首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
An effective and flexible method is presented that can be used to investigate cofractionation of groups of nuclear proteins. The method was used to analyze chromatin-related proteins, of which high-mobility group B (HMGB) proteins consistently cofractionated by cation-exchange chromatography with the histone dimer (H2A–H2B). This led to the hypothesis that the two form a complex, further suggested by gel filtration, in which the HMGBs with core histones eluted as a defined high-molecular-weight peak. A necessary requirement for further studying protein interactions is that the constituents are of the highest possible purity and the pure histone dimers and tetramers used in this study were derived from pure histone octamers with their native marks. There is a growing interest in protein–protein interactions and an increasing focus on protein-interaction domains: most frequently, pull-down assays are used to examine these. The technology presented here can provide an effective system that complements pull-down assays.  相似文献   

2.
The activity of proteins is typically regulated by secondary modifications and by interactions with other partners, resulting in the formation of protein complexes whose functions depend on the participating proteins. Accordingly, it is of central importance to monitor the presence of interaction complexes as well as their localization, thus providing information about the types of cells where the proteins are located and in what sub-cellular compartment these interactions occur. Several methods for visualizing protein interactions in situ have been developed during the last decade. These methods in most cases involve genetic constructs, and they have been successfully used in assays of living cell maintained in tissue culture, but they cannot easily be implemented in studies of clinical specimens. For such samples, affinity reagents like antibodies can be used to target the interacting proteins. In this review we will describe the in situ proximity ligation assays (in situ PLA), a method that is suitable for visualizing protein interactions in both tissue sections and in vitro cell lines, and we discuss research tasks when this or other method may be selected.  相似文献   

3.
4.
Protein-protein interactions, and the factors affecting them, are of fundamental importance to all biological systems. Surface plasmon resonance (SPR) and isothermal titration calorimetry (ITR) are powerful methods for assaying such interactions, but are expensive to implement. In contrast, bead-based pull-down assays using affinity tags such as glutathione-S-transferase (GST), require no specialist equipment. As a result, such assays are the most popular method for analysing protein-protein interactions, despite being time-consuming and prone to variability. In respect of these problems, we have modified this form of binding assay, using glutathione-coated 96-well plates rather than glutathione-Sepharose beads to bind the primary bait protein. Quantitation of bound protein utilises ELISA for purified proteins and scintillation counting for in vitro translated proteins, rather than the SDS-PAGE-based detection methods used in traditional bead-based assays. These modifications result in an approximately 10-fold increase in the number of samples that can be assayed daily, and allow results to be obtained within hours as opposed to days. We validate the modified assay by analysing the equilibrium binding of Munc18 and syntaxin, and also demonstrate that association and dissociation kinetics may be measured using this approach. The method we describe is generally applicable to any protein-protein interaction assay based on affinity tags and is amenable to automation, and so should benefit a wide range of biochemical research.  相似文献   

5.
α-Bungarotoxin (α-bgtx)-binding proteins, including certain nicotinic acetylcholine receptors and acetylcholine-binding proteins (AChBPs), are frequently characterized with radioisotope-labeled α-bgtx-binding assays. Such assays, however, preclude investigations of binding interactions in real time and are hampered by the inconveniences associated with radioisotope-labeled reagents. We used surface plasmon resonance-based technology (BIAcore) to investigate the binding of recombinant AChBP to CM-5 sensor chip surfaces with directly immobilized α-bgtx. We validated our BIAcore results by comparing the same biological samples using the traditional 125I-labeled α-bgtx-binding assay. An α-bgtx sensor chip, as described here, enables detailed, real-time, radioisotope-free interaction studies that can greatly facilitate the characterization of novel α-bgtx-binding proteins and complexes.  相似文献   

6.
We introduce three assays for analyzing ligand-receptor interactions based on the specific conjugation of ligands to SNAP-tag fusion proteins. Conjugation of ligands to different SNAP-tag fusions permits the validation of suspected interactions in cell extracts and fixed cells as well as the establishment of high-throughput assays. The different assays allow the analysis of strong and weak interactions. Conversion of ligands into SNAP-tag substrates thus provides access to a powerful toolbox for the analysis of their interactions with proteins.  相似文献   

