophora flabellata (Sonder) Setchell, the type species of Metamastophora (Corallinaceae, Rhodophyta), has revealed that the primarily erect or ascending non-geniculate thallus possesses a dorsi-ventral organization of tissues. All conceptacles are uniporate and arise dorsally. Two distinct vegetative meristems occur: an apical primary meristem from which hypothallial cells are produced basipetally and a sub-epithallial secondary meristem which generates perithallial cells basipetally and secondary epithallial cells acropetally. Primary epithallial cells arise from divisions of subapical hypothallial cells. In younger parts, tissues are produced only dorsal to the hypothallium; in veins and stipes, tissue production occurs both dorsal and ventral to the hypothallium. Mature tetrasporic conceptacles contain peripheral tetrasporangia with zonately divided contents and a central sterile columella. Gametic conceptacles produce fertile tissue across the entire conceptacle chamber floor. After fertilization, the zygotic nucleus or a derivative is transferred (presumably) to an auxiliary cell through cells of the carpogonial branch; no tubular transfer siphon develops. Mature fusion cells are composed of the amalgamated supporting cells of carpogonial branches and are initiated from a single supporting cell which functions as an auxiliary cell. Unbranched 3–4 celled gonimoblast filaments arise from the fusion cell, do not become connected to other cells, and produce terminal carposporangia. Results from this study have led to a redefinition of hypothallium and perithallium in relation to meristems rather than substrate. In addition, carposporophyte ontogeny in the Corallinaceae is considered in terms of the presumed mode of transfer of the zygotic nucleus to the fusion cell, the extent of fusion cell development, and gonimoblast filament production in relation to auxiliary cells and fusion cells.  相似文献   

18.
The ultra structure of post-fertilization development in Faucheocolax attenuata Setch. is described. Following fertilization and transfer of the diploid nucleus to the auxiliary cell, four gonimoblast initials usually are produced of the multinucleate auxiliary cell. Gonimoblast initials originally are uninucleate but undergo karyokinesis to form multinudeate gonimoblast cells. Terminal or generative gonimoblast cells cleave successively to form lobes of incipient carpospores, with each group of spores differentiating synchronously. Portions of the initial generative gonimoblast cells, however, remain to resume karyokinesis and repeat the process of cleavage into carpospores. Axial gonimoblast cells are transformed into secretory cells, which produce mucilage. Generative gonimoblast cells and auxiliary cells are similar in cellular structure. Both contain typical red algal proplastids, some dictyosomes, cytoplasmic concentric membranes, and numerous small vesicles. In addition, dark staining spherical masses, occurring in the cytoplasm of all cell types, may represent dehydrated haploid chromatin. Large septal plugs interconnect gonimoblast cells and the auxiliary cell. These plugs are small when first formed but increase dramatically in size during carposporophyte development.  相似文献   

19.
The only member of the red algal family Solieriaceae known from New Zealand is the endemic Sarcodiotheca colensoi (Hook. & Harv.) Kylin. This study shows that it differs in several respects from the type S. furcata (Setch. & Gard.) Kylin; thus a new genus Placentophora is created for the New Zealand alga. Although P. colensoi nov. comb. is retained in the Solieriaceae on the basis of vegetative, spermatangial, tetrasporangial, carpogonial-branch and early gonimoblast features, it differs from typical members of that family in its pattern of later carposporophyte development. After a single gonimoblast initial is cut off from the auxiliary cell towards the center of the thallus, further gonimoblasts develop from the initial as ramifying, radiating filaments. These filaments enter an extensive “nutritive-cell” region surrounding the auxiliary cell, form, numerous connections to the “nutritive” cells, and incorporate most of them into a central placenta of interconnected, and variously-fused vegetative and gonimoblast cells. Carpo-sporangia then form in short chains around the periphery of the placenta. The cystocarp lacks both a central fusion cell and a sterile-celled investment, or “Faserhülle.” The distinctive carposporophyte of Placentophora is compared to patterns of gonimoblast development, known in other members of the Solieriaceae.  相似文献   

20.
Dicroglossum gen. nov. (Delesseriaceae, Ceramiales) is a monotypic genus based on Delesseria crispatula, a species originally described by Harvey for plants collected from southwestern Western Australia. Distinctive features of the new genus include exogenous indeterminate branches; growth by means of a single transversely dividing, apical cell; absence of intercalary divisions in the primary, secondary, and tertiary cell rows; lateral pericentral cells not transversely divided; not all cells of the secondary cell rows producing tertiary cells rows; all tertiary initials reaching the thallus margin; midrib present but lateral nerves absent; determinate lateral bladelets arising endogenously; blades monostromatic, except, at the midrib; carpogonial branches restricted to primary cell rows, on both surfaces of unmodified blades; procarps produced on both blade surfaces, each procarp consisting of a supporting cell that bears two four-celled carpogonial branches and one sterile-cell group of three to four cells; and tetrasporangia borne in two layers, separated by a central row of sterile cells. The combination of exogenous indeterminate branching and bicarpogonial procarps is considered to warrant the recognition of a new tribe, the Dicroglosseae, within the subfamily Delesserioideae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号