首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the structure of the N-terminal sequence of transthyretin (TTR) and the binding of thyroid hormone was studied. A recombinant human TTR and two derivatives of Crocodylus porosus TTRs, one with the N-terminal sequence replaced by that of human TTR (human/crocTTR), the other with the N-terminal segment removed (truncated crocTTR), were synthesized in Pichia pastoris. Subunit mass, native molecular weight, tetramer formation, cross-reactivity to TTR antibodies and binding to retinol-binding protein of these recombinant TTRs were similar to TTRs found in nature. Analysis of the binding affinity to thyroid hormones of recombinant human TTR showed a dissociation constant (Kd) for triiodothyronine (T3) of 53.26+/-3.97 nM and for thyroxine (T4) of 19.73+/-0.13 nM. These values are similar to those found for TTR purified from human serum, and gave a Kd T3/T4 ratio of 2.70. The affinity for T4 of human/crocTTR (Kd=22.75+/-1.89 nM) was higher than those of both human TTR and C. porosus TTR, but the affinity for T3 (Kd=5.40+/-0.25 nM) was similar to C. porosus TTR, giving a Kd T3/T4 ratio of 0.24. A similar affinity for both T3 (Kd=57.78+/-5.65 nM) and T4 (Kd=59.72+/-3.38 nM), with a Kd T3/T4 ratio of 0.97, was observed for truncated crocTTR. The obtained results strongly confirm the hypothesis that the unstructured N-terminal region of TTR critically influences the specificity and affinity of thyroid hormone binding to TTR.  相似文献   

2.
Thrombomodulin is an endothelial glycoprotein that serves as a cofactor for protein C activation. To examine the ligand specificity of human thrombomodulin, we performed equilibrium binding assays with human thrombin, thrombin S205A (wherein the active site serine is replaced by alanine), meizothrombin S205A, and human factor Xa. In competition binding assays with CV-1(18A) cells expressing cell surface recombinant human thrombomodulin, recombinant wild type thrombin and thrombin S205A inhibited 125I-diisopropyl fluorophosphate-thrombin binding with similar affinity (Kd = 6.4 +/- 0.5 and 5.3 +/- 0.3 nM, respectively). However, no binding inhibition was detected for meizothrombin S205A or human factor Xa (Kd greater than 500 nM). In direct binding assays, 125I-labeled plasma thrombin and thrombin S205A bound to thrombomodulin with Kd values of 4.0 +/- 1.9 and 6.9 +/- 1.2 nM, respectively. 125I-Labeled meizothrombin S205A and human factor Xa did not bind to thrombomodulin (Kd greater than 500 nM). We also compared the ability of thrombin and factor Xa to activate human recombinant protein C. The activation of recombinant protein C by thrombin was greatly enhanced in the presence of thrombomodulin, whereas no significant activation by factor Xa was detected with or without thrombomodulin. Similar results were obtained with thrombin and factor Xa when human umbilical vein endothelial cells were used as the source of thrombomodulin. These results suggest that human meizothrombin and factor Xa are unlikely to be important thrombomodulin-dependent protein C activators and that thrombin is the physiological ligand for human endothelial cell thrombomodulin.  相似文献   

