首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In an effort to understand the phylogeny of the Platyhelminthes, the patterns of body-wall musculature of flatworms were studied using fluorescence microscopy and Alexa-488-labeled phalloidin. Species of the Catenulida have a simple orthogonal gridwork of longitudinal and circular muscles. Members of the Rhabditophora have the same gridwork of musculature, but also have diagonal muscles over their entire body. Although a few species of Acoelomorpha possessed a simple orthogonal grid of musculature, most species typically have distinctly different patterns of dorsal and ventral body-wall musculature that include sets of longitudinal, circular, U-shaped, and several kinds of diagonal muscles. Several distinct patterns of musculature were identified, including 8 patterns in 11 families of acoels. These patterns have proven to be useful in clarifying the phylogeny of the Acoelomorpha, particularly with regard to the higher acoels. Patterns of musculature as well as other morphological characters are used here for revisions of acoel systematics, including the return of Eumecynostomum sanguineum (Mecynostomidae) to the genus Aphanostoma (Convolutidae), the revision of the family Childiidae, and the formation of a new family, Actinoposthiidae.  相似文献   

2.
SUMMARY We compared embryonic myogenesis of the direct-developing acotylean polyclad Melloplana ferruginea with that of Maritigrella crozieri , a cotylean that develops via a larval stage. Fluorescently labeled F-actin was visualized with laser confocal microscopy. Developmental times are reported as percentages of the time from oviposition to hatching: 7 days for M. crozieri and 22  days for M. ferruginea . The epithelium began to form at 30% development in M. crozieri and at 15% development in M. ferruginea . Random myoblasts appeared in peripheral areas of the embryo at 36% and 22–30% development in M. crozeri and M. ferruginea , respectively. Circular and longitudinal muscle bands formed synchronously at 37–44% development in M. crozieri ; yolk obscured observations of early myogenesis in M. ferruginea . An orthogonal muscle grid was established by 45–50% development in both species. Diagonal muscles developed in M. ferruginea at 60–71% development. Hence, juveniles of this species hatch with the same basic body-wall musculature as adults. Larvae of M. crozieri did not hatch with diagonal muscles; these muscles are acquired postmetamorphosis. Additionally, a specialized musculature developed in the larval lobes of M. crozieri . Oral musculature was complex and established by 72% development in both species. Our results are comparable to the muscle differentiation reported for other indirect-developing polyclads and for direct-developing species of macrostomid flatworms. Furthermore, they provide additional support that the orthogonal muscle pattern of circular and longitudinal muscles is a symplesiomorphy of Spiralia.  相似文献   

3.
Patterns of musculature as taxonomic characters for the Turbellaria Acoela   总被引:3,自引:1,他引:2  
Tyler  Seth  Hyra  Gregory S. 《Hydrobiologia》1998,383(1-3):51-59
While turbellarians are generally assumed to have body-wall musculature consisting routinely of longitudinal, circular, and diagonal fibers, members of the Acoela examined by a fluorescence-microscopy technique specific for actin showed more complicated and distinctive arrangements of muscles, giving promise for better delimiting taxa within this taxonomically difficult order. Certain globose or tear-drop-shaped worms such as Convoluta pulchra and species of Pseudaphanostoma, Mecynostomum, and Otocelis, showed a complex pattern in which muscles longitudinal in the anterior half of the body arc diagonally across the posterior half; complex brushes of parenchymal muscles that cross at the level of the statocyst and arc postero-laterally also characterize these groups. The more elongate acoel Paratomella sp. was found to have musculature dominated by strictly longitudinal fibers and with relatively weak circular fibers and few fibers running diagonally to the body axis, yet the elongate mecynostomid Paedomecynostomum bruneum showed a crossing of antero-longitudinal fibers similar to that seen in the more globose Mecynostomum sp. A distinctive looping of muscles around the mouth is seen in P. bruneum and the Anaperidae. Such similarities and differences in pattern of musculature promise to provide easily recognizable characters for taxonomy of the Acoela at levels ranging from species to family. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.

