首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
A loop corresponding to residues 8-17 in the polypeptide cardiac stimulant anthopleurin-A is known to be important for the cardiostimulant activity of this molecule. To investigate the activity and possible conformations of this loop in isolation, two synthetic peptides have been studied. The first corresponds to residues 6-20 of anthopleurin-A with Cys6 replaced by Thr, and the second to residues 6-21 of anthopleurin-A, with Thr21 replaced by Cys. The introduction of an additional cysteine in the latter peptide enabled an intramolecular disulfide to be formed between the N- and C-terminal residues. Both linear peptides and the disulfide-containing analogue lack the cardiostimulant and Na(+-)-channel binding activity in the parent molecule, anthopleurin-A, indicating that although the loop is important for the function of anthopleurin-A, other regions of the molecule must also be involved in activity. Assignments of the 1H-NMR spectra of both peptides are presented, and their pH and temperature dependences investigated. The results show that the amide protons of Gly5 and Asn11 (corresponding to Gly10 and Asn16 in anthopleurin-A) sample hydrogen-bonded conformations in solution. Based on these NMR data, two regions of non-random structure, encompassing residues 2-5 and 8-11, respectively, are proposed, and the possible involvement of such structures in the activity of anthopleurin-A is discussed.  相似文献   

2.
The specific assignment of resonances in the 300-MHz 1H nuclear magnetic resonance (NMR) spectrum of anthopleurin-A, a polypeptide cardiac stimulant from the sea anemone Anthopleura xanthogrammica, is described. Assignments have been made using two-dimensional NMR techniques, in particular the method of sequential assignments, where through-bond and through-space connectivities to the peptide backbone NH resonances are used to identify the spin systems of residues adjacent in the amino acid sequence. Complete assignments have been made of the resonances from 33 residues out of a total of 49, and partial assignments of a further 3. The resonances from several of the remaining residues have been identified but not yet specifically assigned. A complicating factor in making these assignments is the conformational heterogeneity exhibited by anthopleurin-A in solution. The resonances from a number of amino acid residues in the minor conformer have also been assigned. These assignments contribute towards identification of the origin of this heterogeneity, and permit some preliminary conclusions to be drawn regarding the secondary structure of the polypeptide.  相似文献   

3.
To assess the relative importance of backbone hydrogen bonding (H-bonding) vs. side chain hydrophobicity in protein structural formation, a method called side chain-backbone swap is proposed. Such a method swaps the side chain and backbone portions of certain amino acid residues, such as Asp, Glu, Asn, Gln, Lys, and Arg. Such a swap retains the sequence of a polypeptide and preserves the identity of the backbone linkage. On the other hand, the swap disrupts backbone H-bonding geometry because of the introduction of extra methylene groups into the peptide backbone. In this project, we chose the two-stranded alpha-helical coiled-coil to implement side chain-backbone swap. A pair of 36-residue peptides was designed. The two peptides have identical sequence with four residues in each heptad repeat occupied by glutamyl residues. Each glutamic acid was incorporated either as alpha-glutamyl residue (the peptide is denoted as alpha-Glu-36) or as gamma-glutamyl residue (the peptide is denoted as gamma-Glu-36). The inter-conversion between the two peptides constitutes a side chain-backbone swap. Residues constituting the hydrophobic core of the coiled-coil, however, are left unchanged. The peptide pair was characterized by circular dichroism spectroscopy, reversed-phase liquid chromatography (RPLC), and two-dimensional nuclear magnetic resonance (NMR). The results indicate that alpha-Glu-36 is a two-stranded alpha-helical coiled-coil while gamma-Glu-36 lacks stable structural elements. It is concluded that, at least for coiled-coils where hydrophobic interactions are predominantly long-range, local backbone H-bonding is a required for structural formation, consistent with a hierarchic folding mechanism. The methodological implication of side chain-backbone swap is also discussed.  相似文献   

