首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nucleotide sequencing of a virulent African swine fever virus (ASFV) isolate (Malawi LIL20/1) identified an open reading frame of 1191 amino acid residues encoding a protein of 134.9 kDa. This gene mapped to the SalI i and j restriction endonuclease fragments of the ASFV genome. The predicted polypeptide was found to share 21.1% identity over a 1077 amino acid region with the human type II DNA topoisomerase. The sequence is compared to other type II DNA topoisomerases and the possible roles in ASFV replication are discussed.  相似文献   

2.
3.
The DP71L protein of African swine fever virus (ASFV) shares sequence similarity with the herpes simplex virus ICP34.5 protein over a C-terminal domain. We showed that the catalytic subunit of protein phosphatase 1 (PP1) interacts specifically with the ASFV DP71L protein in a yeast two-hybrid screen. The chimeric full-length DP71L protein, from ASFV strain Badajoz 71 (BA71V), fused to glutathione S-transferase (DP71L-GST) was expressed in Escherichia coli and shown to bind specifically to the PP1-alpha catalytic subunit expressed as a histidine fusion protein (6xHis-PP1alpha) in E. coli. The functional effects of this interaction were investigated by measuring the levels of PP1 and PP2A in ASFV-infected Vero cells. This showed that infection with wild-type ASFV strain BA71V activated PP1 between two- and threefold over that of mock-infected cells. This activation did not occur in cells infected with the BA71V isolate in which the DP71L gene had been deleted, suggesting that expression of DP71L leads to PP1 activation. In contrast, no effect was observed on the activity of PP2A following ASFV infection. We showed that infection of cells with wild-type BA71V virus resulted in decreased phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha). ICP34.5 recruits PP1 to dephosphorylate the alpha subunit of eukaryotic translational initiation factor 2 (also known as eIF-2alpha); possibly the ASFV DP71L protein has a similar function.  相似文献   

4.
Nucleotide sequencing of the SalI j region of the virulent Malawi (LIL20/1) strain of African swine fever virus (ASFV) identified an open reading frame (ORF), designated j9L, with extensive similarity to the family of protein kinases. This ORF encodes a 35.1-kDa protein of 299 amino acids which shares 24.6% amino acid identity with the human pim-1 proto-oncogene and 21.0% identity with the vaccinia virus B1R-encoded protein kinase. The ASFV ORF contains the motifs characteristic of serine-threonine protein kinases, with the exception of the presumed ATP-binding site, which is poorly conserved. The ORF was expressed to high levels in Escherichia coli, and the recombinant enzyme phosphorylated a calf thymus histone protein on serine residues in vitro. An antibody raised to an amino-terminal peptide of the ASFV protein kinase was reactive with the recombinant protein in Western immunoblot analyses and was used to demonstrate the presence of the protein kinase in ASF virions.  相似文献   

5.
6.
7.
African swine fever virus (ASFV) replicates in the cytoplasm of infected cells and contains genes encoding a number of enzymes needed for DNA synthesis, including a thymidine kinase (TK) gene. Recombinant TK gene deletion viruses were produced by using two highly pathogenic isolates of ASFV through homologous recombination with an ASFV p72 promoter–β-glucuronidase indicator cassette (p72GUS) flanked by ASFV sequences targeting the TK region. Attempts to isolate double-crossover TK gene deletion mutants on swine macrophages failed, suggesting a growth deficiency of TK ASFV on macrophages. Two pathogenic ASFV isolates, ASFV Malawi and ASFV Haiti, partially adapted to Vero cells, were used successfully to construct TK deletion viruses on Vero cells. The selected viruses grew well on Vero cells, but both mutants exhibited a growth defect on swine macrophages at low multiplicities of infection (MOI), yielding 0.1 to 1.0% of wild-type levels. At high MOI, the macrophage growth defect was not apparent. The Malawi TK deletion mutant showed reduced virulence for swine, producing transient fevers, lower viremia titers, and reduced mortality. In contrast, 100% mortality was observed for swine inoculated with the TK+ revertant virus. Swine surviving TK ASFV infection remained free of clinical signs of African swine fever following subsequent challenge with the parental pathogenic ASFV. The data indicate that the TK gene of ASFV is important for growth in swine macrophages in vitro and is a virus virulence factor in swine.  相似文献   

