首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals’ network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group‐level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes.  相似文献   

2.
Indirect genetic effects (IGEs), which occur when phenotypic expression in one individual is influenced by genes in another conspecific individual, may have a drastic effect on evolutionary response to selection. General evolutionary models of IGEs have been developed using two distinct theoretical frameworks derived from maternal effects theory. The first framework is trait-based and focuses on how phenotypes are influenced by specific traits in a social partner, with the strength of interactions defined by the matrix Ψ. The second framework partitions total genetic variance into components representing direct effects, indirect effects, and the covariance between them, without identifying specific social traits responsible for IGEs. The latter framework has been employed more commonly by empiricists because the methods for estimating variance components are relatively straightforward. Here, we show how these two theoretical frameworks are related to each other and derive equations that can be used to translate between them. This translation leads to a generalized method that can be used to estimate Ψ via standard quantitative genetic breeding designs or pedigrees from natural populations. This method can be used in a very general set of circumstances and is widely applicable to all IGEs, including maternal effects and other interactions among relatives.  相似文献   

3.
Organisms express phenotypic plasticity during social interactions. Interacting phenotype theory has explored the consequences of social plasticity for evolution, but it is unclear how this theory applies to complex social structures. We adapt interacting phenotype models to general social structures to explore how the number of social connections between individuals and preference for phenotypically similar social partners affect phenotypic variation and evolution. We derive an analytical model that ignores phenotypic feedback and use simulations to test the predictions of this model. We find that adapting previous models to more general social structures does not alter their general conclusions but generates insights into the effect of social plasticity and social structure on the maintenance of phenotypic variation and evolution. Contribution of indirect genetic effects to phenotypic variance is highest when interactions occur at intermediate densities and decrease at higher densities, when individuals approach interacting with all group members, homogenizing the social environment across individuals. However, evolutionary response to selection tends to increase at greater network densities as the effects of an individual's genes are amplified through increasing effects on other group members. Preferential associations among similar individuals (homophily) increase both phenotypic variance within groups and evolutionary response to selection. Our results represent a first step in relating social network structure to the expression of social plasticity and evolutionary responses to selection.  相似文献   

4.
One of the principal difficulties in assessing Science as aProcess (Hull 1988) is determining the relationship between the various elements of Hull's theory. In particular, it is hard to understand precisely how conceptual selection is related to Hull's account of the social dynamics of science. This essay aims to clarify the relation between these aspects of his theory by examining his discussion of the``demic structure' of science. I conclude that the social account cando significant explanatory work independently of the selectionistaccount. Further, I maintain that Hull's treatment of the demicstructure of science points us toward an important set of issues insocial epistemology. If my reading of Science as a Process iscorrect, then most of Hull's critics (e.g., those who focus solelyon his account of conceptual selection) have ignored promisingaspects of his theory.  相似文献   

5.
The equilibrium sequence diversity of genes within a population and the rate of sequence divergence between populations or species depends on a variety of factors, including expression pattern, mutation rate, nature of selection, random drift, and mating system. Here, we extend population genetic theory developed for maternal-effect genes to predict the equilibrium polymorphism within species and sequence divergence among species for genes with social effects on fitness. We show how the fitness effects of genes, mating system, and genetic system affect predicted gene polymorphism. We find that, because genes with indirect social effects on fitness effectively experience weaker selection, they are expected to harbor higher levels of polymorphism relative to genes with direct fitness effects. The relative increase in polymorphism is proportional to the inverse of the genetic relatedness between individuals expressing the gene and their social partners that experience the fitness effects of the gene. We find a similar pattern of more rapid divergence between populations or species for genes with indirect social effects relative to genes with direct effects. We focus our discussion on the social insects, organisms with diverse indirect genetic effects, mating and genetic systems, and we suggest specific examples for testing our predictions with emerging sociogenomic tools.  相似文献   

6.
When social interactions occur, the phenotype of an individual is influenced directly by its own genes (direct genetic effects) but also indirectly by genes expressed in social partners (indirect genetic effects). Social insect colonies are characterized by extensive behavioral interactions among workers, brood, and queens so that indirect genetic effects are particularly relevant. I used a series of experimental manipulations to disentangle the contribution of direct effects, maternal (queen) effects, and sibsocial (worker) effects to variation for worker, gyne, and male mass; caste ratio; and sex ratio in the ant Temnothorax curvispinosus. The results indicate genetic variance for direct, maternal, and sibsocial effects for all traits, except for male mass there was no significant maternal variance, and for sex ratio the variance for direct effects was not separable from maternal variance for the primary sex ratio. Estimates of genetic correlations between direct, maternal, and sibsocial effects were generally negative, indicating that these effects may not evolve independently. These results have broad implications for social insect evolution. For example, the genetic architecture underlying social insect traits may constrain the realization of evolutionary conflicts between social partners.  相似文献   

