首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Macrophage colony-stimulating factor (M-CSF) was investigated as a stimulator of ADCC to the murine R1.1 thymoma target by murine peritoneal exudate macrophages which were elicited by proteose peptone. Both an 125IUdR release and a viable cell count assay were used. The latter assay avoids radiation damage, and the fate of the targets can be determined over a long period. Pretreatment of macrophages for several days in culture with lymphokine (LK) from concanavalin A-induced mouse spleen cells moderately stimulated ADCC. Preincubation of macrophages with conventional or recombinant human M-CSF or immunoaffinity-purified mouse M-CSF alone had little effect. However, M-CSF greatly enhanced ADCC to the tumor target when used as a costimulant with LK, IFN-gamma, IFN-alpha, IFN-beta, or IL-2 to pretreat macrophages. Incubation of macrophages with LK or LK plus M-CSF for 2 days generated stronger ADCC than 1- or 3-day incubations. Enhancement of LK-stimulated ADCC by M-CSF appeared to plateau at about 1000 U/ml. The enhancement of macrophage cytotoxicity when stimulated with IFNs or IL-2 was most effective at the lowest active concentration of these LKs. At 1 U/ml IFN-gamma or IL-2, or 5 U/ml IFN-alpha or IFN-beta, M-CSF boosted ADCC activity to that using 10-fold of the LK alone. IL-1, IL-4, and TNF had little or no stimulating activity for ADCC alone or with M-CSF, and the other hemopoietic growth factors IL-3 and GM-CSF did not promote this effector function alone or with IFN-gamma. We previously showed that M-CSF boosted macrophage antibody-independent killing of TU5 sarcoma targets with or without LK (Cell. Immunol. 105, 270, 1987). These studies thus show that M-CSF is a positive regulator of both macrophage-nonspecific tumor lysis and ADCC.  相似文献   

2.
We have previously shown the ability of different cytokines to induce antibody-dependent cellular cytotoxicity (ADCC) in murine cells in vitro. In addition we found that the administration to mice of IL-2-induced cells which mediated ADCC and that these cells were phenotypically similar to the cells induced in vitro. In the present study we tested the ability of various cytokines, including IL-1, TNF, IFN-alpha, and IFN-gamma to induce ADCC in vivo. We found that both IFN-alpha and IFN-gamma induced ADCC in the livers and spleens of C3H/Hen-treated mice and that these cytokines together with TNF enhanced the IL-2-induced ADCC in vivo. In C57BL/6 mice which, as previously shown, exhibit relatively low ADCC activity, IFN-alpha and IFN-gamma increased the IL-2-induced ADCC only when 100,000 U of IL-2 were used for priming. The effect of IFN-alpha on ADCC was dose dependent and was optimal after the administration of 200,000 U of the cytokine given three times a day for 3 days. Similar to the cells induced in vivo by IL-2, the precursors of the cells mediating ADCC were asialo GM1+ whereas the effectors were mainly nonadherent, Thy-1+ cells. IFN-alpha-generated cells mediating ADCC in the liver and spleen and, when combined with IL-2, ADCC was induced in the thymus as well. This effect of IFN-alpha on the induction of ADCC was exploited in an immunotherapy model in which we found that IFN-alpha significantly enhanced the antibody-mediated antitumor effect on established B16 melanoma liver micrometastases. Furthermore, when IL-2 and IFN-alpha administration was combined with the administration of mAb, a significantly reduced number of established 6- to 8-day B16 melanoma liver macrometastases and prolonged survival of tumor-bearing mice were seen. These studies imply that the administration of appropriate cytokine combinations may be a useful adjunct to the administration of mAb for the treatment of cancer in humans.  相似文献   

