首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examined the heat loss response of heat-acclimated rats to direct body heating with an intraperitoneal heater or to indirect warming by elevating the ambient temperature (Ta). The heat acclimation of the rats was attained through exposure to Ta of 33 or 36 degrees C for 5 h daily during 15 consecutive days. Control rats were kept at Ta of 24 degrees C for the same acclimation period. Heat acclimation lowered the body core temperature at Ta of 24 degrees C, and the core temperature level was lowered as acclimation temperature increased. When heat was applied by direct body heating, the threshold hypothalamic temperature (Thy) for the tail skin vasodilation was also lower in heat-acclimated rats than in the control rats. However, the amount of increase in Thy from the resting level to the threshold was the same in all three groups. When heat was applied by indirect warming, threshold Thy was slightly higher in heat-acclimated than in control rats. The amount of increase in Thy from the resting level to the threshold was significantly greater in heat-acclimated rats. In addition, Ta and the skin temperature at the onset of skin vasodilation were significantly higher in heat-acclimated rats. The results indicate that heat-acclimated rats were less sensitive to the increase in skin temperature in terms of threshold Thy. The gain constant of nonevaporative heat loss response was assessed by plotting total thermal conductance against Thy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Thermoregulatory responses to an acute heat load with intraperitoneal heating (IH) or indirect external warming (EW) by increasing ambient temperature (Ta) were investigated with direct and indirect calorimetry in rats acclimated to environments of 24.0 degrees C (Cn), 29.4 degrees C (H1), and 32.8 degrees C (H2) for greater than 15 days. The rats were placed in a direct calorimeter where the air temperature was maintained at 24 degrees C for the initial 3 h. IH was then made for 30 min through an electric heater implanted chronically (6.5 W.kg-1) in the peritoneal cavity, and EW was performed by raising the jacket water temperature surrounding the calorimeter from 24 to 39 degrees C (0.19 degrees C.min-1). Hypothalamic (Thy) and colonic temperature immediately before the start of the heat load tended to be higher as the acclimation temperature increased. During IH, the threshold Thy for the tail skin vasodilation (Tth) was significantly higher in H2 than in Cn rats. During EW, however, there was no difference in Tth between the groups. Metabolic heat production (M) was slightly suppressed during IH and significantly depressed only in H2 rats. During EW, M was suppressed in all the groups. The magnitude and duration of suppression were greater in H2 rats than in the other two groups. The responses in nonevaporative heat loss and thermal conductance (C) to the rise in Thy did not differ among the three groups during IH. According to the rise in Thy, however, there was a greater C increase in H2 than in Cn and H1 rats during EW.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Eleven rats were kept at an ambient temperature of 33.5 degrees C (HC) for 4-5 consecutive days, 9 additional rats were subjected to 33.5 degrees C for approximately 5 h daily (HI) for the same period, and 12 controls (Cn) were kept at 24 degrees C. After the exposure, the rats were placed in a direct calorimeter, where the wall temperature was set at 24 degrees C, and subjected to direct internal heating (6.2 W.kg-1, 30 min) through an intraperitoneal electric heater. After the first heat load and when thermal equilibrium had been attained again, the rats were subjected to indirect external warming by raising the jacket water temperature surrounding the calorimeter from 24.0 to 38.8 degrees C in 90 min. Hypothalamic (Thy) and colonic temperatures (Tco), evaporative and nonevaporative heat loss, and metabolic heat production (M) before the acute heat loads did not differ among the groups. During heat loads, the latent times for the onsets of the rises in tail skin temperature and evaporation were significantly longer, and Thy and Tco at the start of increases in heat losses tended to be higher, in the HC than in the Cn. M significantly decreased in all groups, but the magnitude and duration of reduction in M were significantly greater in the HC than in the Cn. There were no differences between the thermoregulatory responses to heat loads of the HI and Cn. These results suggest that in HC the threshold core temperature for heat loss response and the upper critical temperature have already shifted to a higher level and that HC respond to heat stress more strongly with the reduction of M than Cn. Short-term intermittent heat exposure had little effect on the thermoregulatory mechanisms in rats.  相似文献   