3.
Thrombomodulin is an endothelial cell membrane protein which plays a central regulatory role in the protein C anticoagulant pathway. The human thrombomodulin intronless gene was isolated from a genomic DNA library and used to isolate the coding region. A mammalian expression vector, phd-TMD1, encoding all the extracellular domains of human thrombomodulin but lacking the transmembrane and cytoplasmic domains was constructed. Stable phd-TMD 1 transformants, in both hamster AV12-644 and human 293 cells, expressed functionally active recombinant thrombomodulin as a secreted, soluble product. Soluble thrombomodulin was secreted as two major proteins of 105 kDa and 75 kDa, both of which were purified to homogeneity. The kinetic properties for protein C activation of the two proteins were very different: the Kd for thrombin, Km for protein C, and Ca2+ optima were 3.0 nM, 1.5 microM, and 1-3 mM for the 105-kDa protein and 16 nM, 2.3 microM, and 0.2-0.5 mM for the 75-kDa protein. In clotting and platelet activation assays, the 105-kDa protein was a much more potent anticoagulant than the 75-kDa protein. Both forms of the protein had the amino-terminal sequence Ala19-Pro-Ala-Glu-Pro-Gln. Amino acid composition analysis indicated that both forms of the protein had the same amino acid content which was consistent with the predicted protein comprising residues Ala19 to Ser515. The difference in size appeared to be due to glycosylation as both forms were of similar size following chemical deglycosylation. These studies suggest that (1) secretable thrombomodulin derivatives can be used to study structure-function relationships of the extracellular domains of this important regulatory protein, (2) the extent of glycosylation has profound effects on the kinetic and anticoagulant properties of human thrombomodulin, and (3) soluble recombinant human thrombomodulins may be developed as clinically significant therapeutic anticoagulants.  相似文献   

4.
Rat soluble catechol-O-methyltransferase cDNA was cloned into the pCAL-n-FLAG vector and expressed in Escherichia coli as a fusion protein with a calmodulin-binding peptide tag. The recombinant protein, comprising up to 30% of the total protein in the soluble fraction of E. coli, was purified by calmodulin affinity chromatography and gel filtration. Up to 16 mg of pure recombinant enzyme was recovered per liter of culture. Recombinant catechol-O-methyltransferase, in the bacterial soluble fraction, exhibited the same affinity for adrenaline as rat liver soluble catechol-O-methyltransferase (K(m) 428 [246, 609] microM and 531 [330, 732] microM, respectively), as well as the same affinity for the methyl donor, S-adenosyl-l-methionine (K(m) 27 [9, 45] microM and 38 [21, 55] microM, respectively). In addition, both the recombinant and the liver enzymes displayed the same sensitivity to the inhibitor 3,5-dinitrocatechol (IC(50) 132 [44, 397] nM and 74 [38, 143] nM, respectively), and both had the same catalytic number, respectively, 10.1 +/- 1.5 min(-1) and 8.3 +/- 0.3 min(-1). The purified recombinant enzyme also displayed the same affinity for the substrate as the purified rat liver catechol-O-methyltransferase (K(m) 336 [75, 597] microM and 439 [168, 711] microM, respectively) as well as the same inhibitor sensitivity (IC(50) 44 [19, 101] nM and 61 [33, 111] nM, respectively). This recombinant form of catechol-O-methyltransferase is kinetically identical to the rat liver enzyme. This system provides an easy and quick way of obtaining large amounts of soluble catechol-O-methyltransferase for both pharmacological and structural studies.  相似文献   

5.
Cell surface binding sites for the constituent proteins of the fibrinolytic system may play a role in the localization and regulation of fibrinolysis. In the present study, specific binding of recombinant human tissue-type plasminogen activator (rt-PA) to human blood platelets was identified and characterized. 125I-labeled rt-PA was found to bind specifically, saturably, and reversibly to the surface of gel-filtered platelets, reaching equilibrium within 5 min at 22 degrees C. Scatchard analysis revealed a single class of binding sites. Unstimulated platelets bound 120,000 +/- 24,000 (mean +/- S.D.) molecules/platelet with an apparent Kd of 340 +/- 25 nM, whereas thrombin-stimulated platelets bound 290,000 +/- 32,000 molecules/platelet with an apparent Kd of 800 +/- 60 nM. Binding of 0.1 microM 125I-rt-PA was greater than 90% reversible by a 50-fold excess of unlabeled rt-PA. Binding was not inhibited by fibrinogen or single chain urokinase-type plasminogen activator, but plasminogen partially competed for binding of 125I-rt-PA to platelets (up to 40% displacement). These findings indicate that the platelet surface possesses a large number of specific, low affinity binding sites for t-PA and provide further evidence for the role of platelets in localization and regulation of fibrinolysis.  相似文献   