3.
Since some cytokines effectively enhance the cytotoxicity of monoclonal antibodies, we investigated whether a combination of cytokines can augment the antibody-dependent cellular cytotoxicity (ADCC) of monoclonal antibodies 17-1A and BR55-2 against the colorectal carcinoma cell line HT29. Since monocytes/macrophages are important effector cells for ADCC, we used a new flow cytometric cytotoxicity assay, which allows the analysis of long-term-ADCC exerted by these cells. In our previous studies with peripheral blood mononuclear cells from normal donors, we found that IL-2, IL-12 and IFN-alpha increase ADCC. Therefore, we examined whether combination of these three cytokines with IL-2, IL-4, IL-6, IL-10, IL-12, IFN-alpha, IFN-gamma, GM-CSF, M-CSF and TNF-alpha may yield higher ADCC than obtained by the application of single cytokines. Indeed, we found that the combinations IL-2/IFN-alpha, IL-2/IL-12 and IL-12/IFN-alpha potentiated ADCC. Interestingly, the ineffective single cytokines TNF-alpha and GM-CSF in the combinations IL-2/TNF-alpha, IFN-alpha/TNF-alpha and IFN-alpha/GM-CSF also proved to enhance ADCC. In contrast, IL-4 significantly suppressed the IL-2, IL-12 and IFN-alpha-induced ADCC. In addition, the immunosuppressive cytokine IL-10 in higher concentrations significantly suppressed the IL-12-induced-ADCC. Our results may be useful to find combinations of cytokines and mAb for the treatment of cancer.  相似文献   

4.
In vitro culture of either human peripheral blood monocytes or murine peritoneal macrophages for 72 hr in the presence of macrophage colony-stimulating factor (M-CSF) dramatically increased their subsequent ability to mediate antibody-dependent cellular cytotoxicity (ADCC). The M-CSF-treated cells were more effective in ADCC at lower effector to target cell ratios and in the presence of lower concentrations of tumor-specific monoclonal antibody than the untreated control cells. Two other hematopoietic cytokines, granulocyte-macrophage colony-stimulating factor and interleukin-3, reported to enhance other macrophage effector functions were ineffective in promoting the development of ADCC by cultured human monocytes. All three hematopoietic growth factors were capable of enhancing the ability of the cultured monocytes to secrete TNF alpha; however, TNF alpha is unlikely to be an important cytotoxic factor in ADCC because neutralizing antibodies against TNF alpha had no affect on ADCC in vitro. Further, much higher concentrations of M-CSF were required to augment monocyte TNF alpha release (20-100 ng/ml) than ADCC capacity (1-10 ng/ml). These results suggest that M-CSF administration might prove effective in increasing the tumoricidal activities of tumor-specific monoclonal antibodies by enhancing the capacity of monocytes and macrophages to mediate ADCC.  相似文献   

5.
Studies indicate that simple hemorrhage produces a profound depression of cell-mediated immunity, thereby contributing to an enhanced susceptibility to septic challenge in the host. However, it remains unknown whether or not the macrophages' cytotoxic capacity is altered after hemorrhage. To study this, C3H/HeN mice were bled to and maintained at a blood pressure of 35 mm Hg for 60 min, and adequately resuscitated. Mice were then killed at 2 or 24 h after hemorrhage to obtain peritoneal macrophage, splenic macrophage, and Kupffer cells. Cytotoxicity was assessed by determining the capacity of these macrophages to lyse [3H]TdR labeled WEHI-164 clone 13 or P815 tumor target cells (WEHI-164, sensitive to both soluble and cell-associated TNF vs P815 cells, insensitive to soluble TNF). Peritoneal and splenic macrophages from hemorrhaged animals exhibited a significantly reduced cytotoxic capacity, whereas Kupffer cells' ability to kill the target cells was enhanced. Similarly, the Kupffer cells' capacity to release TNF and IL-1, as well as express cell-associated forms of this cytokine are significantly enhanced on macrophages isolated 2 h after hemorrhage, whereas peritoneal macrophages are not. Furthermore, antibodies directed at mouse TNF but not against murine IL-1 alpha or murine IL-6 were able to oblate the enhanced target cell lysis of unfixed, as well as paraformaldehyde fixed (metabolically inactive) Kupffer cells. Studies using inhibitors (GN-monomethyl-arginine, superoxide dismutase, catalase, and ibuprofen) of other TNF-inducible mechanisms of target cell killing indicated that only the inhibition of the release of reactive nitrogen consistently depressed the cytotoxic capacity of Kupffer cells from hemorrhaged mice. Thus, the increased Kupffer cell cytotoxicity from hemorrhaged mice is most likely mediated through the expression of cell-associated TNF and the release of reactive nitrogen.  相似文献   

