共查询到20条相似文献,搜索用时 15 毫秒
1.
Na+/adenosine co-transport in Vibrio parahaemolyticus 总被引:1,自引:0,他引:1
Adenosine transport in Vibrio parahaemolyticus was studied. Na+ greatly stimulated adenosine uptake. Addition of adenosine to a cell suspension under anaerobic conditions elicited Na+ uptake, and the Na+ uptake was inhibited by monensin, an Na+ ionophore. Imposition of an electrochemical potential of Na+ or a membrane potential in energy-depleted cells elicited adenosine uptake. Therefore, adenosine transport in this organism was concluded to proceed by an Na+/adenosine co-transport mechanism. The Na+/adenosine co-transport system was induced when cells were grown in the presence of adenosine, and repressed by glucose. Although Na+ uptake elicited by adenosine was reduced by glucose, it was enhanced by methyl alpha-glucoside, which reduced the intracellular ATP level. Thus, the effects of glucose and the glucoside on the Na+/adenosine co-transport system did not seem to be due to inducer exclusion, but to be related to the intracellular ATP level. 相似文献
2.
NorM of Vibrio parahaemolyticus apparently is a new type of multidrug efflux protein, with no significant sequence similarity to any known transport proteins. Based on the following experimental results, we conclude that NorM is an Na(+)-driven Na(+)/drug antiporter. (i) Energy-dependent ethidium efflux from cells possessing NorM was observed in the presence of Na(+) but not of K(+). (ii) An artificially imposed, inwardly directed Na(+) gradient elicited ethidium efflux from cells. (iii) The addition of ethidium to cells loaded with Na(+) elicited Na(+) efflux. Thus, NorM is an Na(+)/drug antiporting multidrug efflux pump, the first to be found in the biological world. Judging from the similarity of the NorM sequence to those of putative proteins in sequence databases, it seems that Na(+)/drug antiporters are present not only in V. parahaemolyticus but also in a wide range of other organisms. 相似文献
3.
Mutational analysis of amiloride sensitivity of the NhaA Na+/H+ antiporter from Vibrio parahaemolyticus. 下载免费PDF全文
The activity of the NhaA Na+/H+ antiporter of Vibrio parahaemolyticus is inhibited by amiloride. We found an amino acid sequence in the NhaA that was identical to a putative amiloride binding domain of the Na+/H+ exchanger in mammalian cells. We constructed mutant NhaAs that had amino acid substitutions in the putative amiloride binding domain by site-directed mutagenesis. These include V62L (Val62 replaced by Leu), F63Y, F64Y, and L65F. Most mutant NhaAs showed decreased sensitivity for amiloride. Among these, the F64Y mutant NhaA showed the least amiloride sensitivity, with a Ki value 7 to 10 times greater than that in the wild type. Thus, the sequence between residues V62 and L65 in NhaA, especially F64, is very important for the inhibitory effect of amiloride on the antiporter. 相似文献
4.
Habibian R Dzioba J Barrett J Galperin MY Loewen PC Dibrov P 《The Journal of biological chemistry》2005,280(47):39637-39643
Vc-NhaD is a Na(+)/H(+) antiporter from Vibrio cholerae with a sharp maximum of activity at pH approximately 8.0. NhaD homologues are present in many bacteria as well as in higher plants. However, very little is known about structure-function relations in NhaD-type antiporters. In this work 14 conserved polar residues associated with putative transmembrane segments of Vc-NhaD have been screened for their possible role in the ion translocation and pH regulation of Vc-NhaD. Substitutions S150A, D154G, N155A, N189A, D199A, T201A, T202A, S389A, N394G, S428A, and S431A completely abolished the Vc-NhaD-mediated Na(+)-dependent H(+) transfer in inside-out membrane vesicles. Substitutions T157A and S428A caused a significant increase of apparent K(m) values for alkali cations, with the K(m) for Li(+) elevated more than that for Na(+), indicating that Thr-157 and Ser-428 are involved in alkali cation binding/translocation. Of six conserved His residues, mutation of only His-93 and His-210 affected the Na(+)(Li(+))/H(+) antiport, resulting in an acidic shift of its pH profile, whereas H93A also caused a 7-fold increase of apparent K(m) for Na(+) without affecting the K(m) for Li(+). These data suggest that side chains of His-93 and His-210 are involved in proton binding and that His-93 also contributes to the binding of Na ions during the catalytic cycle. These 15 residues are clustered in three distinct groups, two located at opposite sides of the membrane, presumably facilitating the access of substrate ions to the third group, a putative catalytic site in the middle of lipid bilayer. The distribution of these key residues in Vc-NhaD molecule also suggests that transmembrane segments IV, V, VI, X, XI, and XII are situated close to one another, creating a transmembrane relay of charged/polar residues involved in the attraction, coordination, and translocation of transported cations. 相似文献
5.