Background

In order to increase the weak database concerning the organogenesis of Acoela – a clade regarded by many as the earliest extant offshoot of Bilateria and thus of particular interest for studies concerning the evolution of animal bodyplans – we analyzed the development of the musculature of Symsagittifera roscoffensis using F-actin labelling, confocal laserscanning microscopy, and 3D reconstruction software.

Results

At 40% of development between egg deposition and hatching short subepidermal fibres form. Muscle fibre development in the anterior body half precedes myogenesis in the posterior half. At 42% of development a grid of outer circular and inner longitudinal muscles is present in the bodywall. New circular muscles either branch off from present fibres or form adjacent to existing ones. The number of circular muscles is higher than that of the longitudinal muscles throughout all life cycle stages. Diagonal, circular and longitudinal muscles are initially rare but their number increases with time. The ventral side bears U-shaped muscles around the mouth, which in addition is surrounded by a sphincter muscle. With the exception of the region of the statocyst, dorsoventral muscles are present along the entire body of juveniles and adults, while adults additionally exhibit radially oriented internal muscles in the anterior tip. Outer diagonal muscles are present at the dorsal anterior tip of the adult. In adult animals, the male gonopore with its associated sexual organs expresses distinct muscles. No specific statocyst muscles were found. The muscle mantles of the needle-shaped sagittocysts are situated along the lateral edges of the animal and in the posterior end close to the male gonopore. In both juveniles and adults, non-muscular filaments, which stain positively for F-actin, are associated with certain sensory cells outside the bodywall musculature.

Conclusion

Compared to the myoanatomy of other acoel taxa, Symsagittifera roscoffensis shows a very complex musculature. Although data on presumably basal acoel clades are still scarce, the information currently available suggests an elaborated musculature with longitudinal, circular and U-shaped muscles as being part of the ancestral acoel bodyplan, thus increasing the possibility that Urbilateria likewise had a relatively complicated muscular ground pattern.  相似文献   

5.
We studied the body-wall musculature, its ECM (extracellular matrix), and the junctional complexes between muscle cells and between muscle cells and ECM in Macrostomum hystricinum marinum Rieger, 1977, using Nomarski-contrast and electron microscopy. Differentiation of these body-wall components was followed by monitoring embryonic stages at 52%, 64%, and 82% of the time between egg-laying and hatching and with study of the hatchling and adult stages. For comparison, the body-wall musculature of other macrostomidans has been examined in conventional light-histological sections.Muscles form a grid of longitudinally, diagonally, and circularly oriented fibers beneath the epidermis in M. hystricinum marinum and this orientation of cells can be found already in embryos at 64% development. Younger embryos at 52% development show no muscle differentiation. The ECM forms a net-like arrangement that apparently envelops the individual muscle cells. Characteristic knob-like thickenings of the ECM occur at the base of the epidermis. Muscle cells attach to each other, to the epidermis, and to other cell types through hemidesmosome-like junctions at thickenings of the ECM in the adult and hatchling stages; no true desmosomes exist between muscle cells. Gap junctions occur commonly between longitudinal muscles of adult specimens and between perikarya of muscle cells in embryos at 64% and 82% development.More comparative studies are needed to determine the systematic value of presence or absence of the diagonal muscle fibers in the body wall of turbellarians.  相似文献   