4.
We tested the hypothesis that local sweat rates would not display a systematic postadaptation redistribution toward the limbs after humid heat acclimation. Eleven nonadapted males were acclimated over 3 wk (16 exposures), cycling 90 min/day, 6 days/wk (40 degrees C, 60% relative humidity), using the controlled-hyperthermia acclimation technique, in which work rate was modified to achieve and maintain a target core temperature (38.5 degrees C). Local sudomotor adaptation (forehead, chest, scapula, forearm, thigh) and onset thresholds were studied during constant work intensity heat stress tests (39.8 degrees C, 59.2% relative humidity) conducted on days 1, 8, and 22 of acclimation. The mean body temperature (Tb) at which sweating commenced (threshold) was reduced on days 8 and 22 (P < 0.05), and these displacements paralleled the resting thermoneutral Tb shift, such that the Tb change to elicit sweating remained constant from days 1 to 22. Whole body sweat rate increased significantly from 0.87 +/- 0.06 l/h on day 1 to 1.09 +/- 0.08 and 1.16 +/- 0.11 l/h on days 8 and 22, respectively. However, not all skin regions exhibited equivalent relative sweat rate elevations from day 1 to day 22. The relative increase in forearm sweat rate (117 +/- 31%) exceeded that at the forehead (47 +/- 18%; P < 0.05) and thigh (42 +/- 16%; P < 0.05), while the chest sweat rate elevation (106 +/- 29%) also exceeded the thigh (P < 0.05). Two unique postacclimation observations arose from this project. First, reduced sweat thresholds appeared to be primarily related to a lower resting Tb, and more dependent on Tb change. Second, our data did not support the hypothesis of a generalized and preferential trunk-to-limb sweat redistribution after heat acclimation.  相似文献   

5.
In the present study, to test the hypothesis that exercise-heat acclimation increases orthostatic tolerance via the improvement of cardiac baroreflex control in heated humans, we examined cardiac baroreflex and thermoregulatory responses, including cutaneous vasomotor and sudomotor responses, during whole body heating before and after a 6-day exercise-heat acclimation program [4 bouts of 20-min exercise at 50% peak rate of oxygen uptake separated by 10-min rest in the heat (36 degrees C; 50% relative humidity)]. Ten healthy young volunteers participated in the study. On the test days before and after the heat acclimation program, subjects underwent whole body heat stress produced by a hot water-perfused suit during supine rest for 45 min and 75 degrees head-up tilt (HUT) for 6 min. The sensitivity of the arterial baroreflex control of heart rate (HR) was calculated from the spontaneous changes in beat-to-beat arterial pressure and HR. The HUT induced a presyncopal sign in seven subjects in the preacclimation test and in six subjects in the postacclimation test, and the tilting time did not differ significantly between the pre- (241 +/- 33 s) and postacclimation (283 +/- 24 s) tests. Heat acclimation did not change the slope in the HR-esophageal temperature (Tes) relation and the cardiac baroreflex sensitivity during heating. Heat acclimation decreased (P < 0.05) the Tes thresholds for cutaneous vasodilation in the forearm and dorsal hand and for sweating in the forearm and chest. These findings suggest that short-term heat acclimation does not alter the spontaneous baroreflex control of HR during heat stress, although it induces adaptive change of the heat dissipation response in nonglabrous skin.  相似文献   