7.
Small ubiquitin-like proteins (SUMO) are recently discovered post-translational modifiers that regulate protein functions and intracellular trafficking. In this study, we are describing two chemoluminescence-based assays, one for SUMOylation and another one for SUMO-mediated protein-protein interactions. These assays can be used to characterize the activity and kinetics of the enzymes that catalyze SUMOylation, and in high-throughput screening for inhibitors of SUMOylation and SUMO-dependent protein-protein interactions. These novel assays represent the most sensitive assays for ubiquitin-like systems published to date. Similar strategies can be used to develop assays for other ubiquitin-like modification systems.  相似文献   

8.
Protein-protein interactions mediate most of the processes in the living cell and control homeostasis of the organism. Impaired protein interactions may result in disease, making protein interactions important drug targets. It is thus highly important to understand these interactions at the molecular level. Protein interactions are studied using a variety of techniques ranging from cellular and biochemical assays to quantitative biophysical assays, and these may be performed either with full-length proteins, with protein domains or with peptides. Peptides serve as excellent tools to study protein interactions since peptides can be easily synthesized and allow the focusing on specific interaction sites. Peptide arrays enable the identification of the interaction sites between two proteins as well as screening for peptides that bind the target protein for therapeutic purposes. They also allow high throughput SAR studies. For identification of binding sites, a typical peptide array usually contains partly overlapping 10-20 residues peptides derived from the full sequences of one or more partner proteins of the desired target protein. Screening the array for binding the target protein reveals the binding peptides, corresponding to the binding sites in the partner proteins, in an easy and fast method using only small amount of protein.In this article we describe a protocol for screening peptide arrays for mapping the interaction sites between a target protein and its partners. The peptide array is designed based on the sequences of the partner proteins taking into account their secondary structures. The arrays used in this protocol were Celluspots arrays prepared by INTAVIS Bioanalytical Instruments. The array is blocked to prevent unspecific binding and then incubated with the studied protein. Detection using an antibody reveals the binding peptides corresponding to the specific interaction sites between the proteins.  相似文献   

9.
Here we present an agarose gel shift assay that, in contrast to other electrophoresis approaches, is loaded in the center of the gel. This allows proteins to migrate in either direction according to their isoelectric points. Therefore, the presented assay enables a direct visualization, separation, and prefractionation of protein interactions in solution independent of isoelectric point. We demonstrate that this assay is compatible with immunochemical methods and mass spectrometry. The assay was used to investigate interactions with several potential substrates for calreticulin, a chaperone that is involved in different biological aspects through interaction with other proteins. The current analytical assays used to investigate these interactions are mainly spectroscopic aggregation assays or solid phase assays that do not provide a direct visualization of the stable protein complex but rather provide an indirect measure of interactions. Therefore, no interaction studies between calreticulin and substrates in solution have been investigated previously. The results presented here indicate that calreticulin has a preference for substrates with a quaternary structure and primarily β-sheets in their secondary structure. It is also demonstrated that the agarose gel shift assay is useful in the study of other protein interactions and can be used as an alternative method to native polyacrylamide gel electrophoresis.  相似文献   

10.
11.
In biomedical research there is an ongoing demand for new technologies, which help to elucidate disease mechanisms and provide the basis to develop novel therapeutics. In this context a comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, posttranslational modifications and dynamic interactions of cellular components is indispensable. Besides their significant impact as therapeutic molecules, antibodies are arguably the most powerful research tools to study endogenous proteins and other cellular components. However, for cellular diagnostics their use is restricted to endpoint assays using fixed and permeabilized cells.  相似文献   