6.
The plesiomorphic arrangement of body-wall musculature within the annelids is still under discussion. While polychaete groups show a great variety of patterns in their somatic muscles, the musculature of soil-living oligochaetes was thought to represent the characteristic pattern in annelids. Oligochaete body-wall muscles consist of an outer continuous layer of circular and an inner continuous layer of longitudinal muscles, forming a closed tube. Since designs of adult body musculature are influenced by evolutionary changes, additional patterns found during embryogenesis can give further information about possible plesiomorphic features. In oligochaetes, detailed cell-lineage analyses document the origin of the mesoderm and consequently the muscles, but later processes of muscle formation remain unclear. In the present work, body-wall muscle differentiation was monitored during embryogenesis of thesoil-living oligochaete Enchytraeus coronatus (Annelida) by phalloidin staining. Primary circular muscles form in a discrete anterior-to-posterior segmental pattern, whereas emerging longitudinal muscles are restricted to one ventral and one dorsal pair of primary strands, which continuously elongate towards posterior. These primary muscles establish an initial muscle-template. Secondary circular and longitudinal muscles subsequently differentiate in the previous spaces later in development. The prominent ventral primary longitudinal muscle strands on both sides eventually meet at the ventral midline due to neurulation, which moves the ventral nerve cord into a coelomic position, closing the muscle layers into a complete tube. This early embryonic pattern in E. coronatus resembles the adult body-wall muscle arrangements in several polychaete groups as well as muscle differentiation during embryonic development of the polychaete Capitella sp. I.  相似文献   

7.
Summary A whole-mount fluorescence technique using rhodamine-labeled phalloidin was used to demonstrate for the first time the whole muscle system of a free-living plathelminth, Macrostomum hystricinum marinum. As expected, the body-wall musculature consisted of circular, longitudinal, and diagonal fibers over the trunk. Also distinct were the musculature of the gut and of the mouth and pharynx (circular, longitudinal, and radial). Dorsoventral fibers where restricted in this species to the head and tail regions. Circular muscle fibers in the body wall were often grouped into bands of up to four parallel strands. Surprisingly, diagonal fibers formed two distinct sets, one dorsal and one ventral. Certain diagonal muscle fibers entered the wall of the mouth and were continuous with some longitudinal muscles of the pharynx. Dorsoventral fibers in the rostrum occurred partly in regularly spaced pairs, a fact not known for free-living Plathelminthes. All muscle fibers appeared to be mononucleated. During postembryonic development, the number of circular muscle fibers can be estimated to increase by a factor of 3.5 and that of longitudinal muscles by a factor of 2. Apparently as many as 700–800 circular muscle cells must be added in the region of the gut alone during postembryonic development. Stem cells (neoblasts), identified by TEM in the caudalmost region of the gut, lie along the lateral nerve cords. In the same body region most perikarya of circular muscle cells occurred in a similar position. This suggests that the nucleus-containing part of the cell remains in the position where differentiation starts.  相似文献   

8.
We analyzed the adult musculature of two prolecithophoran species, Cylindrostoma monotrochum (von Graff, 1882) and Monoophorum striatum (von Graff, 1878) using a phalloidin-rhodamine technique. As in all rhabdithophoran flatworms, the body-wall musculature consisted of three muscle layers: on the outer side was a layer of circular muscle fibers and on the inner side was a layer of longitudinal muscle fibers; between them were two different types of diagonally orientated fibers, which is unusual for flatworms. The musculature of the pharynx consisted of a basket-shaped grid of thin longitudinal and circular fibers. Thick anchoring muscle fibers forming a petal-like shape connected the proximal parts of the pharynx with the body-wall musculature. Male genital organs consisted of paired seminal vesicles, a granular vesicle, and an invaginated penis. Peculiar ring-shaped muscles were only found in M. striatum, predominantly in the anterior body part. In the same species, seminal vesicles and penis only had circular musculature, while in C. monotrochum also longitudinal musculature was found in these organs. Female genital organs were only present in M. striatum, where we characterized a vagina interna, and a bursa seminalis. Transverse, crossover, and dorsoventral muscle fibers were lacking in the middle of the body and greatly varied in number and position in both species.  相似文献   