6.
It has been reported that scores from a temperate-environment step test describe the heat-tolerance status of prior heatstroke patients (HP). This investigation evaluated the ability of this temperate-environment heat-tolerance test (HTT) to indicate altered heart rate (HR) and rectal temperature (Tre) responses of HP, after 7 days of heat acclimation. On day 1, ten male HP (61 +/- 7 days post-heatstroke) and five control subjects (C) bench-stepped (0.30 m high, 27 steps.min-1) for 15 min (25.8 degrees C dry bulb, 16.2 degrees C wet bulb). On days 2-8, subjects underwent heat acclimation (40.1 degrees C dry bulb, 23.8 degrees C wet bulb; treadmill, 90 min.day-1). Heat acclimation resulted in significant decreases in final HR (152 +/- 5 vs 130 +/- 3 beats.min-1, P less than 0.025) and final Tre (38.62 +/- 0.11 vs 38.13 +/- 0.07 degrees C, p less than 0.01) in HP. One HP but no C was defined heat intolerant, exhibiting inability to adapt to daily exercise in the heat. On day 9, HP repeated HTT, exactly as performed on day 1; mean group HTT scores did not change (day 1 = 39 +/- 6; day 9 = 48 +/- 6, P greater than 0.05). All physical characteristics and physiological responses of HP (days 1, 2, 7, 9) were statistically similar (P greater than 0.05) to those of C. In contrast to heat-acclimation data, HTT scores (score less than or equal to 30) indicated that four HP were heat intolerant on day 1 and two HP were heat intolerant on day 9.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A temperate environment heat tolerance test (HTT) was formerly reported (Shvartz et al. 1977b) to distinguish heat acclimatized humans from former heat stroke patients. The purpose of this investigation was to evaluate the ability of HTT to measure acute individual changes in the HR and Tre responses of normal subjects, induced by classical heat acclimation procedures, thereby assessing the utility and sensitivity of HTT as a heat tolerance screening procedure. On day 1, 14 healthy males performed HTT (23.2 +/- 0.5 degrees C db, 14.9 +/- 0.5 degrees C wb) by bench stepping (30 cm high, 27 steps x min-1) for 15 min at 67 +/- 3% VO2max. On days 2-9, all subjects underwent heat acclimation (41.2 +/- 0.3 degrees C db, 28.4 +/- 0.3 degrees C wb) via treadmill exercise. Heat acclimation trials (identical on days 2 and 9) resulted in significant decreases in HR (170 +/- 3 vs 144 +/- 5 beats x min-1), Tre (39.21 +/- 0.09 vs 38.56 +/- 0.17 degrees C), and ratings of perceived exertion; plasma volume expanded 5.2 +/- 1.7%. On day 10, subjects repeated HTT; day 1 vs day 10 HR were statistically similar (143 +/- 6 vs 137 +/- 6 beats x min-1, p greater than 0.05) but Tre decreased significantly (37.7 +/- 0.1 vs 37.5 +/- 0.1 degrees C, p less than 0.05). Group mean HTT composite score (day 1 vs day 10) was unchanged (63 +/- 5 vs 72 +/- 6, p greater than 0.05), and individual composite scores indicated that HTT did not accurately measure HR and Tre trends at 41.2 +/- degrees C in 6 out of 14 subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Effects of hypoxia and cold acclimation on thermoregulation in the rat.   总被引:1,自引:0,他引:1  
The effects of hypoxia (inspired O2 fraction = 0.12) on thermoregulation and on the different sources of thermogenesis were studied in rats before and after periods of 1-4 wk of cold acclimation. Measurements of metabolic rate (VO2) and body temperature (Tb) were made at 5-min intervals, and shivering activity was recorded continuously in groups of rats subjected to three protocols. In protocol 1, rats were exposed to normoxia to an ambient temperature (Ta) of 5 degrees C for 2 h. In protocol 2, at Ta of 5 degrees C, rats were exposed for 30 min to normoxia, then for 45 min to hypoxia, and finally for 30 min to normoxia. In protocol 3, in the non-cold-acclimated (NCA) rats, Ta was decreased from 30 to 5 degrees C in steps of 5 degrees C and of 30-min duration while in cold-acclimated (CA) rats at 5 degrees C for 4-wk, Ta was increased from 5 to 30 degrees C in steps of 5 degrees C and of 30-min duration. Recordings were made in normoxia and in hypoxia on different days in the same animals. The results showed that 1) in NCA rats, cold exposure in normoxia induced increases in VO2 and shivering that were proportional to the decrease in Ta; 2) in CA rats in normoxia, for a given Ta, VO2 and Tb were higher than in NCA rats, whereas shivering was generally lower; and 3) in both NCA and CA rats, hypoxia induced a transient decrease in shivering and a sustained decrease in nonshivering thermogenesis associated with a marked decrease in Tb that was about the same in NCA and CA rats. We speculate that hypoxia acts on Tb control to produce a general inhibition of thermogenesis. Nonshivering thermogenesis is markedly sensitive to hypoxia, especially demonstrable in CA rats; a recovery or even an increase in shivering can compensate for the decrease in nonshivering thermogenesis.  相似文献   

