首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide sequences of the entire gene family, comprising six genes, that encodes the Rubisco small subunit (rbcS) multigene family in Mesembryanthemum crystallinum (common ice plant), were determined. Five of the genes are arranged in a tandem array spanning 20 kb, while the sixth gene is not closely linked to this array. The mature small subunit coding regions are highly conserved and encode four distinct polypeptides of equal lengths with up to five amino acid differences distinguishing individual genes. The transit peptide coding regions are more divergent in both amino acid sequence and length, encoding five distinct peptide sequences that range from 55 to 61 amino acids in length. Each of the genes has two introns located at conserved sites within the mature peptide-coding regions. The first introns are diverse in sequence and length ranging from 122 by to 1092 bp. Five of the six second introns are highly conserved in sequence and length. Two genes, rbcS-4 and rbcS-5, are identical at the nucleotide level starting from 121 by upstream of the ATG initiation codon to 9 by downstream of the stop codon including the sequences of both introns, indicating recent gene duplication and/or gene conversion. Functionally important regulatory elements identified in rbcS promoters of other species are absent from the upstream regions of all but one of the ice plant rbcS genes. Relative expression levels were determined for the rbcS genes and indicate that they are differentially expressed in leaves.  相似文献   

2.
Genomic, proteomic, phylogenetic and evolutionary aspects of a novel gene encoding a putative chloroplast-targeted sulfate permease of prokaryotic origin in the green alga Chlamydomonas reinhardtii are described. This nuclear-encoded sulfate permease gene (SulP) contains four introns, whereas all other known chloroplast sulfate permease genes lack introns and are encoded by the chloroplast genome. The deduced amino acid sequence of the protein showed an extended N-terminus, which includes a putative chloroplast transit peptide. The mature protein contains seven transmembrane domains and two large hydrophilic loops. This novel prokaryotic-origin gene probably migrated from the chloroplast to the nuclear genome during evolution of C. reinhardtii. The SulP gene, or any of its homologues, has not been retained in vascular plants, e.g. Arabidopsis thaliana, although it is encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). A comparative structural analysis and phylogenetic origin of chloroplast sulfate permeases in a variety of species is presented.  相似文献   

3.
4.
In close vicinity of two fus nuclear genes (chloroplast-specific translation elongation factor cEF-G) of soybean (Glycine max) we localized a split nuclear gene coding for a protein with tetratricopeptide repeats (TPR). A full-length cDNA was sequenced (1871 nucleotides). It encodes a protein (569 amino acids) with high sequence identity to the yeast STI1 stress-inducible and the human transformation-sensitive IEF SSP 3521 protein which both carry TPR elements. The soybean gene is heat-inducible. This is the first evidence for the existence of plant genes coding for proteins which belong to the TPR family. We call the gene gmsti and the protein GMSTI in analogy to the yeast counterpart.  相似文献   

5.
mRNA from the dinoflagellate Symbiodinium sp. isolated from the staghorn coral Acropora formosa was used for the construction of cDNA libraries. A cDNA clone was identified which encoded the precursor of peridinin-chlorophyll a-binding protein (PCP), including a 52 amino acid transit peptide and the 313 amino acid mature protein. The deduced amino acid sequence clearly contains an internal duplication, implying that amongst dinoflagellates the M r 35 000 form of PCP has arisen by duplication and fusion of genes encoding the M r 15 000 form. This is the first reported sequence of a dinoflagellate light-harvesting protein. The anatomy of the mature protein and the transit peptide are discussed.Abbreviations PCP peridinin-chlorophyll a-binding protein; cab, chlorophyll a/b-binding protein - LHC light-harvesting complex - FCP fucoxanthin-chlorophyll a/c-binding protein  相似文献   