6.
We have previously demonstrated that incubation with IL-2 can induce ADCC activity in murine cells and that this activity was mediated by asialo GM1+, FcR+ cells. In the present study we show that the cytokines IFN-alpha and IFN-gamma, TNF-alpha, and IL-1 alpha are unable to induce antibody-dependent cellular cytotoxicity (ADCC) in murine cells; however, TNF-alpha and IL-1 alpha could substantially augment the ADCC induced by IL-2. IL-1 increased the IL-2-induced ADCC activity in a dose-dependent fashion and in cells isolated from the thymus and spleen. The precursors of the ADCC induced by the combination of IL-1 and IL-2 were asialo GM1+ cells, similar to the precursor cells of IL-2-induced ADCC. The effect of IL-1 and TNF on ADCC was not the result of an increase in the FcR density on the cell surface or the result of an increase in the number of FcR+ cells although IL-1 increased the recovery of viable cells in culture. The main effect of IL-1 and TNF was the enhancement of the lytic ability of the IL-2 cultured cells as indicated by increased intra-cellular benzyloxycarbonyl L-lysine thiobenzylester-esterase activity. These results suggest that lymphokines such as IL-1 and TNF may synergize with IL-2 in the induction of ADCC and could thus potentially be useful for the immunotherapy of established tumors when combined with the administration of specific anti-tumor antibodies.  相似文献   

7.
Presented is a comprehensive program designed to isolate human cytokine genes and investigate their relative induction, and to analyze cytokine activities in cell culture, animal tumor models, and human clinical trials. Human cytokine cDNAs have been isolated from a cDNA library made from normal human peripheral blood leukocytes (PBLs) treated with Sendai virus and the relative induction of tumor necrosis factor (TNF), alpha and gamma interferons (IFN-alpha, IFN-gamma), and interleukin-1 beta IL-1 beta) genes has been analyzed. In the Sendai virus-induced PBL system, IL-1 beta mRNA was shown to be approximately twofold higher than TNF or IFN-alpha mRNA whereas IFN-gamma mRNA was 50-100-fold lower than TNF or IFN-alpha mRNA. The cytotoxic activity of TNF was analyzed on several cell lines and IFN-alpha and IFN-gamma were shown to potentiate TNF cytotoxicity about 2-200-fold depending on cell lines. The LD50 for recombinant TNF in BALB/c mice was determined to be 6 X 10(7) U/kg and the therapeutic dose of recombinant TNF in sarcoma 180 bearing BALB/c mice was 3 X 10(5) U/kg, indicating a wide therapetic index. Phase I clinical trials of recombinant TNF given I.V. indicated a tolerated dose of 150,000 U/kg with biphasic half-life (T-1/2) of 2 and 31 min following TNF injection. Phase II trials of TNF and trials of TNF combined with IFN-alpha are in progress. These studies indicate that cytokines such as TNF and IFN-alpha are subject to similar induction systems, potentiate each other's activities, and can be tolerated at specific doses for potential therapeutic use.  相似文献   