9.
This study was designed to determine the changes that occur in the thermoregulatory ability of the immature rat repeatedly exposed to low-level microwave radiation. Beginning at 6-7 days of age, previously untreated rats were exposed to 2,450-MHz continuous-wave microwaves at a power density of 5 mW/cm2 for 10 days (4 h/day). Microwave and sham (control) exposures were conducted at ambient temperatures (Ta) which represent different levels of cold stress for the immature rat (ie, "exposure" Ta = 20 and 30 degrees C). Physiological tests were conducted at 5-6 and 16-17 days of age, in the absence of microwaves, to determine pre- and postexposure responses, respectively. Measurements of metabolic rate, colonic temperature, and tail skin temperature were made at "test" Ta = 25.0, 30.0, 32.5, and 35.0 degrees C. Mean growth rates were lower for rats exposed to Ta = 20 degrees C than for those exposed to Ta = 30 degrees C, but microwave exposure exerted no effect at either exposure Ta. Metabolic rates and body temperatures of all exposure groups were similar to values for untreated animals at test Ta of 32.5 degrees C and 35.0 degrees C. Colonic temperatures of rats repeatedly exposed to sham or microwave conditions at exposure Ta = 20 degrees C or to sham conditions at exposure Ta = 30 degrees C were approximately 1 degrees C below the level for untreated animals at test Ta of 25.0 degrees C and 30.0 degrees C. However, when the exposure Ta was warmer, rats exhibited a higher colonic temperature at these cold test Ta, indicating that the effectiveness of low-level microwave treatment to alter thermoregulatory responses depends on the magnitude of the cold stress.  相似文献   

10.
1. Adaptation of salivary cooling mechanism during acclimation to heat (34 degrees C) and its role in thermoregulation of the rats was studied on conscious rats with either one submaxillary gland chronically cannulated or both submaxillaries ligated. 2. During heat stress (40 degrees C) acclimated rats showed a decrease both in rectal temperature threshold for salivation (Tre-TS), in salivary flow rate and in Tre (hyperthermic plateau). Animals survived for extended periods and rats with ligated glands survived 40% less than non-ligated rats. 3. For both cannulated and ligated rats short term acclimation (5 days) was the most effective. 4. It is suggested that earlier activation of salivation mechanism is associated with the decreased hyperthermic plateau and that the decreased salivary flow rate allows better control of water balance of the animals. Consequently, survival period during heat stress is extended.  相似文献   

11.
Exposure to low ambient temperatures (Ta) accelerates appearance of the winter phenotype in Siberian hamsters transferred from long to short day lengths. Because melatonin transduces the effects of day length on the neuroendocrine axis, the authors assessed whether low Ta promotes the transition to winterlike traits by accelerating the onset of increased nocturnal melatonin secretion or by enhancing responsiveness to melatonin in short day lengths. Male hamsters were transferred from 16L (16 h light/day) to 8L (8 h light/day) photoperiods and held at 5 degrees C or 22 degrees C. Locomotor activity was recorded continuously, and body mass, testis size, and pelage color were determined biweekly for 8 weeks. The duration of nocturnal locomotion (alpha), a reliable indicator of the duration of nocturnal melatonin secretion, lengthened significantly earlier in hamsters exposed to a Ta of 5 degrees C than 22 degrees C. Cold exposure increased the proportion of hamsters that were photoresponsive: gonadal regression in short days increased from 44% at 22 degrees C to 81% at 5 degrees C (p < 0.05); low Ta did not, however, accelerate testicular regression in animals that were photoresponsive. Nonphotoresponsive animals at 5 degrees C temporarily had longer alphas during the first 4 weeks in short days and significant decreases in body mass and testicular size that were reversed during the ensuing weeks when alpha decreased. In a 2nd experiment, pinealectomized male hamsters infused for 10 h/day with melatonin for 2 weeks had significantly lower body and testes masses when maintained at 5 degrees C but not 22 degrees C. Low-ambient temperature appears to accelerate the appearance of the winter phenotype primarily by increasing target tissue responsiveness to melatonin and to a lesser extent by augmenting the rate at which the duration of nocturnal melatonin secretion increases in short day lengths.  相似文献   

