首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 853 毫秒
1.
酵母乙醇脱氢酶胍变性时的失活与去折叠的比较研究   总被引:1,自引:1,他引:0  
应用荧光发射光谱,圆二色光谱,二阶导数光谱和紫外差吸收光谱等监测手段,研究了酵母乙醇脱氢酶在胍溶液中的去折叠,比较不同盐酸胍浓度下酵母乙醇脱氢酶的失活与构象变化,实验表明酶的失活先于构象变化,在低浓度胍溶液中,构象尚未发生明显变化时,酶活几乎已经完全丧失,由上述结果可见,含有辅基金属离子Zn^2+酶的活性部位较酶分子的整体结构也具有柔性。  相似文献   

2.
人肌肌酸激酶胍变性时的失活与构象变化的比较研究   总被引:1,自引:1,他引:0  
应用二阶导数光谱、紫外差吸收光谱和荧光光谱等监测手段,研究了人肌肌酸激酶在盐酸胍溶液中的构象变化。二阶导数光谱结果表明,若以6M盐酸胍中肌酸激酶酪氨酸残基的暴露程度为100%,则天然酶酪氨酸残基的暴露程度只有2%。而紫外差吸收光谱和荧光光谱的变化与兔肌肌酸激酶的结果相似。比较不同胍浓度下人肌肌酸激酶的失活与构象变化,表明酶的失活先于构象变化。同时还测定了不同浓度胍溶液中人肌酶的失活与构象变化的速度常数。结果表明以几种方法测定的构象变化均为单相的一级过程,而酶的失活却呈现了由快慢两相组成的一级反应过程。比较同浓度胍溶液中的失活速度与构象变化速度,发现酶失活的快相反应速度常数比构象变化的速度常数大1—2个数量级,慢相速度常数与构象变化速度常数相近。上述结果进一步支持了酶的活性部位构象柔性的观点。  相似文献   

3.
钙调神经磷酸酶在胍变性过程中活力及构象变化的比较   总被引:1,自引:0,他引:1  
钙调神经磷酸酶(CaN)在盐酸胍溶液中的内源荧光、远紫外CD谱及剩余活力的变化提示:CaN的酶活力在胍浓度为0.5mol/L左右可完全丧失,同时伴有内源荧光强度的下降,333nm最大发射峰的红移(提示了色氨酸和酪氨酸残基的暴露)。比较不同胍浓度下牛脑CaN的失活与整体构象变化,表明酶的失活先于整体构象变化。在0.6mol/L胍溶液中,内源荧光变化的动力学过程只能测出一相,而酶失活的动力学过程为快、慢两相,快相动力学速度常数比整体构象变化速度常数大1-2个数量级,慢相失活速度常数与整体构象变化速度常数相近。提示低浓度胍可引起该酶的完全失活,活性部位的空间构象比整个酶分子的构象更易受到变性剂的扰乱。  相似文献   

4.
中华猕猴桃蛋白酶(Actinidin)在盐酸胍溶液中活力变化结果提示:酶在0.1mol/L胍中活力略有升高,随胍浓度增大,活力先经历一个陡降区,在1—2mol/L胍中有个稳定区域,随胍浓度增大,活力继续下降。同时以荧光光谱,圆二色光谱研究该酶分子的构象变化。结果表明引起酶构象发生明显变化所需胍浓度(3mol/L)远比酶明显失活所需胍浓度(0.5mol/L)大。相同胍浓度下酶活力丧失速度快于构象变化速度。经5mol/L胍变性的酶直接稀释至胍浓度为0.05mol/L时,酶活力不能恢复,而构象迅速恢复。失活酶先稀释至胍浓度为1—2mol/L、再进一步稀释至胍浓度为0.05mol/L,活力能恢复50%左右。以上结果表明,相对于整个酶分子来说,活性中心的构象变化对变性剂更敏感。Actinidin的失活及复活过程是多相的复杂过程。  相似文献   

5.
以紫外差光谱、荧光光谱为监测手段对金黄色葡萄球菌核酸酶类似物(SNase R)在胍溶液中构象与活力变化进行了比较.SNase R在Llmol L0.8mol L和0.5mol L胍溶液变性时变性过程均为两个一级反应,但是酶在上述胍浓度下失活的速度远快于构象变化的速度:酶在同一胍浓度下活力丧失的程度也远快于构象变化的程度.上述结果表明:SNase R的活性部位可能位于柔性较大的区域.  相似文献   