8.
The capacity of 12 cytokines to induce NO2- or H2O2 release from murine peritoneal macrophages was tested by using resident macrophages, or macrophages elicited with periodate, casein, or thioglycollate broth. Elevated H2O2 release in response to PMA was observed in resident macrophages after a 48-h incubation with IFN-gamma, TNF-alpha, TNF-beta, or CSF-GM. Of these, only IFN-gamma induced substantial NO2- secretion during the culture period. The cytokines inactive in both assays under the conditions tested were IL-1 beta, IL-2, IL-3, IL-4, IFN-alpha, IFN-beta, CSF-M, and transforming growth factor-beta 1. Incubation of macrophages with IFN-gamma for 48 h in the presence of LPS inhibited H2O2 production but augmented NO2- release, whereas incubation in the presence of the arginine analog NG-monomethylarginine inhibited NO2- release but not H2O2 production. Although neither TNF-alpha nor TNF-beta induced NO2- synthesis on its own, addition of either cytokine together with IFN-gamma increased macrophage NO2- production up to six-fold over that in macrophages treated with IFN-gamma alone. Moreover, IFN-alpha or IFN-beta in combination with LPS could also induce NO2- production in macrophages, as was previously reported for IFN-gamma plus LPS. These data suggest that: 1) tested as a sole agent, IFN-gamma was the only one of the 12 cytokines capable of inducing both NO2- and H2O2 release; 2) the pathways leading to secretion of H2O2 and NO2- are independent; 3) either IFN-gamma and TNF-alpha/beta or IFN-alpha/beta/gamma and LPS can interact synergistically to induce NO2- release.  相似文献   

9.
Ia expression is an important marker of macrophage functional capacity. IFN-gamma induces Ia expression on perhaps all murine macrophages, whereas IL-4, granulocyte-macrophage CSF, and CSF-1 induce Ia on restricted sets of macrophages. Inhibitors of expression include PGE2, glucocorticoids, and IFN-beta. TNF has been found to augment Ia expression on several macrophage lineage cell lines but to inhibit expression on murine peritoneal macrophages. Our study shows that TNF can have opposite effects on Ia expression (induced by IFN-gamma) on thioglycollate-elicited peritoneal macrophages, depending on the length of time cells are treated and on the presence of other modulators. In particular, TNF augmented early expression induced by IFN-gamma but inhibited later expression. And although TNF synergized with PGE2 to markedly inhibit Ia induction on these cells, it partially antagonized the inhibition by corticosterone and IFN-beta. TNF and PGE2 also synergized to inhibit Ia expression induced on bone marrow-derived and splenic macrophages by either IFN-gamma or IL-4. In contrast to their effect on Ia expression, TNF and PGE2 had opposite effects on expression of gamma 2a FcR in macrophages. TNF blocked the increase in FcR expression due to any combination of PGE2, IFN-gamma, and IFN-beta. However, TNF and PGE2 both increased expression of gamma 2a FcR on WEHI-3 cells. If the different effects of TNF reflect the differentiation states of macrophages, its effects on Ia and FcR expression may vary with the progression of an immune response.  相似文献   

10.
In this study, we examined the possible role of TNF-alpha and lymphotoxin (TNF-beta) as cofactors of macrophage activation. The results demonstrate that both TNF were capable of enhancing the cytostatic and cytolytic activity of murine peritoneal macrophages against Eb lymphoma cells. The potentiation of tumor cytotoxicity became apparent when macrophages from DBA/2 mice were suboptimally activated by either a T cell clone-derived macrophage-activating factor or by IFN-gamma plus LPS. Neither TNF-alpha nor TNF-beta could induce tumor cytotoxicity in IFN-gamma-primed macrophages, indicating that TNF cannot replace LPS as a triggering signal of activation. In LPS-resistant C3H/HeJ macrophages, which were unresponsive to IFN-gamma plus LPS, a supplementation with TNF fully restored activation to tumor cytotoxicity. Furthermore, TNF-alpha potentiated a variety of other functions in low-level activated macrophages such as a lactate production and release of cytotoxic factors. At the same time, TNF-alpha produced a further down-regulation of pinocytosis, tumor cell binding and RNA synthesis observed in activated macrophages. These data demonstrate new activities for both TNF-alpha and TNF-beta as helper factors that facilitate macrophage activation. In particular, the macrophage product TNF-alpha may serve as an autocrine signal to potentiate those macrophage functions that were insufficiently activated by lymphokines.  相似文献   