12.
The effects of repeated cold water immersion on thermoregulatory responses to cold air were studied in seven males. A cold air stress test (CAST) was performed before and after completion of an acclimation program consisting of daily 90-min cold (18 degrees C) water immersion, repeated 5 times/wk for 5 consecutive wk. The CAST consisted of resting 30 min in a comfortable [24 degrees C, 30% relative humidity (rh)] environment followed by 90 min in cold (5 degrees C, 30% rh) air. Pre- and postacclimation, metabolism (M) increased (P less than 0.01) by 85% during the first 10 min of CAST and thereafter rose slowly. After acclimation, M was lower (P less than 0.02) at 10 min of CAST compared with before, but by 30 min M was the same. Therefore, shivering onset may have been delayed following acclimation. After acclimation, rectal temperature (Tre) was lower (P less than 0.01) before and during CAST, and the drop in Tre during CAST was greater (P less than 0.01) than before. Mean weighted skin temperature (Tsk) was lower (P less than 0.01) following acclimation than before, and acclimation resulted in a larger (P less than 0.02) Tre-to-Tsk gradient. Plasma norepinephrine increased during both CAST (P less than 0.002), but the increase was larger (P less than 0.004) following acclimation. These findings suggest that repeated cold water immersion stimulates development of true cold acclimation in humans as opposed to habituation. The cold acclimation produced appears to be of the insulative type.  相似文献   

13.
Thermoregulatory capacities of 51 reindeer calves (Rangifer tarandus tarandus L.) aged 1-35 days were studied at -26.5 to +35.0 degrees C ambient temperatures at Kaamanen reindeer research station, Finland (69 degrees 10' N) during calving periods in May 1981 and May-July 1982. The newborn calves aged 1-4 days maintained a high body temperature (Tre) (mean +40.2 degrees C) even at the lowest experimental temperature of -22.5 degrees C by increasing their metabolic rate five-fold above the level at +11.0 degrees C. Heat production of the new-born calves was largely based on the metabolism of brown adipose tissue, stimulated by cold-induced discharge of the sympathetic nervous transmitter, noradrenaline (NA). Sensitivity of the calves to exogenous NA disappeared during the first 3-4 weeks of life. Thermal conductance of the calves was low at low ambient temperatures, but rose strongly as Ta increased above +10 degrees C. The extensive peripheral cooling, especially in the feet, was demonstrated in the calves aged 1-10 days. The lowest foot temperature (+10.5 degrees C) was measured in a 4-day-old calf at -14.5 degrees C. Slight shivering thermogenesis was recorded in the calves aged 1-4 days and occasionally in the older calves at low values of Ta. Shivering appears to be a reserve mechanism against severe cold. At about +20 degrees C and above the calves increased their Tre (approximately 1 degree C), oxygen consumption and heart rate. In the newborn calves oxygen consumption rose four- to five-fold and in 1-month-old calves about two-fold. Fast growing calves (maximum 400 g/day) appear to be more stressed by heat than by cold exposure.  相似文献   