6.
The properties of PGE1-, PGE2- and iloprost (stable PGI2-analogue)-binding sites on normal human and rat liver surface cell membranes were investigated. The specific binding of [3H]PGE1 to human (rat) liver surface cell membranes could be displaced most effectively by unlabeled PGE1 (IC-50:2.5 +/- 1.7, (6.1 +/- 2.1) microM) and the specific binding of [3H]PGE2 by unlabeled PGE2 (IC-50: 1.9 +/- 0.9 (2.0 +/- 0.8) microM. The Scatchard analysis on [3H]PGE1- as well as on [3H]iloprost-binding was curvilinear whereas it was clearly linear on [3H]PGE2-binding in both the species. The high-affinity [3H]PGE1-sites showed a Bmax of 36.3 +/- 5.2 (21.3 +/- 4.3) fmol/mg protein and a Kd of 2.1 +/- 1.8 (1.9 +/- 0.7) nM, the low-affinity [3H]PGE1-sites a Bmax of 93.4 +/- 18.2 (86.1 +/- 13.2) fmol/mg protein and a Kd of 10.5 +/- 2.9 (15.1 +/- 3.2) nM. The high-affinity [3H]iloprost-sites exhibited a Bmax of 71.4 +/- 13.9 (35.9 +/- 8.2) fmol/mg protein and a Kd of 4.1 +/- 1.2 (1.7 +/- 1.8) nM, the low-affinity [3H]iloprost-sites a Bmax of 217.3 +/- 42.1 (142.9 +/- 17.8) fmol/mg protein and a Kd of 16.3 +/- 4.9 (9.2 +/- 7.2) nM. The [3H]PGE2-sites showed a Bmax of 135.4 +/- 51.9 (38.8 +/- 7.4) fmol/mg protein and a Kd of 16.2 +/- 3.2 (2.5 +/- 1.2) nM. It is assumed that prostaglandins of the E-series are promising substances in the regulation of human and rat liver function since liver cells are able to bind reasonable amounts of these substances in a high affinity manner. However, interspecies differences in the affinity of the prostaglandins to their receptor-sites make it strange to assume that the same biological findings claimed several times for the rat liver are relevant for human too.  相似文献   

7.
Specific components of ion translocation systems were studied in excitable plasma membranes isolated from normal human muscle. Na+-K+ ATPase and ouabain-sensitive K+ phosphatase activities were 8.9 +/- 1 mumol Pi/h per mg protein and 96 +/- 9 nmol/min per mg protein, respectively. Scatchard analysis of equilibrium binding assays with [3H]ouabain showed non-linear curves consistent with high- and low-affinity sites (estimated Kd 3 nM and 0.22 microM). Two families of receptors with different affinities for a tritiated TTX derivative (estimated Kd 0.4 and 4 nM) were also identified suggesting the existence in human muscle of at least two classes of voltage-dependent Na+ channels. In addition (+)-[methyl-3H]PN200-110, a potent Ca2+ antagonist used for labeling voltage-dependent Ca2+ channels, was observed to bind to a homogeneous population of receptors in the plasma membrane (Kd = 0.2 nM).  相似文献   

8.
The binding of norepinephrine (NE) to plasma proteins of fresh human blood obtained from healthy volunteers was studied by ultrafiltration at different NE concentrations and incubation times at 37 degrees C. At 1.7 nM L-[3H]-NE binding was approximately 25%. The binding was rapid and was not influenced by the incubation time. [3H]-NE could be dissociated from its binding sites by acid precipitation and, after HPLC, showed to be unchanged NE. No difference in NE binding was found between plasma collected in EGTA-GSH or heparin solution. There was no degradation of NE when incubated in plasma at 37 degrees C for 10 h, even without the addition of antioxidants. Therefore, in the present study, binding represented interaction of unchanged NE with plasma proteins. The whole plasma binding was saturable over the range of 0.66 nM to 0.59 mM of NE. Scatchard plot of specific binding revealed high-affinity sites with a Kd of 5.4 nM and a Bmax of 3.9 fmoles.mg-1 protein, and low-affinity sites with a Kd of 2.7 microM and a Bmax of 3.3 pmoles.mg-1 protein. Electrophoretic characterization of NE-binding proteins showed that about 60% of bound NE was associated to albumin, and 20% to prealbumin. NE binding to pure human plasma proteins was also studied using ultrafiltration. Scatchard analyses revealed a single class of very high-affinity binding sites for prealbumin (Kd 4.9 nM), a single class of binding sites for alpha 1-acid glycoprotein (Kd 54 microM) and two classes of binding sites for albumin with high (Kd 1.7 microM) and low (Kd 0.8 mM) affinities respectively. The main results obtained in this study - a) reversibility of NE binding, b) stability of free and bound NE in plasma, c) involvement of the prealbumin as a specific binding protein - point out to a specific transport for NE in human blood plasma.  相似文献   