6.
A detailed structural study of the prokaryotic sodium/galactose transporter (vSGLT) from Vibrio parahaemolyticus using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy reveals stepwise increases in alpha-helicity upon binding of sodium and D-galactose. These increases in helicity correlate with decreases in beta-structural elements. The changes are accompanied by stepwise reductions in the degree of H/D exchange (HDX), suggesting reduced accessibility of water to the protein backbone. The data demonstrate discrete conformational changes from one intermediate to the next during the catalytic cycle of the protein and are interpreted in a model of the symport reaction mechanism. 相似文献
7.
Garinot-Schneider C Lellouch AC Geremia RA 《The Journal of biological chemistry》2000,275(40):31407-31413
ExoM is a beta(1-4)-glucosyltransferase involved in the assembly of the repeat unit of the exopolysaccharide succinoglycan from Sinorhizobium meliloti. By comparing the sequence of ExoM to those of other members of the Pfam Glyco Domain 2 family, most notably SpsA (Bacillus subtilis) for whom the three-dimensional structure has been resolved, three potentially important aspartic acid residues of ExoM were identified. Single substitutions of each of the Asp amino acids at positions 44, 96, and 187 with Ala resulted in the loss of mutant recombinant protein activity in vitro as well as the loss of succinoglycan production in an in vivo rescue assay. Mutants harboring Glu instead of Asp-44 or Asp-96 possessed no in vitro activity but could restore succinoglycan production in vivo. However, replacement of Asp-187 with Glu completely inactivated ExoM as judged by both the in vitro and in vivo assays. These results indicate that Asp-44, Asp-96, and Asp-187 are essential for the activity of ExoM. Furthermore, these data are consistent with the functions proposed for each of the analogous aspartic acids of SpsA based on the SpsA-UDP structure, namely, that Asp-44 and Asp-96 are involved in UDP substrate binding and that Asp-187 is the catalytic base in the glycosyltransferase reaction. 相似文献
8.
Vibrio parahaemolyticus mutants lacking three Na+/H+ antiporters (NhaA, NhaB, NhaD) were constructed. The DeltanhaA strains showed significantly higher sensitivity to LiCl regarding their growth compared to the parental strain. The DeltanhaA and DeltanhaB strains exhibited higher sensitivities to LiCl. The mutant XACabd lacking all of the three antiporters could not grow in the presence of 500 mM LiCl at pH 7.0, or 50 mM at pH 8.5. The XACabd mutant was also sensitive to 1.0 M NaCl at pH 8.5. These results suggest that Na+/H+ antiporters, especially NhaA, are responsible for resistance to LiCl and to high concentrations of NaCl. Reduced Na+/H+ and Li+/H+ antiport activities were observed with everted membrane vesicles of DeltanhaB strains. However, Li+/H+ antiport activities of DeltanhaB strains were two times higher than those of DeltanhaA strains when cells were cultured at pH 8.5. It seems that expression of nhaA and nhaB is dependent on medium pH to some extent. In addition, HQNO (2-heptyl-4-hydroxyquinoline N-oxide), which is a potent inhibitor of the respiratory Na+ pump, inhibited growth of XACabd, but not of the wild type strain. Moreover, survival rate of XACabd under hypoosmotic stress was lower than that of wild type strain. It is likely that the Na+/H+ antiporters are involved in osmoregulation under hypoosmotic stress. Based on these findings, we propose that the Na+/H+ antiporters cooperate with the respiratory Na+ pump in ionic homeostasis in V. parahaemolyticus. 相似文献
9.