4.
Anthopleurin-B, the most potent peptide heart stimulant from the sea anemone Anthopleura xanthogrammica, was shown to exist as a single polypeptide chain consisting of 49 amino acid residues. The sequence of the peptide was shown to be: Gly-Val-Pro-Cys-Leu-Cys-Asp-Ser-Asp-Gly- Pro-Arg-Pro-Arg-Gly-Asn-Thr-Leu-Ser-Gly-Ile-Leu-Trp-Phe-Tyr-Pro-Ser- Gly-Cys-Pro-Ser-Gly-Trp-His-Asn-Cys-Lys-Ala-His-Gly-Pro-Asn-Ile-Gly- Trp-Cys-Cys-Lys-Lys. The carboxymethylcysteine derivative, tryptic and chymotryptic peptides (obtained from the derivative and separated by high performance liquid chromatography) were sequenced by manual Edman degradation. Although six carboxymethylcysteine residues were formed by reduction and alkylation of the polypeptide, no cysteine residues were detectable in the native protein, indicating that there are three cystine residues in anthopleurin-B. The amino acid sequence differs in 7 places from anthopleurin-A: at residues 3 (Pro for Ser), 12 (Arg for Ser), 13 (Pro for Val), 21 (Ile for Thr), 24 (Phe for Leu), 42 (Asn for Thr), and 49 (Lys for Gln). These differences are important since anthopleurin-B is about a 12.5-fold better heart stimulant than anthopleurin-A from A. xanthogrammica, anthopleurin-C from Anthopleura elegantissima, and toxin II from Anemonia sulcata.  相似文献   

5.
Conservation of clusters of buried water molecules is a structural motif present throughout the serine protease family. Frequently, these clusters are shaped as water channels forming extensive hydrogen-bonding networks linked to the protein backbone. The most conspicuous example is the water channel present in the specificity pocket of trypsin and thrombin. In thrombin, other vitamin K-dependent proteases, and some complement factors, Na+ binds in this water channel and enhances allosterically the catalytic activity of the enzyme, whereas digestive and fibrinolytic proteases are devoid of such regulation. A comparative analysis of proteases with and without Na+ binding capability reveals the role of the water channel in maintaining the structural organization of the specificity pocket and in Na+ coordination. This enables the formulation of a molecular mechanism for Na+ binding in thrombin and leads to the identification of the structural changes necessary to engineer a functional Na+ site and enhanced catalytic activity in trypsin and other proteases. Proteins 30:34–42, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
A highly stable and potent trypsin inhibitor was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family by acid precipitation, cation-exchange and anion-exchange chromatography. SDS-PAGE analysis, under reducing condition, showed that protein consists of a single polypeptide chain with molecular mass of approximately 34 kDa. The purified inhibitor inhibited bovine trypsin in 1:1 molar ratio. Kinetic studies showed that the protein is a competitive inhibitor with an equilibrium dissociation constant of 1.4x10(-11) M. The inhibitor retained the inhibitory activity over a broad range of pH (pH 2-12), temperature (20-80 degrees C) and in DTT (up to100 mM). The complete loss of inhibitory activity was observed above 90 degrees C. CD studies, at increasing temperatures, demonstrated the structural stability of inhibitor at high temperatures. The polypeptide backbone folding was retained up to 80 degrees C. The CD spectra of inhibitor at room temperature exhibited an alpha, beta pattern. N-terminal amino acid sequence of 10 residues did not show any similarities to known serine proteinase inhibitors, however, two peptides obtained by internal partial sequencing showed significant resemblance to Kunitz-type inhibitors.  相似文献   