6.
前已报导,在脲或胍的作用下,肌酸激酶失活速度远快于酶分子整体构象变化的速度.本文报导利用在变性剂存在下研究底物反应的方法对分子较小,由单亚基组成,并有五个二硫键使分子结构更加稳定的胰凝乳蛋白酶,在盐酸胍作用下的变性,失活以及相应的复性,复活进行动力学的比较.结果表明失活仍快于构象变化速度,复活慢于构象的恢复速度.实验结果还表明已经充分复活的酶和未经变性的酶在溶液中的构象存在着某些差别.  相似文献   

7.
 用荧光光谱法、截流荧光法和酶活力测定法研究了在盐酸胍溶液中米曲霉氨基酰化酶变性动力学。我们发现在4.8mol/L盐酸胍溶液作用下(0.05mol/L磷酸缓冲溶液,pH7.4,25℃),氨基酰化酶二聚体解离成单亚基过程是一个十分快速的过程,反应速率常数k为3361l/s,即约需3ms时间完成;而单亚基分子的构象变化需要约20min方能到达平衡态,这是一个逐渐变化的缓慢过程。酶分子在胍作用下的失活现象同酶分子的结构变化紧密相关,在胍浓度大于4mol/L时酶完全失活。在高浓度盐酸胍下酶失活主要是因为酶二聚体迅速解离成单亚基的过程和单亚基构象逐渐变化的缓慢过程。双亚基解离常数大小标志着酶分子亚基间作用力的强弱。  相似文献   

8.
本文比较了大然乳酸脱氢酶和硫酸铵稳定的乳酸脱氢酶在盐酸胍性过程式中失活与内源荧光的变化速度.酶失活表现为三相反应,即极快相,其速度常数用停流装置也无法测定;快相和慢相,1M胍变性时,此二相的一级反应速度常数分别为2.7×10~(-3)秒~(-1)和4.17×10~(-4)秒~(-1).在2M硫酸铵存在条件下,用2M胍更性时,快相和慢相的一极反应速度常数分别为6.16×10~(-3)秒~(-1)和1.88×10~(-3)秒~(-1).内源荧光强度的变化表现为二相反应,即极快相,相当酶失活的极快相,但变化幅度远小于酶失活的变化幅度;快相,相当于酶失活的快相,其速度常数为失活速度常数的1/3倍.上述结果表明,类似肌酸激酶,乳酸脱氢酶的失活速度快于酶分子整体构象的变化,相对于整个酶分子来说,活性中心的构象变化对变性剂更加敏感.  相似文献   

9.
本文比较了大然乳酸脱氢酶和硫酸铵稳定的乳酸脱氢酶在盐酸胍性过程式中失活与内源荧光的变化速度.酶失活表现为三相反应,即极快相,其速度常数用停流装置也无法测定;快相和慢相,1M胍变性时,此二相的一级反应速度常数分别为2.7×10~(-3)秒~(-1)和4.17×10~(-4)秒~(-1).在2M硫酸铵存在条件下,用2M胍更性时,快相和慢相的一极反应速度常数分别为6.16×10~(-3)秒~(-1)和1.88×10~(-3)秒~(-1).内源荧光强度的变化表现为二相反应,即极快相,相当酶失活的极快相,但变化幅度远小于酶失活的变化幅度;快相,相当于酶失活的快相,其速度常数为失活速度常数的1/3倍.上述结果表明,类似肌酸激酶,乳酸脱氢酶的失活速度快于酶分子整体构象的变化,相对于整个酶分子来说,活性中心的构象变化对变性剂更加敏感.  相似文献   

10.
肌酸激酶(CK2.7.3.2)催化磷酸肌酸与ATP相互转化的反应。姚启智等曾对其在盐酸胍中的构象变化与失活动力学进行了比较研究,发现在低浓度变性剂中,失活的速度与程度都远大于构象变化。此酶为球蛋白,由两个可以解离的相同亚基组成,分子量82,600。本文在最适pH附近(pH9.0)测定了不同浓度盐酸胍中酶的沉降系数,对其解聚与构象变化进行了研究,以探讨快失活、慢构象变化与解聚的关系。 兔肌肌酸激酶的提取、活力测定、盐酸胍的纯化方法与文献[1]相同。沉降系数用日立282-型分析超速离心机于20℃左右测定,Schlieren光学系统,标  相似文献   