11.
By traditional definitions, NK cells can be activated by cytokines to exhibit two functionally distinct levels of cytotoxicity. Whereas IL-2-mediated activation of NK cells leads to the development of lymphokine-activated killer (LAK) cytotoxicity, characterized by the acquisition of cytolytic activity against NK-resistant targets, IFN-treated NK cells become activated without the acquisition of novel cytolytic specificities. In this study we show that NK cells activated by 18 to 24 h of stimulation with either IFN-alpha or IFN-gamma do acquire LAK cytolytic activity, demonstrated by the ability of IFN-treated PBMC to lyse NK-resistant COLO 205 cells as well as fresh tumor targets. The level of IFN-alpha-induced LAK activity was significantly greater than that induced by IFN-gamma, although IL-2-induced LAK activity was considerably greater than IFN-alpha-induced LAK cytotoxicity. Maximal IFN-induced LAK cytotoxicity occurred after 24 h of culture, and occurred with the use of IFN-alpha at 500 U/ml and IFN-gamma at 1000 U/ml. Whereas neutralizing antibody experiments demonstrated that IFN-alpha-induced LAK activation did not involve the participation of endogenously produced IL-2, the partial inhibition (63%) of IFN-gamma-induced LAK cytotoxicity by anti-IL-2 and of IL-2-induced LAK by anti-IFN-gamma (33.3%) indicates that the induction of LAK cytotoxicity by either of these individual cytokines involves the endogenous production and participation of the other cytokine. Similar to IL-2-induced LAK cells, phenotypic analysis revealed that IFN-alpha/gamma LAK cells were Leu-19+, although the Leu 19"dim"+ subset exhibited greater IFN-induced LAK activity than the Leu-19"bright"+ subset. The results of this study clearly demonstrate that IFN-alpha and IFN-gamma induce classic LAK activity and IFN-gamma plays a participatory role in the optimal induction of LAK cells by IL-2.  相似文献   

12.
Antibody-dependent cellular cytotoxicity (ADCC) to tumor targets was studied using murine resident peritoneal macrophages and a macrophage cell line RAW264.10A, both having low inherent cytolytic activity. The target was 125I-labeled pre-B lymphoma 18-8. Pretreatment of both macrophage populations with 0.5 – 2 μM concentrations of the microtubule-stabilizing drug taxol greatly increased their antibody-dependent cytotoxicity with no stimulation of nonspecific killing. Taxol present only during the 18-hr cytolytic assays had no effect on target killing. Optimal killing activity was obtained by treating macrophages 2 days with taxol, similar to previously described cytokine stimulation of ADCC. This concentration completely blocked growth of RAW264 cells. Other microtubule inhibitors, lidocaine and colchicine, also augmented peritoneal and cell line macrophage ADCC at cytostatic concentrations. In contrast, the microfilament-disrupting agent, cytochalasin B, caused little or no stimulation of ADCC. These results show that microtubule reformation is not necessary for the development of cytotoxicity. Since microtubule inhibitors block lysosomal discharge, they may stimulate macrophage ADCC by causing accumulation of toxic molecules involved in cytotoxicity.  相似文献   