12.
Most bacteria are surrounded by a complex cell envelope. As with many biological processes, studies of envelope assembly have benefited from cell‐based assays for detecting protein–protein interactions. These assays use simple readouts and lack a protein purification requirement, making them ideal for early stage investigations. The most widely used two‐hybrid interaction assay for proteins involved in envelope biogenesis is based on the reconstitution of adenylate cyclase activity from a split enzyme. Because adenylate cyclase is only functional in the cytoplasm, both protein fusions used in the assay must have a terminus located in this compartment. However, many envelope assembly factors are wholly extracytoplasmic. Detecting interactions involving such proteins using two‐hybrid systems has therefore been problematic. To address this issue, we developed a cytological assay in Escherichia coli based on PopZ from Caulobacter crescentus. Here, we demonstrate the utility of this PopZ‐Linked Apical Recruitment (POLAR) method for detecting interactions between proteins located in different cellular compartments. Additionally, we report that recruitment of an active peptidoglycan synthase to the cell pole is detrimental for E. coli and that interactions between proteins in the inner and outer membranes of the Gram‐negative envelope may provide a mechanism for recruiting protein complexes to subpolar sites.  相似文献   

13.
MAPPIT (mammalian protein-protein interaction trap) is a two-hybrid interaction mapping technique based on functional complementation of a type I cytokine receptor signaling pathway. Over the last decade, the technology has been extended into a platform of complementary assays for the detection of interactions among proteins and between chemical compounds and proteins, and for the identification of small molecules that interfere with protein-protein interactions. Additionally, several screening approaches have been developed to broaden the utility of the platform. In this review we provide an overview of the different components of the MAPPIT toolbox and highlight a number of applications in interactomics, drug screening and compound target profiling.  相似文献   

14.
The functionally versatile type IV pili (Tfp) are one of the most widespread virulence factors in bacteria. However, despite generating much research interest for decades, the molecular mechanisms underpinning the various aspects of Tfp biology remain poorly understood, mainly because of the complexity of the system. In the human pathogen Neisseria meningitidis for example, 23 proteins are dedicated to Tfp biology, 15 of which are essential for pilus biogenesis. One of the important gaps in our knowledge concerns the topology of this multiprotein machinery. Here we have used a bacterial two-hybrid system to identify and quantify the interactions between 11 Pil proteins from N. meningitidis. We identified 20 different binary interactions, many of which are novel. This represents the most complex interaction network between Pil proteins reported to date and indicates, among other things, that PilE, PilM, PilN and PilO, which are involved in pilus assembly, indeed interact. We focused our efforts on this subset of proteins and used a battery of assays to determine the membrane topology of PilN and PilO, map the interaction domains between PilE, PilM, PilN and PilO, and show that a widely conserved N-terminal motif in PilN is essential for both PilM-PilN interactions and pilus assembly. Finally, we show that PilP (another protein involved in pilus assembly) forms a complex with PilM, PilN and PilO. Taken together, these findings have numerous implications for understanding Tfp biology and provide a useful blueprint for future studies.  相似文献   

15.
Despite progress in the development of methods to monitor protein interactions, studies of interactions between membrane proteins in mammalian cells remain challenging. Protein complementation assays (PCAs) are commonly used to study interactions between proteins due to their simplicity. They are based on interaction-mediated reconstitution of a reporter protein, which can be easily monitored. Recently, a protein complementation method named split-TEV (tobacco etch virus) has been developed and is based on the functional reconstitution of TEV protease and subsequent proteolytic-mediated activation of reporters. In this work, we have developed a modification of the split-TEV method to study the interactions between membrane proteins with increased specificity. This assay was validated by addressing the interactions between different membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels. By comparing it with another PCA, we found that this new method showed a higher sensitivity.  相似文献   

16.
Fluorescence resonance energy transfer (FRET) in association with a time-resolved fluorescence mode of detection was used to design a new homogeneous technology suitable to monitor biomolecular interactions. A lanthanide cryptate characterised by a long lived fluorescence emission was used as donor and a cross-linked allophycocyanine was used as acceptor. This new donor/acceptor pair displayed an exceptionally large Forster radius of 9 nm. This allowed to build up a set of labelling strategies to probe the interactions between biomolecules with an emphasis on fully indirect cassette formats particularly suitable for high throughput screening applications. Herein we describe the basics of the technology, review the latest applications to the study of molecular interactions involved in cells and new oligonucleotides based assays.  相似文献   