7.
A derivative of the polypeptide cardiostimulant anthopleurin-B(AP-B) labeled with the spin label 1-oxyl 2,2,6,6-tetramethyl-4-piperidinyloxycarbonyl azide has been prepared and characterized. The product was found by mass spectrometry to be labeled at a single site, which amino acid sequencing showed to be the N-terminus. It also retained positive inotropic activity when assayed on isolated guinea pig atria. The spin-labeled (SL) product was found to exist in two distinct conformations by reversed-phase HPLC and in at least two conformations by electron spin resonance spectroscopy (ESR) over thepH range 2–9. The ESR data also show evidence for multimetric states of SL-AP-B over thepH range 2–9, with maximum aggregation at pH 4.5–5, and a slow disaggregation when thepH is adjusted to 8–9. The presence of multiple conformers of SL-AP-B and its tendency to aggregate render it unsuitable for high-resolution NMR structural studies of the isolated ligand, but the retention of activity may make it useful for studies of the sodium-channel-bound form of the molecule.Abbreviations AP-A anthopleurin-A - AP-B anthopleurin-B - ATX Ia toxin Ia fromAnemonia sulcata - Sh I neurotoxin I fromStichodactyla helianthus - TFA trifluoroacetic acid - SL-AP-B AP-B labeled at the N-terminus with the spin label 1-oxyl 2,2,6,6-tetramethyl-4-piperidinyloxycarbonyl azide  相似文献   

8.
BDS II, a 43-residue polypeptide from the sea anemone Anemonia sulcata, is reported to have both antihypertensive and antiviral activity. This polypeptide possesses a number of sequence and structural similarities to a class of cardiotonic proteins which bind to receptor site 3 of the voltage-gated sodium channel. In contrast to these cardiostimulant proteins, which produce positive inotropic effects at concentrations of 2-15 nM, BDS II produced a weak negative inotropic effect upon isolated guinea-pig atria, with doses of 90 and 180 nM depressing contractile strength by 15 and 28%, respectively. BDS II also competed with a 125-iodine labelled derivative of AP-A (a representative of the cardiostimulant proteins) bound to sodium channels in rat brain synaptosomes. The IC50 for BDS II versus AP-A was 5.2 microM. BDS II may therefore be considered an antagonist for receptor site 3 of the voltage-gated sodium channel. Structural differences between BDS II and the agonist AP-A which may give rise to their different effects on the sodium channel are considered.  相似文献   

9.
Prostaglandin H synthase catalyzes two reactions: the bis-dioxygenation of arachidonic acid to form prostaglandin G2 (cyclooxygenase activity), and the reduction of hydroperoxides to the corresponding alcohols (peroxidase activity). The cyclooxygenase activity can be selectively inhibited by many nonsteroidal antiinflammatory agents including indomethacin. In the native synthase, there is a single prominent protease-sensitive region, located near Arg253; binding of the heme prosthetic group makes the synthase resistant to proteases. To investigate the spatial relationship between the area of the synthase which interacts with indomethacin and the protease-sensitive region, the effects of indomethacin and similar agents on the protease sensitivity of the two enzymatic activities and of the synthase polypeptide were examined. Incubation of the synthase apoenzyme with trypsin (3.6% w/w) resulted in the time-dependent coordinate loss (75% at 1 h) of both enzymatic activities and the cleavage (85% at 1 h) of the 70-kDa subunit into 38- and 33-kDa fragments, indicating that proteolytic cleavage of the polypeptide at Arg253, destroyed both activities of the synthase simultaneously. Indomethacin, (S)-flurbiprofen, or meclofenamate (each at 20 microM) rendered both activities and the synthase polypeptide (at 5 microM subunit) resistant to attack by trypsin or proteinase K; these agents also inhibited the cyclooxygenase activity of the intact synthase. Two reversible cyclooxygenase inhibitors, ibuprofen and flufenamate, also made both of the activities and the synthase polypeptide more resistant to trypsin. Titration of the apoenzyme with indomethacin (0-3 mol/mol of synthase dimer) resulted in proportional increases in the inhibition of the cyclooxygenase and in the resistance to attack by trypsin. (R)-Flurbiprofen did not increase the resistance to protease or appreciably inhibit the cyclooxygenase. These results suggest that the same stereospecific interaction of these agents with the synthase that produced inhibition of the cyclooxygenase led to a decreased accessibility of the Arg253 region to proteases. Aspirin treatment made the synthase less resistant to trypsin; aspirin-treated synthase became more resistant to trypsin when it was incubated with indomethacin before addition of the protease. The presence of 50 microM arachidonate during digestion of apoenzyme or aspirin-treated apoenzyme with trypsin did not decrease the cleavage of the synthase subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The solution conformation of the cardiac stimulatory sea anemone polypeptide anthopleurin-A has been characterised using distance geometry and restrained molecular dynamics calculations. A set of 253 approximate interproton distance restraints and 14 peptide backbone torsion angle restraints derived from two-dimensional 1H-NMR spectra at 500 MHz were used as input for these calculations. 13 structures generated by either metric matrix or variable target function distance geometry calculations were refined using energy minimisation and restrained molecular dynamics. The resulting structures contain a region of twisted antiparellel beta-sheet to which two separate regions of unordered chain are linked by three disulphide bonds. Two loops, one including Pro-41 and the other encompassing residues 10-18, are poorly defined by the NOE data.  相似文献   

