首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor suppressor PTEN is now understood to regulate cellular processes at the cytoplasmic membrane, where it classically regulates PI3K signaling, as well as in the nucleus where multiple roles in controlling cell cycle and genome stability have been elucidated. Mechanisms that dictate nuclear import and, less extensively, nuclear export of PTEN have been described, however the relevance of these processes in disease states, particularly cancer, remain largely unknown. We investigated the impact of acid ceramidase on the nuclear-cytoplasmic trafficking of PTEN. Immunohistochemical analysis of a human prostate tissue microarray revealed that nuclear PTEN was lost in patients whose tumors had elevated acid ceramidase. We found that acid ceramidase promotes a reduction in nuclear PTEN that is dependent upon sphingosine 1-phosphate-mediated activation of Akt. We were further able to show that sphingosine 1-phosphate promotes formation of a complex between Crm1 and PTEN, and that leptomycin B prevents acid ceramidase and sphingosine 1-phosphate mediated loss of nuclear PTEN, suggesting an active exportin-mediated event. To investigate whether the tumor promoting aspects of acid ceramidase in prostate cancer depend upon its ability to export PTEN from the nucleus, we used enforced nuclear expression of PTEN to study docetaxel-induced apoptosis and cell killing, proliferation, and xenoengraftment. Interestingly, while acid ceramidase was able to protect cells expressing wild type PTEN from docetaxel, promote proliferation and xenoengraftment, acid ceramidase had no impact in cells expressing PTEN-NLS. These findings suggest that acid ceramidase, through sphingosine 1-phosphate, promotes nuclear export of PTEN as a means of promoting tumor formation, cell proliferation, and resistance to therapy.  相似文献   

2.
It is generally recognized nowadays that active lipid metabolism takes place in the nucleus of a mammalian cell. Experimental data testify to the biosynthesis of polyphosphoinositides and phosphatidylcholine and reveal corresponding enzymes within nuclei of mammalian cells. These findings suggest that lipidmediated signaling pathways in nuclei operate independently of lipid-mediated regulatory mechanisms functioning in membranes and cytosol. To explore the pathways of intranuclear lipid biosynthesis, we studied incorporation of 2-14C-acetate into lipids of cytosol and isolated nuclei of rat thymus cells after separate and combined incubation with the labeled precursor. The most efficient incorporation of 2-14C-acetate into lipids (cholesterol, free fatty acids, and phospholipids) was observed in a reaction mixture containing cytosol. When the reaction mixture contained only nuclei, incorporation of the radioactive precursor into lipids also took place, but specific radioactivity of the lipids was essentially lower than in the cytosol. In both cases, 2-14C-acetate incorporated into phosphatidylethanolamine, sphingomyelin, phosphatidylserine, phosphatidylinositol, and cardiolipin. Phosphatidylcholine, the most abundant membrane phospholipid, demonstrated the lowest radioactivity, which was significantly lower than that of phosphatidylethanolamine. Incorporation of newly synthesized free fatty acids in nuclear phospholipids was inhibited, if nuclei were incubated with cytosol. As a result, radioactive free fatty acids were accumulated in nuclei, while in cytosol they were efficiently incorporated into phospholipids. The levels of phospholipids and cholesterol remained constant regardless of incubation protocol, while the overall yield of free fatty acids decreased after combined incubation of nuclear and cytosolic fractions or after incubation of cytosol without nuclei. Putative mechanisms underlying the appearance of radioactive lipids in isolated nuclei of thymus cells are discussed.  相似文献   

3.
The nucleus, like other smaller organelles in the cell, is dynamic and can move about in the cytoplasm. In some cells, nuclear movements are concerned with mitosis or meiosis; in others, they are concerned with orienting nuclear divisions; and in still others, they deal with distributing nuclei through the cytoplasm. Recent interest in nuclear positioning has shown that nuclear movements are often mediated by the interactions of dynein and other proteins at the plus ends of astral microtubules with the cell cortex. How the microtubule minus ends interact with the nucleus also affects nuclear movements.  相似文献   