9.
Comparative interactions of factor IX and factor IXa with human platelets   总被引:10,自引:0,他引:10  
Both factor IX and factor IXa were bound to gel filtered platelets in the presence of CaCl2 (2-20 mM) and human alpha-thrombin (0.06-0.2 units/ml) with maximal binding occurring in 10-20 min at 37 degrees C, and rapid reversibility was observed when unlabeled ligands were added in 100-fold molar excess. Competition studies with various coagulation proteins revealed that neither factor XI nor high molecular weight kininogen, at 300-fold molar excess, could compete with 125I-labeled factor IXa for binding sites on thrombin-activated platelets, whereas prothrombin and factor X, in 450-fold molar excess, could displace approximately 15 and 35%, respectively, of bound factor IXa in the absence of added factor VIII. Analysis of saturation binding data in the presence of CaCl2 and thrombin without factors VIII and X indicated the presence of 306 (+/- 57) binding sites per platelet for factor IX (Kd(app) = 2.68 +/- 0.25 nM) and 515 (+/- 39) sites per platelet for factor IXa (Kd = 2.57 +/- 0.14 nM). In the presence of thrombin-activated factor VIII (1-5 units/ml) and factor X (0.15-1.5 microM), the number of sites for factor IX was 316 (+/- 50) with Kd = 2.44 (+/- 0.30) nM and for factor IXa 551 (+/- 48) sites per platelet (Kd = 0.56 +/- 0.05 nM). Studies of competition for bound factor IXa by excess unlabeled factor IX or factor IXa, and direct 125I-labeled factor IXa binding studies in the presence of large molar excesses of factor IX, confirmed the conclusion from these studies that factor IX and factor IXa share approximately 300 low-affinity binding sites per thrombin-activated platelet in the presence of Ca2+ and in the absence of factor VIII and factor X, with an additional 200-250 sites for factor IXa with Kd(app) similar to that for factor IX. The presence of factor VIII and factor X increases by 5-fold the affinity of receptors on thrombin-activated platelets for factor IXa that participate in factor X activation.  相似文献   