13.
Macrophages exposed to lymphokines (LK) before exposure to parasites develop the capacity to resist infection with amastigotes of Leishmania major. Activity of LK for induction of this activated macrophage effector function is abrogated by depleting the LK of IFN-gamma, yet IFN-gamma is incapable of inducing the activity by itself. To identify the factors in LK that serve as second signals for induction of resistance to infection, we exposed macrophages to the following cytokines available as recombinant or highly purified reagents: CSF-1, granulocyte/macrophage colony-stimulating factor (GM-CSF), IL-1, -2, -3, -4, and -5, and IFN-alpha/beta. None of these factors induced resistance to infection by themselves or in combination with each other; in the presence of 50 U/ml IFN-gamma, three cytokines were active: GM-CSF, IL-2, and IL-4. IFN-gamma was an essential component of the activation cascade but was insufficient by itself to induce the effector reaction. Cytokines that act as cofactors with IFN-gamma worked directly on macrophages and not through another cell in the peritoneal cell (PC) cultures. Activation of PC depleted of Thy-1.2+ cells (85 +/- 5% macrophages) and bone marrow-derived macrophages (100% macrophages) showed that 50% maximal doses of GM-CSF, IL-2, and IL-4 for these macrophage-enriched populations were not different than for untreated PC. Unlike other effector reactions of activated macrophages, bacterial LPS did not synergistically enhance the activity of any of the cytokines, alone or in combination with IFN-gamma. Antibody depletion of the active cytokines from LK, singly or in combination, failed to alter the dose response of the active factors in whole LK for induction of resistance to infection. Thus, multiple factors can provide the second signal for IFN-gamma in the induction of resistance to infection, namely, GM-CSF, IL-2, IL-4, and at least two additional undefined factors in whole LK. Resistance to infection may be the first example of an activated macrophage effector reaction that has an absolute requirement for more than one endogenous signal for its induction.  相似文献   

14.
Cytokine-induced polypeptides were identified in whole cell lysates of human fibroblasts by computer-based analysis of two-dimensional gels with the use of the PDQuest System. Treatment with interferon-alpha (IFN-alpha) and interferon-gamma (IFN-gamma) enhanced the synthesis of 12 and 28 polypeptides, respectively. Exposure to interleukin 1 alpha (IL-1 alpha) or interleukin 1 beta (IL-1 beta) resulted in the increased synthesis of seven identical polypeptides. Treatment with tumor necrosis factor (TNF) at 100 U/ml led to enhanced expression of seven polypeptides, whereas exposure to TNF at 1000 U/ml increased the levels of these seven plus two additional polypeptides. The antiviral and antiproliferative effects of these cytokines in strain 153 fibroblasts were also assessed. Both IFN-alpha and IFN-gamma exhibited antiviral activity, whereas both IL-1 and TNF stimulated fibroblast growth. IFN-gamma was alone in inhibiting proliferation. Thus, although these cytokines exhibit low degrees of structural homology, they share some common functions, and a number of polypeptides were induced in common by two or more of these agents. The greatest similarities in polypeptide induction occur between IFN-alpha and IFN-gamma and between the IL-1s and TNF. However, polypeptides were also induced in common by IFN-alpha and TNF, IFN-gamma and IL-1, and IFN-gamma and TNF. These similarities in polypeptide induction may reflect the overlapping functions of these cytokines and may be indicative of common biochemical pathways in their mechanisms of action.  相似文献   

15.
We have previously established that IFN-gamma plus IL-2 induces murine macrophage tumoricidal activity. The purpose of this study was to identify the effector molecules that account for the IFN-gamma plus IL-2-induced macrophage cytotoxicity against P815 mastocytoma cells. ANA-1 macrophages and normal thioglycollate-elicited mouse peritoneal macrophages produced little or no detectable nitrite (NO2-) after incubation with IFN-gamma alone or IL-2 alone; however, IL-2 synergized with IFN-gamma for the production of NO2-. IFN-gamma plus IL-2 did not induce NO2- production or tumoricidal activity in ANA-1 macrophages that were cultured in medium devoid of L-arginine or in ANA-1 macrophages that were incubated with NG-monomethyl-L-arginine. As observed previously with ANA-1 macrophage tumoricidal activity, IL-4 inhibited IFN-gamma plus IL-2-induced, but not IFN-gamma plus LPS-induced, NO2- production. IL-4 also selectively decreased the ability of IFN-gamma and/or IL-2 to augment TNF-alpha mRNA expression in ANA-1 macrophages. Lastly, incubation of ANA-1 macrophages with anti-TNF mAb selectively inhibited the ability of IFN-gamma plus IL-2 to induce NO2- production and tumoricidal activity. These results indicate that IFN-gamma plus IL-2-induced tumoricidal activity is dependent upon the metabolism of L-arginine to reactive nitrogen intermediates, and they establish a role for TNF-alpha as a required intermediate for IL-2-dependent NO2- production and tumoricidal activity.  相似文献   