11.
Changes of activity and conformation of Ampullarium crossean beta-glucosidase in different concentrations of guanidine hydrochloride (GuHCl) have been studied by measuring the fluorescence spectra and its relative activity after denaturation. The fluorescence intensity of the enzyme decreased distinctly with increasing guanidine concentrations, the emission peaks appeared red shifted (from 338.4 to 350.8 nm), whereas a new fluorescence emission peak appeared near 310 nm. Changes in the conformation and catalytic activity of the enzyme were compared. A corresponding rapid decrease in catalytic activity of the enzyme was also observed. The extent of inactivation was greater than that of conformational changes, indicating that the active site of the enzyme is more flexible than the whole enzyme molecule. k(+0)>k(+0)' also showed that the enzyme was protected by substrate to a certain extent during guanidine denaturation.  相似文献   

12.
在酶的盐酸胍变性和热变性过程中,尝试采用电荷传递反应分析方法和电子自旋共振方法考察了酶活性部位的构象变化。酶活力与构象的变化行为表明,酶的活性部位通道先于酶分子的整体构象而发生变化,它是与酶的失活同时发生的。尽管酶活性部位中的金属离子保证了酶较高的稳定性,但酶的活性部位,特别是活性通道仍然是相对脆弱的。  相似文献   

13.
The effects of dimethyl sulfoxide (DMSO) on creatine kinase (CK) conformation and enzymatic activity were studied by measuring activity changes, aggregation, and fluorescence spectra. The results showed that at low concentrations (< 65% v/v), DMSO had little effect on CK activity and structure. However, higher concentrations of DMSO led to CK inactivation, partial unfolding, and exposure of hydrophobic surfaces and thiol groups. DMSO caused aggregation during CK denaturation. A 75% DMSO concentration induced the most significant aggregation of CK. The CK inactivation and unfolding kinetics were single phase. The unfolding of CK was an irreversible process in the DMSO solutions. The results suggest that to a certain extent, an enzyme can maintain catalytic activity and conformation in water-organic mixture environments. Higher concentrations of DMSO affected the enzyme structure but not its active site. Inactivation occurred along with noticeable conformational change during CK denaturation. The inactivation and unfolding of CK in DMSO solutions differed from other denaturants such as guanidine, urea, and sodium dodecyl sulfate. The exposure of hydrophobic surfaces was a primary reason for the protein aggregation.  相似文献   

14.
活性部位的柔性   总被引:8,自引:0,他引:8  
比较酶在变性过程中构象和活力变化,发现在活性完全丧失时尚无可察 觉的整体构象变化。排除变性剂抑制和寡聚酶解聚等可能性之后,提出了酶活性部位柔性假说。随后用多种实验方法直接证实了活性部位的构象变化先于分子整体构象变化,并与活性丧失同步,根据催化过程中活性部位构旬变化,以及限制活性部位构象变化对酶活性的影响,提出了酶活性部位柔性为酶充分表现其催化活性所必需的设想。  相似文献   

15.
The inactivation of lobster muscle D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) (GAPDH) during guanidine hydrochloride (GdnHCl) denaturation has been compared with its state of aggregation and unfolding, by light scattering and fluorescence measurements. The enzyme first dissociates at low concentrations of GdnHCl, followed by the formation of a highly aggregated state with increasing denaturant concentrations, and eventually by complete unfolding and dissociation to the monomer at concentrations of greater than 2 M GdnHCl. The aggregation and final dissociation correspond roughly with the two stages of fluorescence changes reported previously (Xie, G.-F. and Tsou, C.-L. (1987) Biochim. Biophys. Acta 911, 19-24). Rate measurements show a very rapid inactivation, the extents of which increase with increasing concentrations of GdnHCl. This initial rapid phase of inactivation which takes place before dissociation and unfolding of the molecule is in agreement with the results obtained with other enzymes, that the active site is affected before noticeable conformational changes can be detected for the enzyme molecule as a whole. A scheme for the steps leading to the final denaturation, and dissociation of the enzyme to the inactive and unfolded monomer, is proposed.  相似文献   

16.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, each active site in which contains a tight cluster of two zinc ions and one magnesium ion. Unfolding and inactivation of the enzyme during denaturation in guanidinium chloride (GuHCl) solutions of different concentrations have been compared. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] has been applied to a study on the kinetics of the course of inactivation of the enzyme during denaturation by GuHCl. The rate constants of unfolding and inactivation have been determined. The results show that inactivation occurs before noticeable conformational change can be detected. It is suggested that the active site of green crab alkaline phosphatase containing multiple metal ions is also situated in a limited region of the enzyme molecule that is more fragile to denaturants than the protein as a whole.  相似文献   