17.
Bcl-2 family proteins have important roles in tumor initiation, progression and resistance to therapy. Pro-survival Bcl-2 proteins are regulated by their interactions with pro-death BH3-only proteins making these protein–protein interactions attractive therapeutic targets. Although these interactions have been extensively characterized biochemically, there is a paucity of tools to assess these interactions in cells. Here, we address this limitation by developing quantitative, high throughput microscopy assays to characterize Bcl-2 and BH3-only protein interactions in live cells. We use fluorescent proteins to label the interacting proteins of interest, enabling visualization and quantification of their mitochondria-localized interactions. Using tool compounds, we demonstrate the suitability of our assays to characterize the cellular activity of putative therapeutic molecules that target the interaction between pro-survival Bcl-2 and pro-death BH3-only proteins. In addition to the relevance of our assays for drug discovery, we anticipate that our work will contribute to an improved understanding of the mechanisms that regulate these important protein–protein interactions within the cell.  相似文献   

18.
Blot overlay techniques have long been used to directly visualize protein-protein interactions within membrane complexes. However, this approach is often hampered by the limited quantities of purified membrane proteins available for conjugation with marker molecules. Here we applied continuous-elution gel electrophoresis as a preparative alternative to isolate sufficient amounts of a homogeneous protein sample to be used as a peroxidase-labeled probe in blot overlays. Microsomal muscle proteins ranging from approximately 20 to 600 kDa were electrophoretically separated and various marker proteins present in eluted fractions were identified by immunoblotting. Since the supramolecular structure of calsequestrin has recently been determined, this terminal cisternae protein was isolated as a model protein for studying protein-protein interactions. In blot overlay assays, peroxidase-conjugated calsequestrin specifically bound to the ryanodine receptor, triadin, calsequestrin itself, and junctin, illustrating that the biological binding affinities are retained in electrophoretically prepared muscle proteins. Potential applications for differential blot overlay approaches and for analyzing pathophysiological preparations from dystrophic muscle were evaluated. Since continuous-elution gel electrophoresis can separate a wide range of differently sized proteins from subcellular fractions, our report indicates that this technique can be utilized for the rapid identification of protein-protein interactions in future high-throughput analyses of subproteomes.  相似文献   

19.
Protein-protein interactions are essential for regulating almost all aspects of cellular functions. Many of these interactions are mediated by weak and transient protein domain-peptide binding, but they are often under-represented in high throughput screening of protein-protein interactions using techniques such as yeast two-hybrid and mass spectrometry. On the other hand, computational predictions and in vitro binding assays are valuable in providing clues of in vivo interactions. We present here a systematic approach that integrates computer modeling and a peptide microarray technology to identify binding peptides of the SH3 domain of the tyrosine kinase Abl1 in the human proteome. Our study provides a comprehensive list of candidate interacting partners for the Abl1 protein, among which the presence of numerous methyltransferases and RNA splicing proteins may suggest a novel function of Abl1 in chromatin remodeling and RNA processing. This study illustrates a powerful approach for integrating computational and experimental methods to detect protein interactions mediated by domain-peptide recognition.  相似文献   

20.
Burbelo PD  Kisailus AE  Peck JW 《BioTechniques》2002,33(5):1044-8, 1050
We have developed a novel system designated the luciferase assay for protein detection (LAPD) to study protein-protein interactions. This method involves two protein fusions, a soluble reporter fusion and a fusion for immobilizing the target protein. The soluble reporter is an N-terminal Renilla luciferase fusion protein that exhibits high Renilla luciferase activity. Crude cleared lysates from transfected Cos1 cells that express the Renilla luciferase fusion protein can be used in binding assays with immobilized target proteins. Following incubation and washing, target-bound Renilla luciferase fusion proteins produce light from the coelenterazine substrate, indicating an interaction between the two proteins of interest. As proof of the principle, we reproduced known, transient protein-protein interactions between the Cdc42 GTPase and its effector proteins. GTPase Renilla fusion proteins produced in Cos1 cells were tested with immobilized recombinant GST-N-WASP and CEP5 effector proteins. Using this assay, we could detect specific interactions of Cdc42 with these effector proteins in approximately 50 min. The specificity of these interactions was demonstrated by showing that they were GTPase-specific and GTP-dependent and not seen with other unrelated target proteins. These results suggest that the LAPD method, which is both rapid and sensitive, may have research and practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号