8.
9.
10.
11.
Infection of the central nervous system (CNS) by several viruses can lead to upregulation of proinflammatory cytokines and chemokines. In immunocompetent adults, these molecules induce prominent inflammatory infiltrates. However, with immunosuppressive retroviruses, such as human immunodeficiency virus (HIV), little CNS inflammation is observed yet proinflammatory cytokines and chemokines are still upregulated in some patients and may mediate pathogenesis. The present study examined expression of cytokines and chemokines in brain tissue of neonatal mice infected with virulent (Fr98) and avirulent (Fr54) polytropic murine retroviruses. While both viruses infect microglia and endothelia primarily in the white matter areas of the CNS, only Fr98 induces clinical CNS disease. The pathology consists of gliosis with minimal morphological changes and no inflammation, similar to HIV. In the present experiments, mice infected with Fr98 had increased cerebellar mRNA levels of proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha), TNF-beta, and interleukin-1 alpha and chemokines macrophage inflammatory protein-1 alpha (MIP-1 alpha), MIP-1 beta, monocyte chemoattractant protein 1 (MCP-1), gamma-interferon-inducible protein 10 (IP-10), and RANTES compared to mice infected with Fr54 or mock-infected controls. The increased expression of these genes occurred prior to the development of clinical symptoms, suggesting that these cytokines and chemokines might be involved in induction of neuropathogenesis. Two separate regions of the Fr98 envelope gene are associated with neurovirulence. CNS disease associated with the N-terminal portion of the Fr98 env gene was preceded by upregulation of cytokines and chemokines. In contrast, disease associated with the central region of the Fr98 env gene showed no upregulation of cytokines or chemokines and thus did not require increased expression of these genes for disease induction.  相似文献   

12.
The African swine fever virus (ASFV) genome contains a gene, 9GL, with similarity to yeast ERV1 and ALR genes. ERV1 has been shown to function in oxidative phosphorylation and in cell growth, while ALR has hepatotrophic activity. 9GL encodes a protein of 119 amino acids and was highly conserved at both nucleotide and amino acid levels among all ASFV field isolates examined. Monospecific rabbit polyclonal antibody produced to a glutathione S-transferase-9GL fusion protein specifically immunoprecipitated a 14-kDa protein from macrophage cell cultures infected with the ASFV isolate Malawi Lil-20/1 (MAL). Time course analysis and viral DNA synthesis inhibitor experiments indicated that p14 was a late viral protein. A 9GL gene deletion mutant of MAL (Delta9GL), exhibited a growth defect in macrophages of approximately 2 log(10) units and had a small-plaque phenotype compared to either a revertant (9GL-R) or the parental virus. 9GL affected normal virion maturation; virions containing acentric nucleoid structures comprised 90 to 99% of all virions observed in Delta9GL-infected macrophages. The Delta9GL virus was markedly attenuated in swine. In contrast to 9GL-R infection, where mortality was 100%, all Delta9GL-infected animals survived infection. With the exception of a transient fever response in some animals, Delta9GL-infected animals remained clinically normal and exhibited significant 100- to 10,000-fold reductions in viremia titers. All pigs previously infected with Delta9GL survived infection when subsequently challenged with a lethal dose of virulent parental MAL. Thus, ASFV 9GL gene deletion mutants may prove useful as live-attenuated ASF vaccines.  相似文献   