6.
The genomic sequence of the porcine (Sus scrofa) glucocerebrosidase (GBA) gene (5.7 kb), encoding glucocerebrosidase (glucosylceramidase; acid beta-glucosidase; EC 3.2.1.45), was determined and compared with human (Homo sapiens) GBA and GBAP (pseudogene). The porcine gene harbours 11 exons and 10 introns, and the genomic organization is identical with human GBA. The exon sequences, coding for signal peptide and mature protein, show 81% and 90% sequence identity, respectively, with the corresponding human GBA sequences. Short interspersed elements, SINEs (PREs), are present in introns 2, 4 and 7. There is no evidence of a pseudogene in pig. The deduced protein sequence of GBA consists of 39 amino acids of signal peptide (long form) and 497 amino acids of the mature protein; the latter shows 90% sequence identity with the human protein. Four polymorphisms were observed within the porcine gene: insertion/deletion of one of the two SINEs (PREs) in intron 2 (locus PREA); deletion of a 37- to 39-bp stretch in intron 4 (one direct repeat and 5′ end of PRE); deletion of a 47-bp stretch in the middle part of PRE in intron 4 (locus PREB); and single-base transition (C–T) in intron 6 (locus HaeIII–RFLP). GBA was assigned to chromosome 4q21 by FISH and was localized to the same region by linkage analysis and RH mapping, i.e., to the chromosome 4 segment where quantitative trait loci for growth and some carcass traits are located.  相似文献   

7.
Summary NADPH : protochlorophyllide oxidoreductase (pchlide reductase, EC 1.6.99.1) catalyzes the light-dependent reduction of protochlorophyllide in higher plants. Cloned cDNAs encoding two distinct pchlide reductases were isolated from a gt11 library constructed from poly(A)+ RNA prepared from the cotyledons of dark-grown white pine (Pines strobes) seedlings and a nuclear gene (lpcr) analogous to one of these cDNAs has been characterized from loblolly pine (P. taeda). The pine gene encodes an approximately 43 kDa precursor polypeptide consisting of a 334-amino acid mature protein and a 66-amino acid transit peptide. The deduced primary structures for the pine proteins are highly homologous to those reported from monocots and dicots. The coding portion of the pine lpcr gene is interrupted by four introns. The placement of these introns within the pine lpcr gene is identical to that observed in pea (Pisum sativum), suggesting conservation in gene organization between dicot and gymnosperm species. Western blot analysis using polyclonal antiserum against oat pchlide reductase detected in extracts of dark-grown pine cotyledons a single immunoreactive protein, which declined in abundance during a 48 h period of illumination with white light. Cotyledons of dark-grown seedlings were also found to accumulate high levels of pchlide reductase mRNA; however, little or no change in the steady-state levels of mRNA encoding pchlide reductase was observed in these tissues following illumination. Stem tissue of dark-grown seedlings did not contain significant levels of pchlide reductase mRNA, whereas stems of light-grown plants of the same age accumulated substantial amounts of the message. These results suggest that light and the developmental age of the tissue affect regulation of lpcr expression in pine.  相似文献   

8.
The sequences of the nuclear genes of the 33 kDa (OEE1) and the 16 kDa (OEE3) polypeptides of the oxygen evolving complex of Chlamydomonas reinhardtii have been established. Comparison between the OEE1 protein sequences of C. reinhardtii and higher plants and cyanobacteria reveals 67 and 47% homology. In contrast, C. reinhardtii and higher plants have only 28% overall homology for OEE3 which is mostly limited to the central portion of the protein. The transit peptides of the C. reinhardtii proteins consist of 52 (OEE1) and, most likely, 51 (OEE1) amino acids. They have a basic amino terminal region and, at least in the case of OEE1, a hydrophobic segment at their carboxy terminal end typical of thylakoid lumen proteins. Comparison of the genomic and cDNA clones indicates that the OEE1 and OEE3 genes contain five and four introns, respectively, some of which are located within the coding sequences of the transit peptides.  相似文献   