11.
Severe neurodegradative brain diseases, like Alzheimer, are tightly linked with proteolytic activity in the human brain. Proteinases expressed in the brain, such as human trypsin IV, are likely to be involved in the pathomechanism of these diseases. The observation of amyloid formed in the brain of transgenic mice expressing human trypsin IV supports this hypothesis. Human trypsin IV is also resistant towards all studied naturally occurring polypeptide inhibitors. It has been postulated that the substitution of Gly193 to arginine is responsible for this inhibitor resistance. Here we report the X-ray structure of human trypsin IV in complex with the inhibitor benzamidine at 1.7 A resolution. The overall fold of human trypsin IV is similar to human trypsin I, with a root-mean square deviation of only 0.5 A for all C(alpha) positions. The crystal structure reveals the orientation of the side-chain of Arg193, which occupies an extended conformation and fills the S2' subsite. An analysis of surface electrostatic potentials shows an unusually strong clustering of positive charges around the primary specificity pocket, to which the side-chain of Arg193 also contributes. These unique features of the crystal structure provide a structural basis for the enhanced inhibitor resistance, and enhanced substrate restriction, of human trypsin IV.  相似文献   

12.
Tryptases are trypsin-like serine proteinases found in the granules of mast cells. Although they show 40% sequence identity with trypsin and contain only 20 or 21 additional residues, tryptases display several unusual features. Unlike trypsin, the tryptases only make limited cleavages in a few proteins and are not inhibited by natural trypsin inhibitors, they form tetramers, bind heparin, and their activity on synthetic substrates is progressively inhibited as the concentration of salt increases above 0.2 M. Unique sequence features of seven tryptases were identified by comparison to other serine proteinases. The three-dimensional structures of the tryptases were then predicted by molecular modeling based on the crystal structure of bovine trypsin. The models show two large insertions to lie on either side of the active-site cleft, suggesting an explanation for the limited activity of tryptases on protein substrates and the lack of inhibition by natural inhibitors. A group of conserved Trp residues and a unique proline-rich region make two surface hydrophobic patches that may account for the formation of tetramers and/or inhibition with increasing salt. Although they contain no consensus heparin-binding sequence, the tryptases have 10-13 more His residues than trypsin, and these are positioned on the surface of the model. In addition, clustering of Arg and Lys residues may also contribute to heparin binding. Putative Asn-linked glycosylation sites are found on the opposite side of the model from the active site. The model provides structural explanations for some to the unusual characteristics of the tryptases and a rational basis for future experiments, such as site-directed mutagenesis.  相似文献   

13.
Sogabe S  Miki K 《FEBS letters》2001,491(3):174-179
The crystal structure of the oxidized cytochrome c(2) from Blastochloris (formerly Rhodopseudomonas) viridis was determined at 1.9 A resolution. Structural comparison with the reduced form revealed significant structural changes according to the oxidation state of the heme iron. Slight perturbation of the polypeptide chain backbone was observed, and the secondary structure and the hydrogen patterns between main-chain atoms were retained. The oxidation state-dependent conformational shifts were localized in the vicinity of the methionine ligand side and the propionate group of the heme. The conserved segment of the polypeptide chain in cytochrome c and cytochrome c(2) exhibited some degree of mobility, interacting with the heme iron atom by the hydrogen bond network. These results indicate that the movement of the internal water molecule conserved in various c-type cytochromes drives the adjustments of side-chain atoms of nearby residue, and the segmental temperature factor changes along the polypeptide chain.  相似文献   