10.
Studies by various investigators have demonstrated that the low Km, cAMP-specific phosphodiesterase (PDE IV) is selectively inhibited by a group of compounds typified by rolipram and Ro 20-1724. In addition to inhibiting the catalytic activity of PDE IV, rolipram binds to a high affinity binding site present in brain homogenates. Although it has been assumed that the high affinity rolipram-binding site is PDE IV, no direct evidence has been produced to support this assumption. The present studies were undertaken to determine whether the rolipram-binding site is coexpressed with PDE IV catalytic activity in Saccharomyces cerevisiae genetically engineered to express human recombinant monocytic PDE IV (hPDE IV). Expressing hPDE IV cDNA in yeast resulted in a 20-fold increase in PDE activity that was evident within 1 h of induction and reached a maximum by 3-6 h. The recombinant protein represented hPDE IV as judged by its immunoreactivity, molecular mass (approximately 88 kDa), kinetic characteristics (cAMP Km = 3.1 microM; cGMP Km greater than 100 microM), sensitivity to rolipram (Ki = 0.06 microM), and insensitivity to siguazodan (PDE III inhibitor) and zaprinast (PDE V inhibitor). Saturable, high affinity [3H] (R)-rolipram-binding sites (Kd = 1.0 nM) were coexpressed with PDE activity, indicating that both binding activity and catalytic activity are properties of the same protein. A limited number of compounds were tested for their ability to inhibit hPDE IV catalytic activity and compete for [3H](R)-rolipram binding. Analysis of the data revealed little correlation (r2 = 0.35) in the structure-activity relationships for hPDE IV inhibition versus competition for [3H] (R)-rolipram binding. In fact, certain compounds (e.g. (R)-rolipram Ro 20-1724) possessed a 10-100-fold selectivity for inhibition of [3H] (R)-rolipram binding over hPDE IV inhibition, whereas others (e.g. dipyridamole, trequinsin) possessed a 10-fold selectivity for PDE inhibition. Thus, although the results of these studies demonstrate that hPDE IV activity and high affinity [3H](R)-rolipram binding are properties of the same protein, they do not provide clear cut evidence linking the binding site with the PDE inhibitory activity of rolipram and related compounds.  相似文献   

11.
The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Our major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of [3H]TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (Kd = 0.27 +/- 08 nM at 0 degree C; Kd = 1.96 +/- 0.85 nM at 37 degrees C) while the Bmax values remained unchanged (1220 +/- 176 fmoles/mg protein at 0 degree C and 1160 +/- 383 fmoles/mg protein at 37 degrees C). Saturation studies of [3H]TZ binding in the presence or absence of GABA (100 microM) showed a GABA-shift. At 0 degrees C the Kd values were (Kd = 0.24 +/- 0.03 nM/-GABA; Kd = 0.16 +/- 0.04/+GABA) and at 37 degrees C the Kd values were (Kd = 1.84 +/- 0.44 nM/-GABA; Kd = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, our findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists.  相似文献   

12.
We have demonstrated specific, high affinity binding of a biologically active Tyr23-monoiodinated derivative of ACTH, [125I][Phe2,Nle4]ACTH 1-24, in rat brain homogenates. Similarly, in metabolically inhibited and noninhibited rat whole brain slices there is a specific "binding-sequestration" process that is dependent on time, protein concentration, and pH. In homogenates, binding curves were best described by a two-site model and provided the following parameters: Kd1 = 0.65 +/- 0.47 nM, Bmax1 = 21 +/- 41 fmol/mg protein; Kd2 = 97 +/- 48 nM, Bmax2 = 3.5 +/- 1.8 pmol/mg protein. In metabolically viable brain slices, concentration-competition curves of [125I][Phe2,Nle4]ACTH 1-24 binding-sequestration can be described by three components (Kd1 = 14 +/- 24 nM, Bmax1 = 50 +/- 95 fmol/mg protein; Kd2 = 2.4 +/- 1.9 microM, Bmax2 = 44 +/- 49 pmol/mg protein; Kd3 = 0.16 +/- 1.0 mM, Bmax3 = 5.3 +/- 54 nmol/mg protein). Metabolic inhibition, by removal of glucose and addition of 100 microM ouabain, abolishes the lowest affinity, highest capacity binding-sequestrian component only (Kd1 = 7.1 +/- 14 nM, Bmax1 = 8.7 +/- 16 fmol/mg protein; Kd2 = 7.4 +/- 4.49 microM, Bmax2 = 37 +/- 27 pmol/mg protein). The two binding-sequestration parameter estimates obtained from metabolically inhibited tissue slices are not significantly different from those of the two higher affinity components obtained with noninhibited tissue. Thus, metabolic inhibition permits demonstration of ACTH receptor binding only, unconfounded by sequestration or internalization of ligand:receptor complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Recombinant human single-chain urokinase (rscu-PA), two-chain urokinase (tcu-PA), and diisopropyl-fluorophosphate-treated tcu-PA (DFP-tcu-PA) bound to cultured human and porcine endothelial cells in a rapid, saturable, dose-dependent and reversible manner. Analysis of specific binding results in cultured human umbilical vein endothelial cells (HUVECs) gave the following estimated values for Kd and Bmax: 0.57 +/- 0.08 nM (mean +/- S.E.) and 188,000 +/- 18,000 sites/cell for 125I-labeled rscu-PA; 0.54 +/- 0.10 nM and 132,000 +/- 23,900 sites/cells for 125I-labeled tcu-PA; 0.89 +/- 0.14 nM and 143,000 +/- 30,300 sites/cell for 125I-labeled DFP-tcu-PA, respectively. Values for Kd were similar for primary and subcultured (six passages) HUVECs, but Bmax values were lower in subcultured HUVECs. Similar Kd values were found in cultured porcine endothelial cells; however, Bmax values varied depending on the endothelial cell type. All 125I-labeled urokinase forms yielded similar cross-linked approximately 110-kDa ligand-receptor complexes with cultured HUVECs, and 125I-labeled DFP-tcu-PA bound to a single major approximately 55-kDa protein in whole-cell lysates (ligand blotting/autoradiography), suggesting the presence of a single major approximately 55-kDa urokinase receptor in cultured HUVECs. The approximately 55-kDa urokinase receptor, isolated from several separate batches of cultured HUVECs (3-5 micrograms of protein, approximately 1 x 10(9) cells), by ligand affinity chromatography, exhibited the following properties: retained biologic activity as evidenced by its ability to bind 125I-labeled rscu-PA by ligand blotting/autoradiography and formation of a cross-linked 125I-labeled approximately 110-kDa rscu-PA-receptor complex; single-chain approximately 55-kDa protein, following reduction; complete conversion to and formation of a single major deglycosylated approximately 35-kDa protein, following treatment with N-glycanase.  相似文献   