13.
14.
15.
16.
17.
Rotavirus is the most important cause of infantile gastroenteritis. Since in vivo mucosal responses to a rotavirus infection thus far have not been extensively studied, we related viral replication in the murine small intestine to alterations in mucosal structure, epithelial cell homeostasis, cellular kinetics, and differentiation. Seven-day-old suckling BALB/c mice were inoculated with 2 x 10(4) focus-forming units of murine rotavirus and were compared to mock-infected controls. Diarrheal illness and viral shedding were recorded, and small intestinal tissue was evaluated for rotavirus (NSP4 and structural proteins)- and enterocyte-specific (lactase, SGLT1, and L-FABP) mRNA and protein expression. Morphology, apoptosis, proliferation, and migration were evaluated (immuno)histochemically. Diarrhea was observed from days 1 to 5 postinfection, and viral shedding was observed from days 1 to 10. Two peaks of rotavirus replication were observed at 1 and 4 days postinfection. Histological changes were characterized by the accumulation of vacuolated enterocytes. Strikingly, the number of vacuolated cells exceeded the number of cells in which viral replication was detectable. Apoptosis and proliferation were increased from days 1 to 7, resulting in villous atrophy. Epithelial cell turnover was significantly higher (<4 days) than that observed in controls (7 days). Since epithelial renewal occurred within 4 days, the second peak of viral replication was most likely caused by infection of newly synthesized cells. Expression of enterocyte-specific genes was downregulated in infected cells at mRNA and protein levels starting as early as 6 h after infection. In conclusion, we show for the first time that rotavirus infection induces apoptosis in vivo, an increase in epithelial cell turnover, and a shutoff of gene expression in enterocytes showing viral replication. The shutoff of enterocyte-specific gene expression, together with the loss of mature enterocytes through apoptosis and the replacement of these cells by less differentiated dividing cells, likely leads to a defective absorptive function of the intestinal epithelium, which contributes to rotavirus pathogenesis.  相似文献   

18.
The patterns of gene expression and the phenotypes of lymphocytes in peripheral blood mononuclear cells (PBMC) from children with diarrhea caused by rotavirus and healthy children were compared by using DNA microarray, quantitative PCR, and flow cytometry. We observed increased expression of a number of genes encoding proinflammatory cytokines and interferon or interferon-stimulated proteins and demonstrated activation of some genes involved in the differentiation, maturation, activation, and survival of B lymphocytes in PBMC of patients with rotavirus infection. In contrast, we observed a consistent pattern of lower mRNA levels for an array of genes involved in the various stages of T-cell development and demonstrated a reduction in total lymphocyte populations and in the proportions of CD4 and CD8 T lymphocytes from PBMC of patients. This decreased frequency of T lymphocytes was transient, since the proportions of T lymphocytes recovered to almost normal levels in convalescent-phase PBMC from most patients. Finally, rotavirus infection induced the activation and expression of the early activation markers CD83 and CD69 on a fraction of CD19 B cells and the remaining CD4 and CD8 T lymphocytes in acute-phase PBMC of patients; the expression of CD83 continued to be elevated and was predominantly exhibited on CD4 T lymphocytes in convalescent-phase PBMC. On the basis of these findings at the molecular, phenotypic, and physiologic levels in acute-phase PBMC, we conclude that rotavirus infection induces robust proinflammatory and antiviral responses and B-cell activation but alters peripheral T-cell homeostasis in children.  相似文献   

19.
African swine fever virus (ASFV) is a large DNA virus that assembles in perinuclear viral factories located close to the microtubule organizing center. In this study, we have investigated the mechanism by which ASFV reaches the cell surface from the site of assembly. Immunofluorescence microscopy revealed that at 16 h postinfection, mature virions were aligned along microtubules. Furthermore, virus movement to the cell periphery was inhibited when microtubules were depolymerized by nocodazole. In addition, ASFV infection resulted in the increased acetylation of microtubules as well as their protection against depolymerization by nocodazole. Immunofluorescence microscopy showed that conventional kinesin was recruited to virus factories and to a large fraction of virus particles in the cytoplasm. Consistent with a role for conventional kinesin during ASFV egress to the cell periphery, overexpression of the cargo-binding domain of the kinesin light chain severely inhibited the movement of particles to the plasma membrane. Based on our observations, we propose that ASFV is recognized as cargo by conventional kinesin and uses this plus-end microtubule motor to move from perinuclear assembly sites to the plasma membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号