14.
We have used variations in the trypsin sensitivity of eukaryotic protein synthesis elongation factor 2 (eEF-2) to probe for structural alterations induced by phosphorylation, ribosomal binding, or guanosine nucleotides. We could not detect any nucleotide-related effect on the tryptic cleavage rate of Arg66. However, eEF-2 was protected from trypsin after ribosomal binding. Also, phosphorylation of eEF-2 led to a protection of Arg66. This indicates that phosphorylation leads to a structural rearrangement that could explain the reduced affinity of the phosphorylated factor for ribosomes (Carlberg, U., Nilsson, A., and Nyg?rd, O. (1990) Eur. J. Biochem. 191, 639-645). Cleavage of Arg66 led to a complete loss of the ability of the factor to be phosphorylated. Furthermore, ribosome-bound eEF-2 was found to be inaccessible for phosphorylation. Based on these findings and previously published data, we suggest that the region around the sites of phosphorylation and trypsin cleavage is vitally important for the factor function and ribosomal binding.  相似文献   

15.
B R Gelin  M Karplus 《Biochemistry》1979,18(7):1256-1268
Side-chain torsional potentials in the bovine pancreatic trypsin inhibitor are calculated from empirical energy functions by use of the known X-ray structure of the protein and the rigid-geometry mapping technique. The potentials are analyzed to determine the roles and relative importance of contributions from the dipeptide backbone, the protein, and the crystalline environment of solvent and other protein molecules. The structural characteristics of the side chains determine two major patterns of energy surfaces, E(X1,X2): a gamma-branched pattern and a pattern for longer, straight side chains (Arg, Lys, Glu, and Met). Most of the dipeptide potential curves and surfaces have a local minimum corresponding to the side-chain torsional angles in the X-ray structure. Addition of the protein forces sharpens and/or selects from these minima, providing very good agreement with the experimental conformation for most side chains at the surface or in the core of the protein. Inclusion of the crystalline environment produces still better results, especially for the side chains extending away from the protein. The results are discussed in terms of the details of the interactions due to the surrounding, calculated solvent-accessibility figures and the temperature factors derived from the crystallographic refinement of the pancreatic trypsin inhibitor.  相似文献   

16.
Energetics of intrachain salt-linkage formation in collagen   总被引:1,自引:0,他引:1  
E P Katz  C W David 《Biopolymers》1990,29(4-5):791-798
The energy of formation of salt linkages between Arg or Lys with Asp or Glu in a polypeptide chain having the collagen fold have been estimated using the fully empirical energy minimization scheme AMBER. The polypeptide was considered both in an isolated and a hydrated triple helical state. The collagen fold associated with a one-bonded triple helical conformation allows intrachain salt linkages having stabilization energies of 60-100 kcal when the reacting residues are separated by no more than two intervening residues. The amino end of one side chain always approaches the carboxyl end of the other side chain, and simultaneously approaches the carbonyl oxygen of the intervening backbone residue. The salt linkage conformation and the backbone conformation of the isolated collagen fold in vacuo are maintained when the molecules are in a hydrated triple helix. These results are compatible with a fold-forming role for salt linkages, especially in proline poor regions, during collagen polypeptide synthesis, and with the persistence of intrachain salt linkages throughout molecular and fibril assembly.  相似文献   

17.
Monoclonal antibody 1CF11 has been suggested to specifically recognize a certain carbohydrate epitope shared by glycoproteins in human external secretions. We examined the effect of cleaving the polypeptide backbone and removing N-linked oligosaccharides on the reactivity with 1CF11 of human milk lactoferrin (hLf) to elucidate the structural features of the 1CF11 epitope. We reveal by treating hLF with trypsin and/or N-glycosidase that both the N-glycan-relevant and N-glycan-irrelevant structural elements were involved in the recognition of hLf by 1CF11.  相似文献   