7.
Males and females do not always share the same evolutionary interests. This is particularly true in the case of multiple mating, where male–male competition can often lead to adaptations that are harmful to the female, and females can evolve counter adaptations to reduce the benefits males gain from such traits. Although social evolution has made substantial progress from kin selection theory, most studies of sexual conflict have ignored the effects of genetic relatedness. Here, I use a model of male harm and female resistance to investigate how kin selection affects the evolution of sexual conflict. Building on models of social evolution, I show that relatedness inhibits sexual conflict, in terms of male harm, whereas it has no effect on the evolution female resistance. This study examines a previously neglected mechanism that can potentially help to resolve sexual conflict over mating and highlights the potential importance of considering relatedness in empirical studies of sexual conflict.  相似文献   

8.
The evolution of group living requires that individuals limit the inherent risks of parasite infection. To this end, group living insects have developed a unique capability of mounting collective anti-parasite defences, such as allogrooming and corpse removal from the nest. Over the last 20 years, this phenomenon (called social immunity) was mostly studied in eusocial insects, with results emphasizing its importance in derived social systems. However, the role of social immunity in the early evolution of group living remains unclear. Here, I investigate this topic by first presenting the definitions of social immunity and discussing their applications across social systems. I then provide an up-to-date appraisal of the collective and individual mechanisms of social immunity described in eusocial insects and show that they have counterparts in non-eusocial species and even solitary species. Finally, I review evidence demonstrating that the increased risks of parasite infection in group living species may both decrease and increase the level of personal immunity, and discuss how the expression of social immunity could drive these opposite effects. By highlighting similarities and differences of social immunity across social systems, this review emphasizes the potential importance of this phenomenon in the early evolution of the multiple forms of group living in insects.  相似文献   

9.
Social behaviour is often described as altruistic, spiteful, selfish or mutually beneficial. These terms are appealing, but it has not always been clear how they are defined and what purpose they serve. Here, I show that the distinctions among them arise from the ways in which fitness is partitioned: none can be drawn when the fitness consequences of an action are wholly aggregated, but they manifest clearly when the consequences are partitioned into primary and secondary (neighbourhood) effects. I argue that the primary interaction is the principal source of adaptive design, because (i) it is this interaction that determines the fit of an adaptation and (ii) it is the actor and primary recipients whom an adaptation foremost affects. The categories of social action are thus instrumental to any account of evolved function.  相似文献   

10.
11.
The direct-fitness approach to modelling the evolution of social traits is an alternative to the classical inclusive-fitness-based approach. Despite both its utility and popularity, the direct-fitness approach has not yet been extended to include the analysis of dynamic traits, i.e. traits whose level of expression may vary over time. In this article, I apply the direct-fitness approach to cope with the evolution of a dynamic resource-allocation behaviour when this behaviour influences the fitness of relatives. I am able to implement the direct-fitness approach using components (reproductive value, fitness changes and measures of relatedness) found in standard, social-evolutionary models. I illustrate the modified direct-fitness model with an example studied by previous authors, and I show how the direct-fitness perspective can aid the validation of analytical results by means of a genetic algorithm.  相似文献   

12.
The validity and value of inclusive fitness theory   总被引:1,自引:0,他引:1  
Social evolution is a central topic in evolutionary biology, with the evolution of eusociality (societies with altruistic, non-reproductive helpers) representing a long-standing evolutionary conundrum. Recent critiques have questioned the validity of the leading theory for explaining social evolution and eusociality, namely inclusive fitness (kin selection) theory. I review recent and past literature to argue that these critiques do not succeed. Inclusive fitness theory has added fundamental insights to natural selection theory. These are the realization that selection on a gene for social behaviour depends on its effects on co-bearers, the explanation of social behaviours as unalike as altruism and selfishness using the same underlying parameters, and the explanation of within-group conflict in terms of non-coinciding inclusive fitness optima. A proposed alternative theory for eusocial evolution assumes mistakenly that workers' interests are subordinate to the queen's, contains no new elements and fails to make novel predictions. The haplodiploidy hypothesis has yet to be rigorously tested and positive relatedness within diploid eusocial societies supports inclusive fitness theory. The theory has made unique, falsifiable predictions that have been confirmed, and its evidence base is extensive and robust. Hence, inclusive fitness theory deserves to keep its position as the leading theory for social evolution.  相似文献   