9.
Abstract. The body-wall and visceral musculature of Notholca acuminata was visualized using phalloidin-linked fluorescent dye under confocal laser scanning microscopy. The body-wall musculature includes dorsal, lateral, and ventral pairs of longitudinally oriented body retractor muscles, two pairs of head retractors, three pairs of incomplete circular muscles, which are modified into dorso-ventral muscles, and a single pair of dorsolateral muscles. The visceral musculature consists of a complex of thick muscles associated with the mastax, as well as several sets of delicate fibers associated with the corona, stomach, gut, and cloaca, including thin longitudinal gut fibers and viscero-cloacal fibers, never before reported in other species of rotifers. The dorsal, lateral, and ventral retractor muscles and the incomplete circular muscles associated with the body wall appear to be apomorphies for the Rotifera. Muscle-revealing staining shows promise for providing additional information on previously unrecognized complexity in rotifer musculature that will be useful in functional morphology and phylogenetic analyses.  相似文献   

10.
We investigated muscle development in two chiton species, Mopalia muscosa and Chiton olivaceus, from embryo hatching until 10 days after metamorphosis. The anlagen of the dorsal longitudinal rectus muscle and a larval prototroch muscle ring are the first detectable muscle structures in the early trochophore-like larva. Slightly later, a ventrolaterally situated pair of longitudinal muscles appears, which persists through metamorphosis. In addition, the anlagen of the putative dorsoventral shell musculature and the first fibers of a muscular grid, which is restricted to the pretrochal region and consists of outer ring and inner diagonal muscle fibers, are generated. Subsequently, transversal muscle fibers form underneath each future shell plate and the ventrolateral enrolling muscle is established. At metamorphic competence, the dorsoventral shell musculature consists of numerous serially repeated, intercrossing muscle fibers. Their concentration into seven (and later eight) functional shell plate muscle bundles starts after the completion of metamorphosis. The larval prototroch ring and the pretrochal muscle grid are lost at metamorphosis. The structure of the apical grid and its atrophy during metamorphosis suggests ontogenetic repetition of (parts of) the original body-wall musculature of a proposed worm-shaped molluscan ancestor. Moreover, our data show that the "segmented" character of the polyplacophoran shell musculature is a secondary condition, thus contradicting earlier theories that regarded the Polyplacophora (and thus the entire phylum Mollusca) as primarily eumetameric (annelid-like). Instead, we propose an unsegmented trochozoan ancestor at the base of molluscan evolution.  相似文献   

11.
Using the Phalloidin-Rhodamine flourescence-labelling technique for F-actin, we have studied the development of the body wall musculature in Macrostomum hystricinum marinum and in thepolyclad Hoploplana inquilina. The structure of the muscle grid in the freshly hatched Macrostomum (see also Rieger & Salvenmoser, 1991) and the young larva of Holplana served as reference systems for the embryonic development of the body wall musculature. In Macrostomum muscle fiber differentiation starts around 60% of developmental time between egg-laying and hatching, and in Hoploplana around 80% of embryonic development.In Macrostomum, early stages show TV-antenna-like arrangements of one longitudinal and several circular fibers. In Hoploplana our preliminary results show a particularly large, longitudinal fiber on either side of the body. These primary longitudinal fibers may serve as a founder cell for other longitudinal fibers and as spatial guides for the circular muscles. Similar founder cells have been reported during early muscle differentiation in leeches (Jellies & Kristan, 1988; Jellies, 1990). In Hoploplana, a special muscle system is present at the outset under the apical organ. It consists of what seems to be a spirally toranged fiber — when seen in head-on view — and of two additional fibers crossing this spiral, from the later developing posterior to the anterior lobe.TEM-studies of embryos of Macrostomum suggest that the longitudinal nerve cords represent an important guide during early differentiation of the pattern within the body wall musculature. Young stages of myoblasts can be identified along the main lateral nerve cord. Commonly, the myoblasts are seen to alternate with young neurons in their position along the nerve cord. Embryonic stages of Macrostomum hystricinum marinum were obtained from our cultures (Rieger et al., 1988). Immediately prior to fixation (Paraformaldehyde, Stephanini's fixative) the eggshells were punctured with tungsten needles. We noted some variability of developmental time for certain embryonic stages, which we cannot explain. Developmental stages of Hoploplana inquilina were collected at the Marine Biological Laboratory, Woods Hole, MA, USA according to the procedure outlined in Boyer (1987) and Boyer (1989). They have been timed in relation to normal developmental time to an early Müller's larva at about 100 hours.  相似文献   