16.
Macrophage CSF (M-CSF, CSF-1) and IL-4 are two cytokines known to have effects on mature monocytic phagocytes in vitro. In this report we show that M-CSF and IL-4 activate resident mouse peritoneal macrophages to ingest particles via their C3b and C3bi receptors, which are not capable of mediating ingestion in resting cells. IgG-mediated ingestion was also increased by IL-4 and M-CSF. IL-1, IL-2, TNF-alpha, and IFN-gamma were not able to stimulate C receptor-mediated ingestion. Stimulation by IL-4 and M-CSF is dependent upon high cell density and greater than 24-h exposure to the cytokine. Interestingly, antibody to IFN-alpha/beta and mAb to IFN-beta inhibited the enhanced ingestion caused by both M-CSF and IL-4. However, neither IFN-alpha nor IFN-beta alone stimulated C receptor-mediated ingestion. M-CSF did not affect the ligand-independent distribution of CR3 on the macrophage surface. We conclude that two apparently unrelated cytokines, M-CSF and IL-4, both enhance macrophage phagocytosis of C and IgG-coated targets via a common pathway in which autocrine stimulation with IFN-alpha/beta is necessary but not sufficient.  相似文献   

17.
Trypanosoma cruzi: cytokine effects on macrophage trypanocidal activity   总被引:4,自引:0,他引:4  
Mouse macrophages infected with Trypanosoma cruzi in vitro may be activated to reduce parasite infection by interferon gamma (IFN-gamma). The addition of up to 10,000 units of IFN-gamma however, does not result in a 100% reduction of intracellular parasites. We, therefore, investigated the possibility that macrophages require an additional signal or signals to completely clear T. cruzi infection. Because the combination of IFN-gamma with lipopolysaccharide greatly enhanced macrophages ability to decrease the number of intracellular parasites, the interaction of IFN-gamma with tumor necrosis factor (TNF) was examined. TNF alone and the combination of TNF with IFN-gamma did not have a significant effect on reducing parasite numbers below that obtained with IFN-gamma alone. This was also true for lymphotoxin, a lymphokine similar to TNF in structure and function. The effect of IFN-gamma in combination with a cytokine-rich supernatant containing IL-2, IL-3, IL-4, IL-5, and IFN-gamma on macrophage clearance of the parasite was also examined. The cytokine-rich supernatant alone had no effect on reducing parasite infection of the macrophages; indeed, in some experiments the addition of the supernatant resulted in an increase in the level of parasite infection. However, 1000 units of IFN-gamma combined with the complex cytokine mixture caused a decrease in parasite infection of nearly 100% compared to that of control cultures treated with media alone. To determine which cytokine or cytokines in the supernatant were responsible for this synergistic activity, anti-cytokine antibodies were added to the supernatant prior to its addition with IFN-gamma to the cultures. Anti-IL-4 was the only antibody found to inhibit the synergism of IFN-gamma with the cytokine-rich supernatant. IL-4, however, did not significantly enhance the ability of IFN-gamma to induce macrophage clearance of the parasite, and IL-4 alone caused a slight increase in parasite infection in vitro. These results further define the role that cytokines play in T. cruzi infection of macrophages in vitro and suggest that the interaction of cytokine networks within this system is complex.  相似文献   