13.
I describe an integrative social‐evolutionary model for the adaptive significance of the human oxytocinergic system. The model is based on a role for this hormone in the generation and maintenance of social familiarity and affiliation across five homologous, functionally similar, and sequentially co‐opted contexts: mothers with offspring, female and male mates, kin groups, individuals with reciprocity partners, and individuals within cooperating and competing social groups defined by culture. In each situation, oxytocin motivates, mediates and rewards the cognitive and behavioural processes that underlie the formation and dynamics of a more or less stable social group, and promotes a relationship between two or more individuals. Such relationships may be positive (eliciting neurological reward, reducing anxiety and thus indicating fitness‐enhancing effects), or negative (increasing anxiety and distress, and thus motivating attempts to alleviate a problematic, fitness‐reducing social situation). I also present evidence that testosterone exhibits opposite effects from oxytocin on diverse aspects of cognition and behaviour, most generally by favouring self‐oriented, asocial and antisocial behaviours. I apply this model for effects of oxytocin and testosterone to understanding human psychological disorders centrally involving social behaviour. Reduced oxytocin and higher testosterone levels have been associated with under‐developed social cognition, especially in autism. By contrast, some combination of oxytocin increased above normal levels, and lower testosterone, has been reported in a notable number of studies of schizophrenia, bipolar disorder and depression, and, in some cases, higher oxytocin involves maladaptively ‘hyper‐developed’ social cognition in these conditions. This pattern of findings suggests that human social cognition and behaviour are structured, in part, by joint and opposing effects of oxytocin and testosterone, and that extremes of such joint effects partially mediate risks and phenotypes of autism and psychotic‐affective conditions. These considerations have direct implications for the development of therapies for alleviating disorders of social cognition, and for understanding how such disorders are associated with the evolution of human cognitive‐affective architecture.  相似文献   

14.
The role of ecology in the evolution and maintenance of arthropod sociality has received increasing research attention in recent years. In some organisms, such as halictine bees, polistine wasps, and social spiders, researchers are investigating the environmental factors that may contribute to high levels of variation in the degree of sociality exhibited both among and within species. Within lineages that include only eusocial members, such as ants and termites, studies focus more on identifying extrinsic factors that may contribute to the dramatic variation in colony size, number of queens, and division of labour that is evident across these species. In this review, I propose a comparative approach that seeks to identify environmental factors that may have a common influence across such divergent social arthropod groups. I suggest that seeking common biogeographic patterns in the distribution of social systems or key social traits may help us to identify ecological factors that play a common role in shaping the evolution of sociality across different organisms. I first review previous studies of social gradients that form along latitudinal and altitudinal axes. Within families and within species, many organisms show an increasing degree of sociality at lower latitudes and altitudes. In a smaller number of cases, organisms form larger groups or found nests cooperatively at higher latitudes and altitudes. I then describe several environmental factors that vary consistently along such gradients, including climate variables and abundance of predators, and outline their proposed role in the social systems of terrestrial arthropods. Finally, I map distributions of a social trait against several climatic factors in five case studies to demonstrate how future comparative studies could inform empirical research.  相似文献   

15.
Understanding how multiple mutations interact to jointly impact multiple ecologically important traits is critical for creating a robust picture of organismal fitness and the process of adaptation. However, this is complicated by both environmental heterogeneity and the complexity of genotype‐to‐phenotype relationships generated by pleiotropy and epistasis. Moreover, little is known about how pleiotropic and epistatic relationships themselves change over evolutionary time. The soil bacterium Myxococcus xanthus employs several distinct social traits across a range of environments. Here, we use an experimental lineage of M. xanthus that evolved a novel form of social motility to address how interactions between epistasis and pleiotropy evolve. Specifically, we test how mutations accumulated during selection on soft agar pleiotropically affect several other social traits (hard agar motility, predation and spore production). Relationships between changes in swarming rate in the selective environment and the four other traits varied greatly over time in both direction and magnitude, both across timescales of the entire evolutionary lineage and individual evolutionary time steps. We also tested how a previously defined epistatic interaction is pleiotropically expressed across these traits. We found that phenotypic effects of this epistatic interaction were highly correlated between soft and hard agar motility, but were uncorrelated between soft agar motility and predation, and inversely correlated between soft agar motility and spore production. Our results show that ‘epistatic pleiotropy’ varied greatly in magnitude, and often even in sign, across traits and over time, highlighting the necessity of simultaneously considering the interacting complexities of pleiotropy and epistasis when studying the process of adaptation.  相似文献   