4.
Subcellular fractionation revealed that a significant fraction of total sphingosine kinase, the enzyme that phosphorylates sphingosine to form the bioactive lipid metabolite sphingosine-1-phosphate, resides in the nuclei of Swiss 3T3 cells, localized to both the nuclear envelope and the nucleoplasm. Platelet-derived growth factor, in addition to rapidly stimulating cytosolic sphingosine kinase, also induced a large increase in nucleoplasm-associated activity after 12-24 h that correlated with progression of cells to the S-phase of the cell cycle and translocation of sphingosine kinase-green fluorescent protein fusion protein to the nuclear envelope. Our results add sphingosine kinase to the growing list of lipid-metabolizing enzymes associated with the nucleus, and suggest that sphingosine-1-phosphate may also play a role in signal transduction in the nucleus.  相似文献   

5.
The major human blood granulocyte, the neutrophil, is an essential component of the innate immunity system, emigrating from blood vessels and migrating through tight tissue spaces to the site of bacterial or fungal infection where they kill and phagocytose invading microbes. Since the late nineteenth century, it has been recognized that the human neutrophil nucleus is distinctly not ovoid as in other cell types, but possesses a lobulated (segmented) shape. This deformable nucleus enhances rapid migration. Recent studies have demonstrated that lamin B receptor (LBR) is necessary for the non-ovoid shape. LBR is an integral membrane protein of the nuclear envelope. A single dominant mutation in humans leads to neutrophils with hypolobulated nuclei (Pelger–Huet anomaly); homozygosity leads to ovoid granulocyte nuclei. Interestingly, LBR is also an enzyme involved in cholesterol metabolism. Homozygosity for null mutations is frequently lethal and associated with severe skeletal deformities. In addition to the necessity for LBR, formation of the mature granulocyte nucleus also depends upon lamin composition and microtubule integrity. These observations are part of a larger question on the relationships between nuclear shape and cellular function.  相似文献   

6.
7.
The cell nucleus is a membrane-surrounded organelle that contains numerous compartments in addition to chromatin. Compartmentalization of the nucleus is now accepted as an important feature for the organization of nuclear processes and for gene expression. Recent studies on nuclear organization of splicing factors in plant cells provide insights into the compartmentalization of the plant cell nuclei and conservation of nuclear compartments between plants and metazoans.  相似文献   

8.
Using neoglycoproteins, lectine that reconize different sugars, including N-acetylglucosamine residues, were previously detected in animal cell nuclei. We report herein the isolation of two N-acetylglucosamine-binding protein from HL60 cell nuclei:(i) a 22 kDa polypeptide (CBP22) with an isoelectric point of 4.5 was isolated for the first time and (ii) a 70 kDa polypeptide point of 7.8. This latter protein corresponds to the glucose-binding protein (CBP70) previously isolated, based on the following similsrties:(i) they have the same molecular mass, (ii)they have the same isoelectric point, (iii)they are recognized by antibodies raised against CBP70, and (iv) both are lectins from the C group of Drickamer's classsification. CBP70 appeared to recognized glucose and n-acetylglucosamine; howeve, its affinity for N-acetylglucosamine was found to be twice that for glucose. The presence in the nucleus of two nuclear N-acetylglucosamine-binding protein and their potential ligands, such as O-N-acetylglucosamine glycoproteins, strongly argues for possible intranuclear glycoprotein-lectine interactions.  相似文献   

9.
Using endogenous lipid substrates, assays of lipid phosphorylation indicated that neuronal nuclei had a considerable superiority in phosphatidic acid (PA) formation when compared with homogenates and other subfractions of cerebral cortex. This predominance of neuronal nuclear PA labelling was linked to a sizable pool of nuclear diacylglycerols that expanded significantly with incubation. PA was also the dominant product of neuronal nuclear lipid phosphorylation reactions. Nuclear envelope preparations and the parent neuronal nuclei showed specific rates of PA formation that were comparable, based upon membrane phospholipid contents. As well, using an exogenous diacylglycerol substrate, the distribution of diacylglycerol kinase activities closely followed phospholipid contents of subfractions derived from the neuronal nucleus during envelope preparation. This evidence suggested an association between diacylglycerol kinase and the neuronal nuclear envelope. Nuclear PA formation increased in the presence of sphingosine, while sphingosine decreased PA formation in other subfractions. Likely sphingosine exerted its effect on nuclear diacylglycerol kinase, as sphingosine did not elevate levels of nuclear diacylglycerols. Phosphoinositidase C was present in the nuclei and inhibitors of this enzyme did decrease PA formation, indicating diacylglycerols from inositides as substrates for nuclear diacylglycerol kinase. The nuclear envelope fraction had a considerably lower specific phosphoinositidase C activity than the parent nuclei, and showed an activation of PA formation by sphingosine, but a less efficient handling of the exogenous diacylglycerol substrate. It is possible that phosphoinositidase C and diacylglycerol kinase are closely situated within the neuronal nuclei, and a loss of the former activity may compromise the latter.  相似文献   