14.
This study investigates the effects of a short-term aerobic training program in a hot environment on thermoregulation, blood parameters, sweat secretion and composition in tropic-dwellers who have been exposed to passive heat. Sixteen healthy Malaysian-Malay male volunteers underwent heat acclimation (HA) by exercising on a bicycle ergometer at 60% of VO2max for 60 min each day in a hot environment (Ta: 31.1+/-0.1 degrees C, rh: 70.0+/-4.4%) for 14 days. All parameters mentioned above were recorded on Day 1 and at the end of HA (Day 16). On these two days, subjects rested for 10 min, then cycled at 60% of VO2max for 60 min and rested again for 20 min (recovery) in an improvised heat chamber. Rectal temperature (Tre), mean skin temperature (Tsk) heart rate (HR), ratings of perceived exertion (RPE), thermal sensation (TS), local sweat rate and percent dehydration were recorded during the test. Sweat concentration was analysed for sodium [Na+]sweat and potassium. Blood samples were analysed for biochemical changes, electrolytes and hematologic indices. Urine samples were collected before and after each test and analysed for electrolytes.After the period of acclimation the percent dehydration during exercise significantly increased from 1.77+/-0.09% (Day 1) to 2.14+/-0.07% (Day 16). Resting levels of hemoglobin, hematocrit and red blood cells decreased significantly while [Na+]sweat increased significantly. For Tre and Tsk there were no differences at rest. Tre, HR, RPE, TS, plasma lactate concentration, hemoglobin and hematocrit at the 40th min of exercise were significantly lower after the period of acclimation but mean corpuscular hemoglobin and serum osmolality were significantly higher while no difference was seen in [Na+]sweat and Tsk. It can be concluded that tropic-dwelling subjects, although exposed to prolonged passive heat exposure, were not fully heat acclimatized. To achieve further HA, they should gradually expose themselves to exercise-heat stress in a hot environment.  相似文献   

15.
Neonatally-induced thermotolerance: physiological responses   总被引:2,自引:0,他引:2  
1. Broiler cockerels exposed to neonatal heat (35-37.8 degrees C for 24 hr) at 5 days of age experienced significantly lower mortality upon exposure to elevated temperatures (35-37.8 degrees C) at 43 days of age than did cockerels not given neonatal heat exposure. 2. No differences were found between neonatally stressed and neonatal control groups in water consumption, core and surface temperature, plasma T3 and T4, protein or glucose concentration when exposed to juvenile heat stress. 3. Heterophil to lymphocyte ratios were significantly lower in the neonatally stressed than in the neonatal control group when exposed to heat at 44 days of age. 4. The results indicate that lower mortality during periods of high environmental temperature in the neonatally stressed chicks may involve homeostatic mechanisms different from those utilized during acclimation to high environmental temperature.  相似文献   

16.
A physiological strain index (PSI) based on heart rate (HR) and rectal temperature (Tre) was recently suggested to evaluate exercise-heat stress in humans. The purpose of this study was to adjust PSI for rats and to evaluate this index at different levels of heat acclimation and training. The corrections of HR and Tre to modify the index for rats are as follows: PSI = 5 (Tre t - Tre 0). (41.5 - Tre 0)-1 + 5 (HRt - HR0). (550 - HR0)-1, where HRt and Tre t are simultaneous measurements taken at any time during the exposure and HR0 and Tre 0 are the initial measurements. The adjusted PSI was applied to five groups (n = 11-14 per group) of acclimated rats (control and 2, 5, 10, and 30 days) exposed for 70 min to a hot climate [40 degrees C, 20% relative humidity (RH)]. A separate database representing two groups of acclimated or trained rats was also used and involved 20 min of low-intensity exercise (O2 consumption approximately 50 ml. min-1. kg-1) at three different climates: normothermic (24 degrees C, 40% RH), hot-wet (35 degrees C, 70% RH), and hot-dry (40 degrees C, 20% RH). In normothermia, rats also performed moderate exercise (O2 consumption approximately 60 ml. min-1. kg-1). The adjusted PSI differentiated among acclimation levels and significantly discriminated among all exposures during low-intensity exercise (P < 0.05). Furthermore, this index was able to assess the individual roles played by heat acclimation and exercise training.  相似文献   

17.
Two series of experiments were performed in physically untrained subjects. In series A (heat adaptation, HA), seven male subjects were adapted to dry heat (five consecutive days at 55 degrees C ambient air temperature (Ta) for 1 h X day-1) under resting conditions. Before and after HA, the subjects' shivering responses were determined in a cold test (Ta + 10 to 0 degrees C). In series B, eight male subjects underwent mild exercise training (five consecutive days at a heart rate, HR, of 120 b X min-1) under Ta conditions individually adjusted (Ta + 15 to +5 degrees C) to prevent both sweating and cold sensations. Before and after "sweatless training", the subjects were subjected to a combined cold and heat test. During HA the thresholds for shivering, cutaneous vasodilatation (thumb and forearm) and sweating were shifted significantly (p less than 0.05) towards lower mean body temperatures (Tb). The mean decrease in threshold Tb was 0.36 degrees C. "Sweatless training" resulted in a mean increase in work rate (at HR 120 b X min-1) and oxygen pulse of 13 and 8%, respectively. However, "sweatless training" did not change the threshold Tb for shivering or sweating. Neither HA nor "sweatless training" changed the slopes of the relationships of shivering and sweating to Tb. It is concluded that the previously reported lowering of shivering and sweating threshold Tb in long-distance runners is not due to an increased fitness level, but is essentially identical with HA. The decreased shivering threshold following HA is interpreted as "cross adaptation" produced by the stressors cold and heat.  相似文献   