9.
The nucleotide sequences of the entire gene family, comprising six genes, that encodes the Rubisco small subunit (rbcS) multigene family in Mesembryanthemum crystallinum (common ice plant), were determined. Five of the genes are arranged in a tandem array spanning 20 kb, while the sixth gene is not closely linked to this array. The mature small subunit coding regions are highly conserved and encode four distinct polypeptides of equal lengths with up to five amino acid differences distinguishing individual genes. The transit peptide coding regions are more divergent in both amino acid sequence and length, encoding five distinct peptide sequences that range from 55 to 61 amino acids in length. Each of the genes has two introns located at conserved sites within the mature peptide-coding regions. The first introns are diverse in sequence and length ranging from 122 by to 1092 bp. Five of the six second introns are highly conserved in sequence and length. Two genes, rbcS-4 and rbcS-5, are identical at the nucleotide level starting from 121 by upstream of the ATG initiation codon to 9 by downstream of the stop codon including the sequences of both introns, indicating recent gene duplication and/or gene conversion. Functionally important regulatory elements identified in rbcS promoters of other species are absent from the upstream regions of all but one of the ice plant rbcS genes. Relative expression levels were determined for the rbcS genes and indicate that they are differentially expressed in leaves.  相似文献   

10.
11.
The primary structure of acetohydroxy acid isomeroreductase from Arabidopsis thaliana was deduced from two overlapping cDNA. The full-length cDNA sequence predicts an amino acid sequence for the protein precursor of 591 residues including a putative transit peptide of 67 amino acids. Comparison of the A. thaliana and spinach acetohydroxy acid isomeroreductases reveals that the sequences are conserved in the mature protein regions, but divergent in the transit peptides and around their putative processing site.  相似文献   

12.
The gene family encoding the small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase in the monocot Lemna gibba contains approximately twelve members. We have isolated six of these genes from a genomic library, and sequenced five of the coding regions. The transit peptide nucleotide sequences are conserved, but less highly than the mature polypeptide coding sequence. The mature polypeptide amino acid sequences are identical to each other and to the sequence deduced from a cDNA clone derived from a seventh gene. Each of the five fully characterized genomic sequences contains a single intron in precisely the same position as the second intron of several dicots. The intron sequences differ in length and are less conserved than the coding sequences.The 3-untranslated regions of the different genes have been sequenced and used to prepare gene-specific probes. These probes have been used to study the expression levels of individual rbcS sequences. Expression of six of the seven genes can be detected in total RNA isolated from plants grown in continuous light. The levels of RNA encoded by each expressed gene are regulated by the action of phytochrome, but there is variability in the amount of expression of each RNA.  相似文献   

13.
Summary The expression of an acetolactate synthase (ALS) gene isolated from the cruciferous plant Brassica napus was investigated in Salmonella typhimurium. Using an expression plasmid containing the highly active trc (trp-lac) promoter, several plant ALS constructs were made containing successive in-frame truncations from the 5 end of the coding region. Functional complementation by these plant ALS constructs of a S. typhimurium mutant devoid of ALS enzymic activity was assayed on minimal medium. Truncations which eliminated a large portion of the transit peptide coding sequence proved to act as efficient ALS genes in the bacterial host. Truncations close to the putative processing site of the plant protein were inactive in the complementation test. A full length copy of the gene, including the entire transit peptide coding region, was also inactive. The efficiency of the complementation, estimated by comparison to the growth rate of wild-type S. typhimurium, was found to correlate with levels of ALS activity in the transformed bacteria. Specific mutations, known to produce herbicide resistance in plants, were introduced into the truncated ALS coding sequence by site-directed mutagenesis. When expressed in bacteria these constructs conferred a herbicide resistance phenotype on the host. The potential of this system for mutagenesis and enzymological studies of plant proteins is discussed.  相似文献   

14.
15.
16.
Genomic clones encoding the plastidic fructose- 1,6-bisphosphate aldolase ofChlamydomonas reinhardtii were isolated and sequenced. The gene contains three introns which are located within the coding sequence for the mature protein. No introns are located within or near the sequence encoding the transit-peptide, in contrast to the genes for plastidic aldolases of higher plants. Neither the number nor the positions of the three introns of theC. reinhardtii aldolase gene are conserved in the plastidic or cytosolic aldolase genes of higher plants and animals. The 5 border sequences of introns in the aldolase gene ofC. reinhardtii exhibit the conserved plant consensus sequence. The 3 acceptor splice sites for introns 1 and 3 show much less similarity to the eukaryotic consensus sequences than do those of intron 2. The plastidic aldolase gene has two tandemly repeated CAAT box motifs in the promoter region. Genomic Southern blots indicate that the gene is encoded by a single locus in theC. reinhardtii genome.  相似文献   