12.
SUMMARY Myogenesis of two representatives of Platyhelminthes, Stylostomum sanjuania and Pseudoceros canadensis, was followed from egg deposition until well‐differentiated free‐swimming larval stages, using F‐actin staining and confocal laserscanning microscopy. Zonulae adhaerentes are the only structures to stain before 50% of development between egg deposition and hatching in S. sanjuania, and before 67% of development in P. canadenis. Subsequently, irregular fibers appear in the embryo, followed by a helicoid muscle close to the apical pole. Three longitudinal muscle pairs form, of which the dorsal pair remains more pronounced than the others. Gradually, new muscles form by branching or from double‐stranded muscle zones adjacent to existing muscles. This results in an elaborate muscular bodywall that consists of a single helicoid muscle as well as multiple circular and longitudinal muscles. Diverse retractor muscles insert at the sphincter muscles around the stomodeum. The overall arrangement and formation mode of the larval musculature appears very similar in both species, although only P. canadensis has a primary circular muscle posterior to the helicoid muscle. Muscle formation in the apical region of the embryo precedes that at the abapical pole and the primary longitudinal muscles form slightly later than the primary circular muscles. Myogenesis and larval myoanatomy appears highly conserved among polyclad flatworms, but differs significantly from that of other trochozoan clades. Our data suggest that the larval muscular ground pattern of polyclad larvae comprises a bodywall consisting of a helicoid muscle, circular and longitudinal muscles, several retractor muscles, and sphincter muscles around the stomodeum.  相似文献   

13.
During early development of Eisenia andrei (Crassiclitellata), a loose arrangement of primary circular and longitudinal muscles encloses the whole embryo. Circular muscles differentiate in an anterior–posterior progression creating a segmental pattern. Primary circular muscles emerge at the segmental borders while later in development the central part of each segment is filled with circular strands. Longitudinal muscles develop in an anterio‐posterior manner as well, but by continuous lengthening. Muscle growth is not restricted by segmental boundaries. The development begins with one pair of prominent longitudinal muscles differentiating ventrally along the right and the left germ band. These first muscles provide a guiding structure for the parallel organization of the afterwards differentiating longitudinal musculature. Additional primary longitudinal muscles emerge and form, together with the initial circular muscles, the primary muscle grid of the embryo. During the following development, secondary longitudinal muscle strands develop and integrate themselves into the primary grid. Meanwhile the primary circular muscles split into thin strands in a ventral to dorsal progression. Thus, a fine structured mesh of circular and longitudinal muscles is generated. Compared to other “Oligochaeta”, embryonic muscle patterns in E. andrei are adapted to the development of a lecithotrophic embryo. Nevertheless, two general characteristics of annelid muscle development become evident. The first is the segmental development of the circular muscles from a set of initial muscles situated at the segment borders. Second, there is a continuous development of primary longitudinal muscles starting at the anterior pole. At least one pair of main primary longitudinal strands is characteristic in Annelida. The space between all primary strands is filled with secondary longitudinal strands during further development. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Orii H  Ito H  Watanabe K 《Zoological science》2002,19(10):1123-1131
The planarian Dugesia japonica has two genes encoding myosin heavy chain, DjMHC-A and B (Kobayashi et al., 1998). We produced antibodies specifically recognizing each myosin heavy chain protein using their carboxyl terminal regions expressed in E. coli as antigens. Immunohistochemical analyses of sections and whole-mount specimens revealed the detailed structure and distribution of each type of muscle fiber in the planarian. In general, the MHC-A muscle fibers were distributed beneath the epithelial layers, namely, they were observable in the pharynx, the mouth, the intestine, the eyes and the body wall. In the pharynx, only MHC-A muscle fibers were present. In contrast, the MHC-B muscle fibers were distributed in the mesenchyme as dorso-ventral and transverse muscles, and in the body wall. The body-wall muscles were composed of an outer layer of circular MHC-A muscles and inner longitudinal and intermediate diagonal MHC-B muscle layers. Thus, two types of muscle fibers were distinguished by their distribution in the planarian.  相似文献   