18.
Fourteen tryptic peptides and nine intermediates were identified as products of trypsin digestion of reduced and S-3-(trimethylated amino) propylated lysozyme. Kinetics of the appearance and disappearance of these products were observed by monitoring the peak areas on the chromatogram. In spite of the complicated reaction pathways, kinetics of the digestion of proteins and several intermediate products show simple decay curves with a single rate constant. In this paper, the trypsin susceptibility of the individual cleavage site is defined as a hydrolytic rate constant of the susceptible peptide bond in the presence of 10 nM trypsin. The cleavage sites of unfolded lysozyme are classified into two groups in terms of the trypsin susceptibility: one has a high susceptibility (10–20 h?1) and the other a low susceptibility (1.0–2.0 h?1). In the unfolded state of lysozyme, in conclusion, the region from residues 15 to 61 has a strong resistance to trypsin digestion; on the other hand, the C-terminal half of the polypeptide chain is flexible enough to fit into the active site of trypsin. In addition, six kinds of pentapeptides were synthesized as analogues of lysozyme fragments including Arg 14, Arg 21, Lys 33, Arg 45, Arg 61, and Arg 73. Kinetics of typtic digestion of them were observed. Both kcat and KM were determined for these synthetic pentapeptides. The susceptibility of each cleavage site in pentapeptides is determined and compared with that corresponding in proteins. The susceptibility is usually higher when the susceptible peptide chain is flexible. However, susceptibilities of a few sites in proteins are lower than those in pentapeptides. This means that the peptapeptides, this means that the peptide chains tend to fold locally to prevent trypsin from binding to the sites. It was found that the sites of Arg 21 and Arg 45 are indeed resistant to trypsin, but the site of Lys 33 is not so much, although the hydrolytic rate at Lys 33 itself is extremely slow. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
The solution structure of human neuropeptide Y has been solved by conventional two-dimensional NMR techniques followed by distance-geometry and molecular-dynamics methods. The conformation obtained is composed of two short contiguous alpha-helices comprising residues 15-26 and 28-35, linked by a hinge inducing a 100 degree angle. The first helix (15-26) is connected to a polyproline stretch (residues 1-10) by a tight hairpin (residues 11-14). The helices and the polyproline stretch are packed together by hydrophobic interactions. This structure is related to that of the homologous avian pancreatic polypeptide and bovine pancreatic polypeptide. The C- and N-terminii, known to be involved in the biological activity for respectively the receptor binding and activation, are close together in space. The side chains of residues Arg33, Arg35 and Tyr36 on the one hand, and Tyr1 and Pro2 on the other, form a continuous solvent-exposed surface of 4.9 mm2 which is supposed to interact with the receptor for neuropeptide Y.  相似文献   

20.
We propose that arginine side chains often play a previously unappreciated general structural role in the maintenance of tertiary structure in proteins, wherein the positively charged guanidinium group forms multiple hydrogen bonds to backbone carbonyl oxygens. Using as a criterion for a "structural" arginine one that forms 4 or more hydrogen bonds to 3 or more backbone carbonyl oxygens, we have used molecular graphics to locate arginines of interest in 4 proteins: Arg 180 in Thermus thermophilus manganese superoxide dismutase, Arg 254 in human carbonic anhydrase II, Arg 31 in Streptomyces rubiginosus xylose isomerase, and Arg 313 in Rhodospirillum rubrum ribulose-1,5-bisphosphate carboxylase/oxygenase. Arg 180 helps to mold the active site channel of superoxide dismutase, whereas in each of the other enzymes the structural arginine is buried in the "mantle" (i.e., inside, but near the surface) of the protein interior well removed from the active site, where it makes 5 hydrogen bonds to 4 backbone carbonyl oxygens. Using a more relaxed criterion of 3 or more hydrogen bonds to 2 or more backbone carbonyl oxygens, arginines that play a potentially important structural role were found in yeast enolase, Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase, bacteriophage T4 and human lysozymes, Enteromorpha prolifera plastocyanin, HIV-1 protease, Trypanosoma brucei brucei and yeast triosephosphate isomerases, and Escherichia coli trp aporepressor (but not trp repressor or the trp repressor/operator complex).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号