14.
The cation-binding properties of the vitamin D-dependent Ca2+-binding protein from pig duodenum were investigated, mainly by flow dialysis. The protein bound two Ca2+ ions with high affinity, and Mg2+, Mn2+ and K+ were all bound competitively with Ca2+ at both sites. The sites were distinguished by their different affinities for Mn2+, the one with the higher affinity being designated A (Kd 0.61 +/- 0.02 microM) and the other B (Kd 50 +/- 6 microM). Competitive binding studies allied to fluorimetric titration with Mg2+ showed that site A bound Ca2+, Mg2+ and K+ with Kd values of 4.7 +/- 0.8 nM, 94 +/- 18 microM and 1.6 +/- 0.3 mM respectively, and site B bound the same three cations with Kd values of 6.3 +/- 1.8 nM, 127 +/- 38 microM and 2.1 +/- 0.6 mM. For the binding of these cations, therefore, there was no significant difference between the two sites. In the presence of 1 mM-Mg2+ and 150 mM-K+, both sites bound Ca2+ with an apparent Kd of 0.5 microM. The cation-binding properties were discussed relative to those of parvalbumin, troponin C and the vitamin D-dependent Ca2+-binding protein from chick duodenum.  相似文献   

15.
In the present investigation the interaction of a novel selective NMDA receptors agonist, N-phthalamoyl-L-glutamic acid (PhGA), with the synaptic membranes preparation of human hippocampus was examined against NMDA. It was established that there are two binding sites of 3H-L-Glu, Kd1 = 0.35 +/- 0.11 nM, Bmax1 = 6.5 +/- 2.3 pmol/mg and Kd2 = 51 +/- 12 nM, Bmax2 = 98 +/- 17 pmol/mg. The inhibition constants (Ki) were calculated for NMDA and PhGA and were equal: Ki(NMDA) = 19 microM, Ki (PhGA) = 13 microM, respectively. It was concluded that PhGA is the partial agonist of the NMDA receptors.  相似文献   