17.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, each active site in which contains a tight cluster of two zinc ions and one magnesium ion. Unfolding and inactivation of the enzyme during denaturation in guanidinium chloride (GuHCl) solutions of different concentrations have been compared. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] has been applied to a study on the kinetics of the course of inactivation of the enzyme during denaturation by GuHCl. The rate constants of unfolding and inactivation have been determined. The results show that inactivation occurs before noticeable conformational change can be detected. It is suggested that the active site of green crab alkaline phosphatase containing multiple metal ions is also situated in a limited region of the enzyme molecule that is more fragile to denaturants than the protein as a whole.  相似文献   

18.
The arginine (Arg)-induced unfolding and the salt-induced folding of creatine kinase (CK) have been studied by measuring enzyme activity, fluorescence emission spectra, native polyacrylamide gel electrophoresis and size exclusion chromatography (SEC). The results showed that Arg caused inactivation and unfolding of CK, but there was no aggregation during CK denaturation. The kinetics of CK unfolding followed a one-phase process. At higher concentrations of Arg (>160 mM), the CK dimers were fully dissociated, the alkali characteristic of Arg mainly led to the dissociation of dimers, but not denaturation effect of Arg's guanidine groups on CK. The inactivation of CK occurred before noticeable conformational changes of the whole molecules. KCl induced monomeric and dimeric molten globule-like states of CK denatured by Arg. These results suggest that as a protein denaturant, the effect of Arg on CK differed from that of guanidine and alkali, its denaturation for protein contains the double effects, which acts not only as guanidine hydrochloride but also as alkali. The active sites of CK have more flexibility than the whole enzyme conformation. Monomeric and dimeric molten globule-like states of CK were formed by the salt inducing in 160 and 500 mM Arg H(2)O solutions, respectively. The molten globule-like states indicate that monomeric and dimeric intermediates exist during CK folding. Furthermore, these results also proved the orderly folding model of CK.  相似文献   

19.
Changes in intrinsic protein fluorescence of lobster muscle D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) have been compared with inactivation of the enzyme during denaturation in guanidine solutions. The holoenzyme is completely inactivated at guanidine concentrations less than 0.5 M and this is accompanied by a red shift of the emission maximum at 335 nm and a marked decrease in intensity of the intrinsic fluorescence. At 0.5 M guanidine, the inactivation is a slow process, with a first-order rate constant of 2.4 X 10(-3) s-1. A further red shift in the emission maximum and a decrease in intensity occur at guanidine concentrations higher than 1.5 M. The emission peak at 410 nm of the fluorescent NAD derivative introduced at the active site of this enzyme (Tsou, C.L. et al. (1983) Biochem. Soc. Trans. 11, 425-429) shows both a red shift and a marked decrease in intensity at the same guanidine concentration required to bring about the inactivation and the initial changes in the intrinsic fluorescence of the holoenzyme. It appears that treatment by low guanidine concentrations leads to both complete inactivation and perturbation of the active site conformation and that a tryptophan residue is situated at or near the active site.  相似文献   

20.
Xie XL  Chen QX  Gong M  Wang Q  Shi Y 《The protein journal》2005,24(5):267-273
The effects of guanidinium chloride (GuHCl) on the activity of Penaeus vannamei β-N-acetyl-d-glucosaminidase (NAGase) have been studied. The results show that GuHCl, at appropriate concentrations, can lead to reversible inactivation of the enzyme, and the IC50 is estimated to be 0.6 M. Changes of activity and conformation of the enzyme in different concentrations of GuHCl have been studied by measuring the fluorescence spectra and its relative activity after denaturation. The fluorescence intensity of the enzyme decreases distinctly with increasing GuHCl concentrations, and the emission peaks appear red-shifted (from 339.4 to 360 nm). Changes in the conformation and catalytic activity of the enzyme are compared. The extent of inactivation is greater than that of conformational changes, indicating that the active site of the enzyme is more flexible than the whole enzyme molecule. The kinetics of inactivation has been studied using the kinetic method of the substrate reaction. The rate constants of inactivation have been determined. The value of k+0 is larger than that of k+0 which suggests that the enzyme is protected by substrate to a certain extent during guanidine denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号