10.
11.
Actin is an abundant protein in most nonmuscle cells. It has often been observed in isolated nuclei, yet cytoplasmic contamination was of course initially regarded as the most plausible origin. Numerous studies on nuclear actin appeared in the 1970s and 1980s, but the picture remained rather muddy. The viewpoint at that time was that actin-shown to move freely between cytoplasm and nucleus-was a mere "thermodynamic wanderer," transiently occupying the nucleus. More recently, evidence has been mounting that actin's presence in the nucleus is not simply governed by the laws of diffusion. The same holds true for the finding of various actin-related proteins in the nucleus, and the case for nuclear myosin, specifically myosin I, is now quite convincing. Moreover, the first intimations of functional roles of nuclear actin are now emerging. Here we examine the overall subject from cell biological and chemical perspectives. The major issue is no longer the presence of actin in the nucleus but rather its supramolecular organization, intranuclear locations, and, of course, functions. These issues interface with recent findings that reveal a surprisingly diverse repertoire of actin conformations and oligomer and polymer forms beyond monomeric G-actin and polymeric F-actin. We present ideas for advancing the nuclear actin field and call for a renewed attack on this major problem in cell biology.  相似文献   

12.
Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis   总被引:6,自引:0,他引:6  
Sphingosine kinase-1 (SPHK1) is a key enzyme catalyzing the formation of an important bioactive lipid messenger, sphingosine 1-phosphate, and is implicated in the regulation of cell proliferation and antiapoptotic processes. Biological features of another isozyme SPHK2, however, remain unclear. The present studies were undertaken to characterize SPHK2 by comparison with SPHK1. When SPHK2 was transiently expressed in various cell lines, it was localized in the nuclei as well as in the cytosol, whereas SPHK1 was distributed in the cytosol but not in the nucleus. We have mapped a functional nuclear localization signal (NLS) to the N-terminal region of SPHK2. We have observed that the expression of SPHK2 in various cell types causes inhibition of DNA synthesis, resulting in the cell cycle arrest at G1/S phase. We have also demonstrated that an NLS mutant of SPHK2, SPHK2R93E/R94E, failed to enter the nucleus and to inhibit DNA synthesis. Moreover, a fusion protein, NLS-SPHK1, where SPHK1 was fused to the NLS sequence of SPHK2 acquired the ability to enter nuclei and inhibited DNA synthesis. These results indicate that SPHK2 localizes in the nuclei and causes inhibition of DNA synthesis, and this may affect subsequent cellular events.  相似文献   

13.
14.
15.
Tubulin is an alphabeta heterodimer. Both the alpha and beta polypeptides exist as multiple isotypes. Although tubulin was generally thought to exist only in the cytoplasm, we have previously reported the presence of the betaII isotype of tubulin in the nuclei of cultured rat kidney mesangial cells, smooth-muscle-like cells that reside in the glomerular mesangium; nuclear betaII exists as an alphabetaII dimer, capable of binding to colchicine, but in non-microtubule form [Walss et al., 1999: Cell Motil. Cytoskeleton 42:274-284]. We have now investigated the nature of the process by which alphabetaII enters the nuclei of these cells. By micro-injecting fluorescently labeled alphabetaII into mesangial cells, we found that alphabetaII was present in the nuclei of cells only if they were allowed to go through mitosis. In contrast, there were no circumstances in which microinjected fluorescently labeled abetaII or alphabetaIV dimers entered the nuclei. These findings, together with the absence of any nuclear localization signal in alphabetaII, strongly favor the model that alphabetaII, rather than being transported into the intact nucleus, co-assembles with the nucleus at the end of mitosis. Our results also indicate that the nuclear localization mechanism is specific for alphabetaII. This result raises the possibility that alphabetaII may have a specific function that requires its presence in the nuclei of cultured rat kidney mesangial cells.  相似文献   