15.
SUMMARY Molecular phylogenetics suggests that the Sipuncula fall into the Annelida, although they are morphologically very distinct and lack segmentation. To understand the evolutionary transformations from the annelid to the sipunculan body plan, it is important to reconstruct the ancestral states within the respective clades at all life history stages. Here we reconstruct the ancestral states for the head/introvert retractor muscles and the body wall musculature in the Sipuncula using Bayesian statistics. In addition, we describe the ontogenetic transformations of the two muscle systems in four sipunculan species with different developmental modes, using F-actin staining with fluorescent-labeled phalloidin in conjunction with confocal laser scanning microscopy. All four species, which have smooth body wall musculature and less than the full set of four introvert retractor muscles as adults, go through developmental stages with four retractor muscles that are eventually reduced to a lower number in the adult. The circular and sometimes the longitudinal body wall musculature are split into bands that later transform into a smooth sheath. Our ancestral state reconstructions suggest with nearly 100% probability that the ancestral sipunculan had four introvert retractor muscles, longitudinal body wall musculature in bands and circular body wall musculature arranged as a smooth sheath. Species with crawling larvae have more strongly developed body wall musculature than those with swimming larvae. To interpret our findings in the context of annelid evolution, a more solid phylogenetic framework is needed for the entire group and more data on ontogenetic transformations of annelid musculature are desirable.  相似文献   

16.
The taxonomy of freshwater pulmonates (Hygrophila) has been in a fluid state warranting the search for new morphological criteria that may show congruence with molecular phylogenetic data. We examined the muscle arrangement in the penial complex (penis and penis sheath) of most major groups of freshwater pulmonates to explore to which extent the copulatory musculature can serve as a source of phylogenetic information for Hygrophila. The penises of Acroloxus lacustris (Acroloxidae), Radix auricularia (Lymnaeidae), and Physella acuta (Physidae) posses inner and outer layers of circular muscles and an intermediate layer of longitudinal muscles. The inner and outer muscle layers in the penis of Biomphalaria glabrata consist of circular muscles, but this species has two intermediate longitudinal layers separated by a lacunar space, which is crossed by radial and transverse fibers. The muscular wall of the penis of Planorbella duryi is composed of transverse and longitudinal fibers, with circular muscles as the outer layer. In Planorbidae, the penial musculature consists of inner and outer layers of longitudinal muscles and an intermediate layer of radial muscles. The penis sheath shows more variation in muscle patterns: its muscular wall has two layers in A. lacustris, P. acuta, and P. duryi, three layers in R. auricularia and Planorbinae and four layers in B. glabrata. To trace the evolution of the penial musculature, we mapped the muscle characters on a molecular phylogeny constructed from the concatenated 18S and mtCOI data set. The most convincing synapomorphies were found for Planorbinae (inner and outer penis layers of longitudinal muscles, three-layered wall of the penis sheath). A larger clade coinciding with Planorbidae is defined by the presence of radial muscles and two longitudinal layers in the penis. The comparative analysis of the penial musculature appears to be a promising tool in unraveling the phylogeny of Hygrophila.  相似文献   