Cys-29 and Cys-251 of Streptomyces albus valine dehydrogenase (ValDH) were highly conserved in the corresponding region of NAD(P)(+)-dependent amino acid dehydroganase sequences. To ascertain the functional role of these cysteine residues in S. albus ValDH, site-directed mutagenesis was performed to change each of the two residues to serine. Kinetic analyses of the enzymes mutated at Cys-29 and Cys-251 revealed that these residues are involved in catalysis. We also constructed mutant ValDH by substituting valine for leucine at 305 by site-directed mutagenesis. This residue was chosen, because it has been proposed to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). Kinetic analysis of the V305L mutant enzyme revealed that it is involved in the substrate binding site. However it displayed less activity than the wild type enzyme toward all aliphatic and aromatic amino acids tested. 相似文献
10.
A novel mechanism of cation/substrate cotransport: Na+/H+/adenosine cotransport in Vibrio parahaemolyticus 总被引:1,自引:0,他引:1
Y Okabe Y Sakai-Tomita Y Mitani M Tsuda T Tsuchiya 《Biochimica et biophysica acta》1991,1059(3):332-338
Adenosine is actively transported with Na+ in Vibrio parahaemolyticus (Sakai, Y., Tsuda, M., Tsuchiya, T. (1987) Biochim, Biophys. Acta 893, 43-48). The proton conductor carbonylcyanide m-chlorophenylhydrazone, CCCP, strongly inhibited active transport of adenosine at pH 8.5 as well as at pH 7.0. This seemed peculiar because the driving force, an electrochemical potential of Na+, is established by the Na(+)-extruding respiratory chain at pH 8.5 in this organism, although it is established by the function of the Na+/H+ antiporter at pH 7.0. This suggested that H+ might be involved in the adenosine transport. We detected H+ uptake induced by adenosine influx in V. parahaemolyticus cells in the presence of Na+, but not in its absence, suggesting the occurrence of Na+/H+/adenosine cotransport. We isolated formycin A-resistant mutants which showed defective adenosine transport. The mutation resulted in simultaneous losses of Na+ uptake and H+ uptake induced by adenosine. In revertants from these mutants the Na+ uptake and H+ uptake were restored simultaneously. The frequencies of reversion were in the order of 10(-7), indicating that the mutations were single mutations; namely that Na+/adenosine cotransport and H+/adenosine cotransport took place via the same carrier. Thus, we conclude that adenosine is transported by the novel mechanism of Na+/H+/adenosine cotransport in V. parahaemolyticus. 相似文献
11.
Masamura N Ohashi W Tsuge N Imai S Ishii-Nakamura A Hirota H Nagata T Kumagai H 《Bioscience, biotechnology, and biochemistry》2012,76(3):447-453
Lachrymatory factor synthase (LFS), an enzyme essential for the synthesis of the onion lachrymatory factor (propanethial S-oxide), was identified in 2002. This was the first reported enzyme involved in the production of thioaldehyde S-oxides via an intra-molecular H(+) substitution reaction, and we therefore attempted to identify the catalytic amino acid residues of LFS as the first step in elucidating the unique catalytic reaction mechanism of this enzyme. A comparison of the LFS cDNA sequences among lachrymatory Allium plants, a deletion analysis and site-directed mutagenesis enabled us to identify two amino acids (Arg71 and Glu88) that were indispensable to the LFS activity. Homology modeling was performed for LFS/23-169 on the basis of the template structure of a pyrabactin resistance 1-like protein (PYL) which had been selected from a BLASTP search on SWISS-MODEL against LFS/23-169. We identified in the modeled structure of LFS a pocket corresponding to the ligand-binding site in PYL, and Arg71 and Glu88 were located in this pocket. 相似文献
12.
13.
Radchenko MV Waditee R Oshimi S Fukuhara M Takabe T Nakamura T 《Molecular microbiology》2006,59(2):651-663
The regulation of internal Na(+) and K(+) concentrations is important for bacterial cells, which, in the absence of Na(+) extrusion systems, cannot grow in the presence of high external Na(+). Likewise, bacteria require K(+) uptake systems when the external K(+) concentration becomes too low to support growth. At present, we have little knowledge of K(+) toxicity and bacterial outward-directed K(+) transport systems. We report here that high external concentrations of K(+) at alkaline pH are toxic and that bacteria require K(+) efflux and/or extrusion systems to avoid excessive K(+) accumulation. We have identified the first example of a bacterial K(+)(specific)/H(+) antiporter, Vp-NhaP2, from Vibrio parahaemolyticus. This protein, a member of the cation : proton antiporter-1 (CPA1) family, was able to mediate K(+) extrusion from the cell to provide tolerance to high concentrations of external KCl at alkaline pH. We also report the discovery of two V. parahaemolyticus Na(+)/H(+) antiporters, Vp-NhaA and Vp-NhaB, which also exhibit a novel ion specificity toward K(+), implying that they work as Na(+)(K(+))/H(+) exchangers. Furthermore, under specific conditions, Escherichia coli was able to mediate K(+) extrusion against a K(+) chemical gradient, indicating that E. coli also possesses an unidentified K(+) extrusion system(s). 相似文献
14.