16.
Most of the theory for the evolution of caste specialization in social insects assumes that increased efficiency in worker labor leads to specialization and increased worker efficiency gives colonies with behavioral specialists an advantage. However, there are an increasing number of studies that show that the task specialists within social insect colonies do not have the highest efficiency. Indeed, some studies show that some groups of workers are uniformly better than all other groups at every task. In this note, I adapt the principle of comparative advantage from economics to show that, rather than maximizing the payoff, specialization is advantageous when minimizing opportunity costs. This leads to the prediction that caste specialization should be associated with reduced opportunity costs rather than increased task efficiency.  相似文献   

17.
A challenge for evolutionary theory is to understand how cooperation can occur in the presence of competition and cheating, a problem known as the tragedy of commons. Here I examine how varying the fitness returns from reproductive competition or cooperation affects the negative impact of competition on a social group. Varying linear returns does not affect the impact of competition. However, diminishing returns, where additional investments in either competition or cooperation give smaller and smaller rewards, reduce the effects of competition on the group. I show that diminishing returns are common in many systems, including social vertebrates, microbes, social insects and mutualisms among species. This suggests that the tragedy of the commons is not so tragic and that the disruptive effects of competition upon social life will often be minor.  相似文献   

18.
New social media have become indispensable to people all over the world as platforms for communication, with Facebook being the most popular. Hence, platforms such as Facebook are also becoming crucial tools for ethnographers because much social life now exists ‘online’. What types of field relations stem from such social media-driven ethnography? And what kinds of data do these relations present to the ethnographer? These questions must be considered in order to understand the challenges Facebook and other social media pose to ethnographic methodology. This article focuses on how Facebook may play an important role even in ethnographic work concerned with questions other than how Facebook works as a social medium. Most importantly it allows the ethnographer to keep up-to-date with the field. I argue that ethnography is already in possession of the methodological tools critically to assess the validity and value of data gathered or produced via Facebook including issues such as authenticity which are also pertinent to digital ethnography.  相似文献   

19.
Social interactions help group-living organisms cope with socio-environmental challenges and are central to survival and reproductive success. Recent research has shown that social behaviour and relationships can change across the lifespan, a phenomenon referred to as ‘social ageing’. Given the importance of social integration for health and well-being, age-dependent changes in social behaviour can modulate how fitness changes with age and may be an important source of unexplained variation in individual patterns of senescence. However, integrating social behaviour into ageing research requires a deeper understanding of the causes and consequences of age-based changes in social behaviour. Here, we provide an overview of the drivers of late-life changes in sociality. We suggest that explanations for social ageing can be categorized into three groups: changes in sociality that (a) occur as a result of senescence; (b) result from adaptations to ameliorate the negative effects of senescence; and/or (c) result from positive effects of age and demographic changes. Quantifying the relative contribution of these processes to late-life changes in sociality will allow us to move towards a more holistic understanding of how and why these patterns emerge and will provide important insights into the potential for social ageing to delay or accelerate other patterns of senescence.  相似文献   

20.
This paper is about the evolution of hominin intelligence. I agree with defenders of the social intelligence hypothesis in thinking that externalist models of hominin intelligence are not plausible: such models cannot explain the unique cognition and cooperation explosion in our lineage, for changes in the external environment (e.g. increasing environmental unpredictability) affect many lineages. Both the social intelligence hypothesis and the social intelligence-ecological complexity hybrid I outline here are niche construction models. Hominin evolution is hominin response to selective environments that earlier hominins have made. In contrast to social intelligence models, I argue that hominins have both created and responded to a unique foraging mode; a mode that is both social in itself and which has further effects on hominin social environments. In contrast to some social intelligence models, on this view, hominin encounters with their ecological environments continue to have profound selective effects. However, though the ecological environment selects, it does not select on its own. Accidents and their consequences, differential success and failure, result from the combination of the ecological environment an agent faces and the social features that enhance some opportunities and suppress others and that exacerbate some dangers and lessen others. Individuals do not face the ecological filters on their environment alone, but with others, and with the technology, information and misinformation that their social world provides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号