16.
We developed an efficient production system of the soluble extracellular domain of the human erythropoietin receptor (sEPO-R) and characterized the binding of erythropoietin (EPO) with the purified recombinant protein. The sEPO-R, fused to the maltose binding protein (MBP), was expressed as a soluble protein in the periplasm of Escherichia coli (E. coli) and did not accumulate in inclusion bodies. After lysis of the bacteria by an osmotic shock, the fusion protein was purified by affinity chromatography on amylose followed by size exclusion chromatography (SEC). Specific binding of 125I-labelled EPO to the sEPO-R was demonstrated by competitive and saturation binding assays. A single affinity class (Kd = 0.25 nM) of the binding site was evident by Scatchard analysis. This value is similar to the Kd observed between EPO and the EPO-R of high affinity present on human erythroid progenitors. The complex has a molecular size corresponding to a 1:1 complex of EPO and the fusion protein.  相似文献   

17.
Recent data suggest that prostaglandins (PGs) are involved in the regulation of basophil activation. The aim of this study was to characterize the basophil PG-binding sites by means of radioreceptor assays using 3H-labeled PGs. Scatchard analysis for pure (greater than 95%) chronic myeloid leukemia (CML) basophils revealed two classes of PGE1-binding sites differing in their affinity for the natural ligand (Bmax1 = 217 +/- 65 fmol/10(8) cells; Kd1 = 0.5 +/- 0.2 nM; Bmax2 = 2462 +/- 381 fmol/10(8) cells; Kd2 = 47 +/- 20 nM; IC50 = PGE1 less than PGI2 less than PGD2 less than PGE2 less than PGF2 alpha) as well as two classes of PGI2 (iloprost)-binding sites (Bmax1 = 324 +/- 145 fmol/10(8) cells; Kd1 = 0.5 +/- 0.3 nM; Bmax2 = 2541 +/- 381; Kd2 = 27 +/- 6 nM; IC50 = PGI2 less than PGE1 less than PGD2 less than PGE2 less than PGF2 alpha. In addition, CML basophils exhibited a single class of PGD2-binding sites (Bmax = 378 +/- 98 fmol/10(8) cells; Kd = 13 +/- 4 nM; IC50: PGD2 less than PGI2 less than PGE1 less than PGE2 less than PGF2 alpha). In contrast, we were unable to detect specific saturable PGE2-binding sites. Primary and immortalized (KU812) CML basophils revealed an identical pattern of PG receptor expression. Basophils (KU812) expressed significantly (p less than 0.001) lower number of PGE1 (PGI2)-binding sites (Bmax1: 9% (20%) of control; Bmax2: 36% (50%) of control) when cultured with recombinant interleukin 3 (rhIL-3), a basophil-activating cytokine, whereas rhIL-2 had no effect on PG receptor expression. Functional significance of binding of PGs to basophils was provided by the demonstration of a dose-dependent increase in cellular cAMP upon agonist activation, with PGE1 (ED50 = 1.7 +/- 1.1 nM) and PGI2 (ED50 = 2.8 +/- 2.3 nM) being the most potent compounds. These findings suggest that human basophils express specific receptors for PGE1, PGI2 as well as for PGD2.  相似文献   

18.
A recombinant protein (Lbs-1) containing the N-terminal 581 amino acids of the mouse type 1 inositol 1,4,5-trisphosphate receptor (IP3R-1), including the complete IP3-binding site, was expressed in the soluble fraction of E. coli. The characteristics of IP3 binding to this protein were similar as observed previously for the intact IP3R-1. Ca2+ dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 200 nM. This effect represented a decrease in the affinity of Lbs-1 for IP3, because the Kd increased from 115 +/- 15 nM in the absence to 196 +/- 18 nM in the presence of 5 microM Ca2+. The maximal effect of Ca2+ on Lbs-1 (5 microM Ca2+, 42.0 +/- 6.4% inhibition) was similar to the maximal inhibition observed for microsomes of insect Sf9 cells expressing full-length IP3R-1 (33.8 +/- 10.2%). Conceivably, the two contiguous Ca2+-binding sites (residues 304-450 of mouse IP3R-1) previously found by us (Sienaert, I., Missiaen, L., De Smedt, H., Parys, J.B., Sipma, H., and Casteels, R. (1997) J. Biol. Chem. 272, 25899-25906) mediate the effect of Ca2+ on IP3 binding to IP3R-1. Calmodulin also dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 3 microM. Maximal inhibition (10 microM calmodulin, 43.1 +/- 5.9%) was similar as observed for Sf9-IP3R-1 microsomes (35.8 +/- 8.7%). Inhibition by calmodulin occurred independently of Ca2+ and was additive to the inhibitory effect of 5 microM Ca2+ (together 74.5 +/- 5.1%). These results suggest that the N-terminal ligand-binding region of IP3R-1 contains a calmodulin-binding domain that binds calmodulin independently of Ca2+ and that mediates the inhibition of IP3 binding to IP3R-1.  相似文献   