17.
Summary The small subunit (RbcS) of ribulose bisphosphate carboxylase (RuBPCase) is encoded by eight genes in Petunia (Mitchell). These genes can be divided into three subfamilies (51, 117 and 71) based upon hybridization to three petunia rbcS cDNA clones. The nucleotide sequence of six of the eight petunia rbcS genes is presented here and the structure of the genes is discussed with respect to their genomic linkage and their expression levels in petunia leaf tissue. The rbcS genes belonging to the same subfamily encode an identical mature RbcS polypeptide, however the different subfamilies encode distinguishable polypeptides. All the genes, except one, contian two introns within the mature subunit coding region; one gene contains one extra intron within the coding region. There are large regions of nucleotide sequence homology within the introns of genes within a subfamily, but significantly less homology between the introns of genes of different subfamilies. A complex pattern of homology within the multiple genes of the 51 subfamily is observed. There are regions within these genes which share high levels of sequence homology; this homology does not extend throughout the whole gene and the regions of homology do not always occur in adjacent genes. Two 3 rbcS gene fragments which we isolated from the petunia genome show high levels of homology to two of the intact rbcS genes.  相似文献   

18.
Summary The Brassica napus rapeseed cultivar Topas contains an acetohydroxyacid synthase (AHAS) multigene family consisting of five members (AHAS 1–5). DNA sequence analysis indicate that AHAS1 and AHAS3 share extensive homology. They probably encode the AHAS enzymes essential for plant growth and development. AHAS2 has diverged significantly from AHAS1 and AHAS3 and has unique features in the coding region of the mature polypeptide, transit peptide and upstream non-coding DNA, which raises the possibility that it has a distinct function. AHAS4 and AHAS5 have interrupted coding regions and may be defective. The complexity of the AHAS multigene family in the allotetraploid species B. napus is much greater than reported for Arabidopsis thaliana and Nicotiana tabacum. Analysis of the presumptive progenitor diploid species B. campestris and B. oleracea indicated that AHAS2, AHAS3 and AHAS4 originate from the A genome, whereas AHAS1 and AHAS5 originate from the C genome. Further variation within each of the AHAS genes in these species was found.  相似文献   

19.
Recently [Marquardt et al. (2000) Gene 255: 257–265], we isolated a gene encoding a polypeptide of the light-harvesting complex of Photosystem I (LHC I) of the red alga Galdieria sulphuraria. By screening a G. sulphuraria cDNA library with a DNA probe coding for the conserved first transmembrane helix of this protein we isolated four additional genes coding for LHC I polypeptides. The deduced preproteins had calculated molecular masses of 24.6–25.6 kDa and isoelectric points of 8.09–9.82. N-terminal sequencing of a LHC I polypeptide isolated by gel electrophoresis allowed us to determine the cleavage site of the transit peptide of one of the deduced polypeptides. The mature protein has a calculated molecular mass of 20.6 kDa and an isoelectric point of 7.76. The genes were amplified from nuclear G. sulphuraria DNA by polymerase chain reaction (PCR) using oligonucleotides annealing in the regions of the start and stop codons as primers. All genomic sequences were 80–300 base pairs longer than the PCR products obtained from the respective cDNA clones, pointing to the existence of 1–5 introns per gene. The G. sulphuraria genes form a homogeneous gene family with overall pairwise amino acid identities of 46.0–56.6%. Homology to two diatom, one cryptophytic and two higher plant light-harvesting polypeptides was lower with pairwise identities of 21.1–34.1%. Only one diatom polypeptide showed a higher degree of identity of up to −39.3%. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号