16.
Shuttling RNAs are recognized as molecules that migrate against steep concentration gradients from one nucleus (through the cytoplasm) into another nucleus in the same cell. In previous work these molecules were identified through experiments involving the separation of two kinds of nuclei utilizing differences in the nuclei that may have produced misleading results. In the experiments reported here normal, randomly-chosen ameba (A. proteus) nuclei containing [32P]RNA were implanted into unlabeled normal, randomly-chosen cells and, after suitable incubation, the labeled RNAs present in each kind of nucleus were characterized by gel electrophoresis. The previously obtained results were confirmed: i.e. (a) the recipient cell nuclei acquired the same four small, distinct RNAs, which are recognized as shuttling ones because they migrate from one nucleus to the other; (b) the grafted nuclei possess, in addition to the four shuttling RNAs, three small, distinct RNAs, which are recognized as non-shuttling RNAs. New evidence also is presented to show that the acquisition by a nucleus of labeled RNAs in the above kind of experiment is not a result of new synthesis of RNAs from the labeled turnover products emanating from the transplanted nucleus.  相似文献   

17.
Using a serum from a patient with an autoimmune disease, we have recently described a novel 55 000-dalton antigen (p55) in the nucleus of several animal cells including human ones. This antigen, designated PSL, was not related to the previously defined antigens recognized by sera from patients with systemic rheumatic diseases (Sm, n-RNP, SS-B, Scl-70). We have now found that p55 is associated with chromatin structures as it is released from the nucleus of mink cell fibroblasts by saline + DNase treatments. Analysis by sucrose gradient centrifugation of the nuclear material released in these conditions indicated that p55 co-migrated with core histones. Meanwhile, p55 was absent from the residual nuclear matrices (achromatinic nuclei). Localization of p55 in synchronized cells was performed by indirect immunofluorescence and immunoprecipitation. P55 appeared to accumulate in the nucleus during the S phase. Finally, it was not recognized by an anti-SV40 tumor serum that specifically precipitated the protein p53, which has been recently related to cell proliferation. Thus, PSL an p53, although apparently not antigenically related, appear to be implicated in the same step of the cell cycle.  相似文献   

18.
Although biochemical studies have shown that polyamines (PAs) occur in the nucleus, only few studies have examined the intranuclear distribution of these organic cations. By immunocytochemistry, we have previously demonstrated that PAs are located in ribosomes. We now show that PAs also are present in both nucleoli and nuclei of a variety of cell types. Detection of nucleolar and nuclear PAs required novel pretreatment procedures involving protease and/or DNase digestion of specimens prior to immunoreaction. Double fluorescence staining confirmed the localizations. This suggests that PAs may be important to the formation of ribosomes in nucleoli, as well as adds support to biochemical studies suggesting that PAs are involved in many biological events in the nucleus. Further biochemical studies will be needed to substantiate this hypothesis.  相似文献   

19.
The freeze-etch technique has been used to expose surface views of vegetative and generative nuclear envelopes in both ungerminated and germinated pollen of Tradescantia paludosa. A comparison of the density and total numbers of nuclear pores on the two nuclei indicates that vegetative nuclei have at least twice as many pores as generative nuclei. These findings are compatible with the concept that the vegetative nucleus plays a more active role in pollen tube development than the generative nucleus.  相似文献   

20.
The fluorescent nuclear stain Hoechst 33258 was used to study the nuclear events during mating of Dictyostelium discoideum in liquid culture. These studies revealed that cell fusion begins about 11 hr after the sexually compatible cultures are mixed and continues until 26 hr. Approximately 37% of the cells fuse during this 15-hr period. At first the fused cells are relatively small, but by 20 hr the fusion products become evident as morphologically distinct giant cells. Starting at 22 hr these giant cells are transformed into true zygotes as nuclear fusion begins. Both the fusion of amebae and the differentiation of zygote giant cells are Ca2+-dependent events as revealed by studies using EGTA. The nuclear events of zygote differentiation involve nuclear swelling, migration, and fusion. The precise timing of these events has been detailed. Of particular interest for genetic analyses via the macrocyst is the presence of a small population of multinucleate cells (maximum level is 1.67% of the cell population) which usually possess 3 or 4 nuclei but may have as many as 10 or more. Although these multinucleate cells contain many nuclei, our evidence suggests that only one is a zygote nucleus. The genetic implications of these data and the potential value of using the mating system for the analysis of cell fusion are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号