19.
Lanthanide luminescence was used to examine the effects of posttranslational adenylylation on the metal binding sites of Escherichia coli glutamine synthetase (GS). These studies revealed the presence of two lanthanide ion binding sites of GS of either adenylylation extrema. Individual emission decay lifetimes were obtained in both H2O and D2O solvent systems, allowing for the determination of the number of water molecules coordinated to each bound Eu3+. The results indicate that there are 4.3 +/- 0.5 and 4.6 +/- 0.5 water molecules coordinated to Eu3+ bound to the n1 site of unadenylylated enzyme, GS0, and fully adenylylated enzyme, GS12, respectively, and that there are 2.6 +/- 0.5 water molecules coordinated to Eu3+ at site n2 for both GS0 and GS12. Energy transfer measurements between the lanthanide donor-acceptor pair Eu3+ and Nd3+, obtained an intermetal distance measurement of 12.1 +/- 1.5 A. Distances between a Tb3+ ion at site n2 and tryptophan residues were also performed with the use of single-tryptophan mutant forms of E. coli GS. The dissociation constant for lanthanide ion binding to site n1 was observed to decrease from Kd = 0.35 +/- 0.09 microM for GS0 to Kd = 0.06 +/- 0.02 microM for GS12. The dissociation constant for lanthanide ion binding to site n2 remained unchanged as a function of adenylylation state; Kd = 3.8 +/- 0.9 microM and Kd = 2.6 +/- 0.7 microM for GS0 and GS12, respectively. Competition experiments indicate that Mn2+ affinity at site n1 decreases as a function of increasing adenylylation state, from Kd = 0.05 +/- 0.02 microM for GS0 to Kd = 0.35 +/- 0.09 microM for GS12. Mn2+ affinity at site n2 remains unchanged (Kd = 5.3 +/- 1.3 microM for GS0 and Kd = 4.0 +/- 1.0 microM for GS12). The observed divalent metal ion affinities, which are affected by the adenylylation state, agrees with other steady-state substrate experiments (Abell LM, Villafranca JJ, 1991, Biochemistry 30:1413-1418), supporting the hypothesis that adenylylation regulates GS by altering substrate and metal ion affinities.  相似文献   

20.
Solubilization of the total membrane fraction of human platelets in a 2% solution of sodium deoxycholate and subsequent affinity chromatography on glutamate agarose resulted in two protein fractions possessing a glutamate-binding activity. As can be evidenced from radioligand binding data, the first fraction contains two types of binding sites (Kd1 = 1 microM, Bmax 1 = 100 pmol/mg of protein; Kd2 = 9.3 microMm Bmax2 = 395 pmol/mg of protein). The second fraction has only one type of binding sites (Kd = 1 microM, Bmax = = 110 pmol/mg of protein). SDS-PAAG electrophoresis revealed the presence in the first fraction of proteins with Mr of 14, 24, 56 and 155 kDa, whereas the second fraction was found to contain 14, 46, 71 and 155 kDa proteins. Solid phase immunoenzymatic analysis using poly- and monoclonal specific antibodies against mammalian brain glutamate-binding proteins revealed a marked immunochemical similarity of the isolated protein fractions with human brain synaptic membrane glutamate-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号