Martin V Groenendyk J Steiner SS Guo L Dabrowska M Parker JM Müller-Esterl W Opas M Michalak M 《The Journal of biological chemistry》2006,281(4):2338-2346
Calreticulin is a Ca2+ -binding chaperone that resides in the lumen of the endoplasmic reticulum and is involved in the regulation of intracellular Ca2+ homeostasis and in the folding of newly synthesized glycoproteins. In this study, we have used site-specific mutagenesis to map amino acid residues that are critical in calreticulin function. We have focused on two cysteine residues (Cys(88) and Cys(120)), which form a disulfide bridge in the N-terminal domain of calreticulin, on a tryptophan residue located in the carbohydrate binding site (Trp(302)), and on certain residues located at the tip of the "hairpin-like" P-domain of the protein (Glu(238), Glu(239), Asp(241), Glu(243), and Trp(244)). Calreticulin mutants were expressed in crt(-/-) fibroblasts, and bradykinin-dependent Ca2+ release was measured as a marker of calreticulin function. Bradykinin-dependent Ca2+ release from the endoplasmic reticulum was rescued by wild-type calreticulin and by the Glu(238), Glu(239), Asp(241), and Glu(243) mutants. The Cys(88) and Cys(120) mutants rescued the calreticulin-deficient phenotype only partially ( approximately 40%), and the Trp(244) and Trp(302) mutants did not rescue it at all. We identified four amino acid residues (Glu(239), Asp(241), Glu(243), and Trp(244)) at the hairpin tip of the P-domain that are critical in the formation of a complex between ERp57 and calreticulin. Although the Glu(239), Asp(241), and Glu(243) mutants did not bind ERp57 efficiently, they fully restored bradykinin-dependent Ca2+ release in crt(-/-) cells. This indicates that binding of ERp57 to calreticulin may not be critical for the chaperone function of calreticulin with respect to the bradykinin receptor. 相似文献
15.
We have successfully expressed a bacterial cotransporter in a functional form in the Xenopus laevis oocyte expression system. The goals were to compare the kinetics and selectivity of the cotransporter expressed in oocytes with those obtained in bacteria and in proteoliposomes, and to determine if it is possible to measure the electrical properties of the bacterial cotransporter expressed in oocytes. The Vibrio parahaemolyticus Na+/galactose cotransporter (vSGLT) expressed in oocytes has functional properties that are similar to those expressed in bacteria and those of the purified cotransporter reconstituted into liposomes. vSGLT is a Na+-dependent transporter that is saturable with Na+ (K(0.5)=17 mM) and D-galactose (K(0.5)=237 microM) and is sensitive to both D-fucose and phlorizin. In addition, vSGLT in oocytes shows a sugar specificity in the order of D-galactose >D-fucose > D-glucose, distinguishing it from the animal members of the Na+/glucose cotransporter family. The level of transport by vSGLT in oocytes is lower overall (V(max) approximately 10 pmol/oocyte/hour) compared to other plant and animal cotransporters (V(max) approximately 1000 pmol/oocyte/hour). The low level of expression does not permit us to carry out electrophysiological studies of the bacterial cotransporter. This study shows the potential and unique advantages of utilizing a eukaryotic oocyte expression system to study bacterial cotransporters. 相似文献
16.