17.
To date, the phylum Cycliophora comprises only one described extant species of acoelomate marine invertebrates, Symbion pandora. Adult specimens live commensally on the mouthparts of the Norwegian lobster, Nephrops norvegicus. Its complicated life cycle includes an asexually produced Pandora larva and a sexually produced chordoid larva. Despite detailed TEM investigations and its inclusion in recent molecular phylogenetic analyses, cycliophoran relationships still remain enigmatic. In order to increase the morphological database, I investigated the anatomy of the nervous system and the musculature of the chordoid larva by applying fluorescence-coupled antibodies against the neurotransmitters serotonin and FMRFamide, as well as FITC-coupled phalloidin to label filamentous F-actin, in combination with confocal laser scanning microscopy. The FMRFamidergic nervous system shows a bilobed anterior ganglion and one pair of ventral nerve cords, while serotonin is distributed in a scattered pattern in the anterior ganglion. In addition, there are two pairs of ventral serotonergic nerves, of which the inner pair fuses with the outer nerve cords in the posterior third of the larva. The musculature comprises an outer layer of six units of circular body wall muscles, several helicoid muscle fibers, a set of paired longitudinal muscles that span the entire anterior-posterior axis of the larva, and a few oblique muscle strands. Furthermore, an anterior muscle complex and one pair of posterior muscles are present. The chordoid organ consists of a number of distinct subunits that are each formed by a dense layer of circular muscle fibers.The overall arrangement of the oblique and longitudinal muscles as well as the body wall musculature in the chordoid larva of Symbion pandora exhibits similarities with the condition found in certain rotifers. This is congruent with some recent phylogenies based on 18S rRNA sequences but additional morphological, developmental, and molecular data are needed to clarify the phylogenetic relationships of Cycliophora.  相似文献   

18.
The musculature of parasitic flatworms plays a central role in locomotory movement, attachment to the host, and in the function of the digestive, reproductive, and excretory systems. We examine for the first time the muscle system of the flatworm Dicrocoelium dendriticum, a causative agent of the parasitic disease dicrocoeliosis, by use of fluorescently labeled phalloidin and confocal laser scanning microscopy. Somatic musculature of D. dendriticum consists of the circular, longitudinal, and diagonal muscles. The distribution of the muscle fibers in the body wall differed among the anterior, middle, and posterior body regions of the worm. The musculature of the attachment organs, the oral and ventral suckers, includes several types of muscles: the external equatorial and meridional muscles, internal circular and semicircular muscles, and radial muscles. Inside of the ventral sucker the diagonally located muscles were revealed and the supplementary u-shaped muscles were found adjoined to the base of the sucker from outside. The musculature of the internal organs composed of the excretory, reproductive, and digestive systems were characterized. Our results increase our knowledge of the morphology of trematodes and the arrangement of their muscle system.  相似文献   

19.
A body wall musculature comprising an outer layer of circularfibers and an inner layer of longitudinal fibers is generallyseen as the basic plan in Annelida. Additional muscles may bepresent such as oblique, parapodial, chaetal, and dorsoventralmuscles. The longitudinal muscle fibers do not form a continuouslayer but are arranged in distinct bands in polychaetes. Mostlythere are four to six bands, usually including prominent ventraland dorsal bands. However, other patterns of muscle band arrangementalso exist. The ventral nerve cord lies between the two ventralbands in certain polychaetes, and is covered by an additionallongitudinal muscle band of comparatively small size. In manypolychaetes with reduced parapodia and in Clitellata a moreor less continuous layer of longitudinal fibers is formed. Clitellatais the only group with a complete layer of longitudinal musculature.Circular fibers are usually less developed than the longitudinalmuscles. However, recent investigations employing phalloidinstaining in combination with confocal laser scanning microscopyrevealed that absence of circular muscles is much more widelydistributed within the polychaetes than was previously known.This necessitates thorough reinvestigations of polychaete musclesystems, and this feature has to be taken into account in furtherdiscussions of the phylogeny and evolution of Annelida.  相似文献   

20.
Abstract. This study is focused on the formation and function of sagittocysts, which are secretions typical of members of the acoel family Sagittiferidae. The needle-shaped sagittocysts are produced in specialized gland cells (sagittocytes) whose distal necks are often surrounded by muscle mantles. Contraction of the muscle mantle ejects the sagittocyst. We establish a model for the development of sagittocytes and muscle mantles out of the stem cell pool of the new acoel species Symsagittifera corsicae . We used various techniques, especially interference and phase-contrast microscopy of living specimens as well as labeling of the body-wall musculature, for species characterization. In addition to the morphological features, we provide the third complete sequence of the 18S rDNA gene in the family Sagittiferidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号