18.
In addition to the spectrum of biological action already known to be exhibited by acetylsalicylic acid (ASA) as an analgesic, anti-inflammatory and platelet aggregation inhibitor, there is growing evidence of a stimulatory effect on the immune system. ASA has been found to increase the production ofcytokines and to increase the activity of various leukocytes. The action of ASA on the activity of mouse peritoneal macrophages was therefore investigated in the present study. Therapeutically effective concentrations of ASA, which are known to decrease levels of prostaglandins, had neither a stimulating nor an inhibiting influence on antibody-dependent cellular cytotoxicity (ADCC) or on the binding capacity of macrophages with regard to SW 948 tumour cells. Likewise ASA had little or no adverse effect on the capacity of the macrophages for stimulation by interferon-gamma (IFN-gamma) and interleukin-4 (IL-4). Taken together, the immunostimulant effect of ASA shown in the literature as an increased production of interleukin-2 (IL-2) and IFN, could not be confirmed on the basis of the macrophage cytotoxiclty.  相似文献   

19.
Monocytes and macrophages play a significant role in host's defense system, since they produce a number of cytokines in response to microbial infections. We have studied IL-1 beta, IL-18, IFN-alpha/beta, and TNF-alpha gene expression and protein production in human primary monocytes and GM-CSF-differentiated macrophages during influenza A and Sendai virus infections. Virus-infected monocytes released only small amounts of IL-1 beta or IL-18 protein, whereas 7- and 14-day-old GM-CSF-differentiated macrophages readily produced these cytokines. Constitutive expression of proIL-18 was seen in monocytes and macrophages, and the expression of it was enhanced during monocyte/macrophage differentiation. Expression of IL-18 mRNA was clearly induced only by Sendai virus, whereas both influenza A and Sendai viruses induced IL-1 beta mRNA expression. Since caspase-1 is known to cleave proIL-1 beta and proIL-18 into their mature, active forms, we analyzed the effect of a specific caspase-1 inhibitor on virus-induced IL-1 beta and IL-18 production. The release of IL-1 beta and IL-18, but not that of IFN-alpha/beta or TNF-alpha, was clearly blocked by the inhibitor. Our results suggest that the cellular differentiation is a crucial factor that affects the capacity of monocytes/macrophages to produce IL-1 beta and IL-18 in response to virus infections. Furthermore, the virus-induced activation of caspase-1 is required for the efficient production of biologically active IL-1 beta and IL-18.  相似文献   

20.
T cell-derived cytokines IFN-gamma and IL-4 have different regulatory effects on two functionally important molecules on human monocytes: MHC class II Ag and the Fc receptor for monomeric IgG, Fc gamma RI (CD64). MHC class II Ag, and Fc gamma RI are both upregulated in the presence of IFN-gamma. IL-4 induces MHC class II Ag expression but reduces Fc gamma RI expression. Recently, we showed that the cytokine IL-10 also affects MHC class II Ag expression. Here, we demonstrate that in contrast to the down-regulation of MHC class II Ag expression, IL-10 stimulates Fc gamma RI expression on human monocytes comparable to the levels of Fc gamma RI expression induced by IFN-gamma. The IL-10-induced Fc gamma RI expression is specific because anti-IL-10 antibodies completely reverse the IL-10-induced surface expression of Fc gamma RI and correlate with an enhanced capacity to lyse anti-D-coated human rhesus-positive erythrocytes. IL-10 fails to induce the expression of Fc gamma RII (CD32) and Fc gamma RIII (CD16). Furthermore, we demonstrate that IL-10 is able to prevent down-regulation in surface membrane expression of all three Fc gamma R that can be found when monocytes are cultured in the presence of IL-4. In contrast to IFN-gamma, IL-10 does not restore the reduced antibody-dependent cellular cytotoxicity (ADCC) activity of IL-4-cultured monocytes. Together, these results show that, similar to IFN-gamma, IL-10 is capable of enhancing Fc gamma R expression and ADCC activity, and that IFN-gamma, IL-4, and IL-10 have different regulatory effects on both monocyte Ag-presenting capacity and ADCC activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号