《Molecular membrane biology》2013,30(1):90-100
AbstractNa+/H+ antiporters play a primary role in Na+/H+ homeostasis in cells and many organelles and have long been drug targets. The X-ray structure of NhaA, the main antiporter of Escherichia coli, provided structural insights into the antiport mechanism and its pH regulation and revealed a novel fold; six of the 12 TMs (Trans membrane segments) are organized in two topologically inverted repeats, each with one TM interrupted by an extended chain creating a unique electrostatic environment in the middle of the membrane at the cation binding site. Remarkably, inverted repeats containing interrupted helices with similar functional implications have since been observed in structures of other bacterial secondary transporters with almost no sequence homology. Finally, the structure reveals that NhaA is organized into two functional regions: a ‘pH sensor' – a cluster of amino acyl side chains that are involved in pH regulation; and a catalytic region that is 9 Å removed from the pH sensor. Alternative accessibility of the binding site to either side of the membrane, i.e., functional-dynamics, is the essence of secondary transport mechanism. Because NhaA is tightly pH regulated, structures of the pH-activated and ligand-activated NhaA conformations are needed to identify its functional-dynamics. However, as these are static snapshots of a dynamic protein, the dynamics of the protein both in vitro and in situ in the membrane are also required as reviewed here in detail. The results reveal two different conformational changes characterizing NhaA: One is pH-induced for NhaA activation; the other is ligand-induced for antiport activity. 相似文献
17.
18.
We examined the structure-function relationships of residues in the fifth transmembrane domain (TM5) of the Na+/H+ antiporter A (NhaA) from Helicobacter pylori (HP NhaA) by cysteine scanning mutagenesis. TM5 contains two aspartate residues, Asp-171 and Asp-172, which are essential for antiporter activity. Thirty-five residues spanning the putative TM5 and adjacent loop regions were replaced by cysteines. Cysteines replacing Val-162, Ile-165, and Asp-172 were labeled with NEM, suggesting that these three residues are exposed to a hydrophilic cavity within the membrane. Other residues in the putative TM domain, including Asp-171, were not labeled. Inhibition of NEM labeling by the membrane impermeable reagent AMS suggests that Val-162 and Ile-165 are exposed to a water filled channel open to the cytoplasmic space, whereas Asp-172 is exposed to the periplasmic space. D171C and D172C mutants completely lost Na+/H+ and Li+/H+ antiporter activities, whereas other Cys replacements did not result in a significant loss of these activities. These results suggest that Asp-171 and Asp-172 and the surrounding residues of TM5 provide an essential structure for H+ binding and Na+ or Li+ exchange. A168C and Y183C showed markedly decreased antiporter activities at acidic pH, whereas their activities were higher at alkaline pH, suggesting that the conformation of TM5 also plays a crucial role in the HP NhaA-specific acidic pH antiporter activity. 相似文献
19.
The functional significance of amino acid residues Lys-265, Asp-270, Lys-277, Asp-288, Asp-347, Glu-349, and Arg-351 of Bacillus kaustophilus leucine aminopeptidase was explored by site-directed mutagenesis. Variants with an apparent molecular mass of approximately 54 kDa were overexpressed in Escherichia coli and purified to homogeneity by nickel-chelate chromatography. The purified mutant enzymes had no LAP activity, implying that these residues are important for the catalytic reaction of the enzyme. 相似文献
20.
Fujita K Nakatake R Yamabe K Watanabe A Asada Y Takegawa K 《Bioscience, biotechnology, and biochemistry》2001,65(7):1542-1548
The gene encoding the endo-beta-N-acetylglucosaminidase from Flavobacterium sp. (Endo-Fsp) was sequenced. The Endo-Fsp gene was overexpressed in Escherichia coli cells, and was purified from inclusion bodies after denaturation by 8 M urea. The renatured Endo-Fsp had the same optimum pH and substrate specificity as the native enzyme. Endo-Fsp had 60% sequence identity with the endo-beta-N-acetylglucosaminidase from Streptomyces plicatus (Endo-H), and the putative catalytic residues were conserved. Site-directed mutagenesis was done at conserved residues based on the three-dimensional structure and mutagenesis of Endo-H. The mutant of Glu-128, corresponding to Glu-132 in Endo-H and identified as an active site residue, was inactivated. Mutagenesis around the predicted active site of Endo-Fsp reduced the enzymatic activity. Moreover, the hydrolytic activity toward hybrid-type oligosaccharides was decreased compared to that toward high-mannose type oligosaccharides by mutagenesis of Asp-126 and Asp-127. Therefore, site-directed mutagenesis of some of these conserved residues indicates that the predicted active sites are essential to the enzymatic activity of Endo-Fsp, and may have similar roles in catalysis as their counterparts in Endo-H. 相似文献