18.
This investigation was designed to determine the relationship between the levels of plasma aldosterone and eccrine sweat gland sodium excretion following exercise and heat acclimation. Ten subjects exercised at 45% of their maximal O2 uptake in a hot (40 degrees C), moderately humid (45% relative humidity) environment for 2 h/day on ten consecutive days. Acclimation was verified by significant reductions in exercise heart rate, rectal temperature, and heat storage, as well as significant elevation of resting plasma volume (12%, P less than 0.05) and exercise sweat rate on day 10 compared with day 1 of acclimation. During exercise, the concentration and total content of sodium in sweat as well as plasma aldosterone were significantly decreased from day 1 to day 10. The ratio of sweat sodium reabsorbed to plasma aldosterone concentration was significantly increased from day 1 to day 10 after both 1 and 2 h of exercise. These data indicate that plasma aldosterone concentrations decrease following heat acclimation; and eccrine gland responsiveness to aldosterone, as represented by sweat sodium reabsorption, may be augumented through exercise and heat acclimation.  相似文献   

19.
1. Plasma albumin synthesis was measured in rats and sand rats (Psammomys obesus) during heat acclimation (34 degrees C) and following thermal dehydration (37 degrees C) using 3H 1-leucine as a tracer. 2. In rats, heat acclimation resulted in 48% reduction in albumin synthesis. In sand rats synthesis increased by 160%. Both species achieved a new stabilization of the albumin synthetic system on the 5th day of acclimation. 3. Following thermal dehydration albumin synthesis increased in rats and decreased in sand rats. Acclimation did not alter this response. 4. In our dehydrating system plasma volume was maintained via maintenance of adequate albumin mass. In rats, albumin synthesis apparently contributes to this process. In sand rat, vascular permeability rather than albumin synthesis plays this role.  相似文献   

20.
Heat acclimation (HA) results in whole body adaptations that increase heat tolerance, and in addition, HA may also result in protective cellular adaptations. We hypothesized that, after HA, basal intracellular heat shock protein (HSP) 72 and extracellular IL-10 levels would increase, while extracellular HSP72 levels decrease. Ten male and two female subjects completed a 10-day exercise/HA protocol (100-min exercise bout at 56% of maximum O(2) uptake in a 42.5 degrees C DB, 27.9% RH environment); subjects exhibited classic adaptations that accompany HA. Peripheral blood mononuclear cells (PBMCs) were isolated before and after each acclimation session on days 1, 6, and 10; plasma and serum were collected before and after exercise on the 1st and 10th day of HA. SDS-PAGE was used to determine PBMC HSP72 levels during HA, and ELISA was used to measure plasma IL-10 and serum HSP72 concentrations. The increase in PBMC HSP72 from pre- to postexercise on the 1st day of HA was not significant (mean +/- SD, 1.0 +/- 0 vs. 1.6 +/- 0.6 density units). Preexercise HSP72 levels on day 1 were significantly lower compared with the pre- and postexercise samples on days 6 and 10 (mean +/- SD, day 6: 2.1 +/- 1.0 and 2.2 +/- 1.0, day 10: 2.0 +/- 1.3 and 2.2 +/- 1.0 density units, respectively, P < 0.05). There were no differences in plasma IL-10 and serum HSP72 postexercise or after 10 days of HA. The sustained elevation of HSP72 from days 6 to 10 may be evidence of a cellular adaptation to HA that contributes to improved heat tolerance and reduced heat illness risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号