共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulation of the biosynthesis of the sodium- and potassium-activated adenosine triphosphatase (Na,K-ATPase) (EC 3.6.1.3) was studied in the developing brine shrimp, Artemia salina. Measurement of levels of the subunits of the Na,K-ATPase by radioimmunoassay indicated the presence of both alpha and beta subunits in undeveloped cysts and developing embryos prior to the appearance of enzymatic activity. The quantity of each subunit increased dramatically between 8 and 24 h of development and then reached a plateau at about 32 h. The quantities of translationally active mRNA alpha and mRNA beta were also determined. Undeveloped cysts contained mRNA alpha and mRNA beta, and the amounts increased 9- and 3-fold, respectively, during the first 24 h of development. The data suggest that the increase in Na,K-ATPase activity was at least in part due to increases in protein synthesis related to changes in mRNA levels. The data also suggest involvement of additional regulatory mechanisms. The alpha-subunit has been detected as two molecular weight forms (alpha 1 and alpha 2) which demonstrate changes in relative amounts during development (Peterson, G. L., Churchill, L., Fisher, J. A., and Hokin, L. E. (1982) J. Exp. Zool. 221, 295-308). We show here that this was not due to changes in mRNA alpha 1 and mRNA alpha 2. 相似文献
2.
A hallmark of acute lung injury is the accumulation of a protein rich edema which impairs gas exchange and leads to hypoxemia.
The resolution of lung edema is effected by active sodium transport, mostly contributed by apical Na+ channels and the basolateral located Na,K-ATPase. It has been reported that the decrease of Na,K-ATPase function seen during
lung injury is due to its endocytosis from the cell plasma membrane into intracellular pools. In alveolar epithelial cells
exposed to severe hypoxia, we have reported that increased production of mitochondrial reactive oxygen species leads to Na,K-ATPase
endocytosis and degradation. We found that this regulated process follows what is referred as the Phosphorylation–Ubiquitination–Recognition–Endocytosis–Degradation (PURED) pathway. Cells exposed to hypoxia generate reactive oxygen species which activate PKCζ which in turn phosphorylates
the Na,K-ATPase at the Ser18 residue in the N-terminus of the α1-subunit leading the ubiquitination of any of the four lysines
(K16, K17, K19, K20) adjacent to the Ser18 residue. This process promotes the α1-subunit recognition by the μ2 subunit of
the adaptor protein-2 and its endocytosis trough a clathrin dependent mechanism. Finally, the ubiquitinated Na,K-ATPase undergoes
degradation via a lysosome/proteasome dependent mechanism. 相似文献
3.
Biophysics - This review considers the molecular mechanisms involved in the redox regulation of the Na,K-ATPase. The enzyme creates a transmembrane gradient of sodium and potassium ions, which is... 相似文献
4.
Na,K-ATPase function in alternating electric fields. 总被引:1,自引:0,他引:1
M Blank 《FASEB journal》1992,6(7):2434-2438
Alternating currents affect ion transport processes and ATP splitting through changes in the activation of the membrane Na,K-ATPase. Both processes vary with the frequency, and the effective range includes the environmental 60 Hz. ATP splitting by Na,K-ATPase suspensions decreases for the enzyme under normal conditions, with the maximum effect at 100 Hz. ATP splitting increases when the enzyme activity is lowered to less than half its optimal value by changes in temperature, ouabain concentration, etc. These observations can be explained by the effects of the ionic currents on ion binding at the enzyme activation sites. Such a mechanism could account for the effects of electromagnetic fields on cells, as the transmembrane enzyme can convey the effect of an extracellular signal into the cell via ionic fluxes, and the measured threshold field is within the range of reported biological effects. 相似文献
5.
The identical increase of Na, K-ATPase activity is caused by oxidated and reduced forms of noradrenaline, serotonin and dopamine through the synaptosomal activating factors. The synaptosomal inhibiting factor, orthovanadate and calcium ions independently inhibit Na, K-ATPase activity. The inhibition constant (Ki) for vanadate does not change in the presence of EDTA, whereas in the presence of synaptosomal factors regulating the Na, K-ATPase factors, noradrenaline causes drastic increase of Ki for vanadate. It has been concluded, that the data point to the existence of special regulating system of brain synaptosomal Na, K-ATPase. 相似文献
6.
7.
A deviation from optimal conditions of the Na, K-ATPase reaction results in a drastic change in the plot: enzyme activity versus Na/K ratio. Acidification of the medium and a decrease in Mg2+ concentration and temperature results in two peaks on the curve at Na/K ratio of about 1 and at Na/K ratio greater than 4. The enhancement of pH of the medium and increase in Mg2+ concentration decreases the first peak and increases the second one. A comparison of these curves for hydrolysis of ATP, UTP and p-nitrophenylphosphate and temperature dependence of the hydrolysis of the substrates suggest that the anomalies observed may be accounted for the Na+ effect on the K-sites or K+ effect on the Na-sites under conditions when cation-binding sites are heterogeneous. 相似文献
8.
A study was made of the dependence of ATP hydrolysis intensity upon different ratios of sodium and potassium ions in plasma membrane of L cells and of cells of clone Lebr 625, sensitive and resistant to ethidium bromide, and of the distribution of cells according to cell cycle phases in dense and sparse cultures. In dense cultures, the cell growth is arrested on G1 phase, the hydrolytic activity of (Na+ + K+)-ATPase decreases, and the Na+, K+ ratio for maximum activity of (Na+ + K+)-ATPase changes. The higher proliferative activity of Lebr 625 cells in dense culture corresponds to the higher hydrolytic activity of (Na+ + K+)-ATPase. 相似文献
9.
Na,K-ATPase is essential for the regulation of cytoplasmic Na+ and K+ levels in lens cells. Studies on the intact lens suggest activation of tyrosine kinases may inhibit Na,K-ATPase function. Here, we tested the influence of Lyn kinase, a Src-family member, on tyrosine phosphorylation and Na,K-ATPase activity in membrane material isolated from porcine lens epithelium. Western blot studies indicated the expression of Lyn in lens cells. When membrane material was incubated in ATP-containing solution containing partially purified Lyn kinase, Na,K-ATPase activity was reduced by 38%. Lyn caused tyrosine phosphorylation of multiple protein bands. Immunoprecipitation and Western blot analysis showed Lyn treatment causes an increase in density of a 100-kDa phosphotyrosine band immunopositive for Na,K-ATPase 1 polypeptide. Incubation with protein tyrosine phosphatase 1B (PTP-1B) reversed the Lyn-dependent tyrosine phosphorylation increase and the change of Na,K-ATPase activity. The results suggest that Lyn kinase treatment of a lens epithelium membrane preparation is able to bring about partial inhibition of Na,K-ATPase activity associated with tyrosine phosphorylation of multiple membrane proteins, including the Na,K-ATPase 1 catalytic subunit. lens; Na,K-ATPase; tyrosine phosphorylation; Lyn 相似文献
10.
The mechanism of Na,K-ATPase function is reviewed. The peculiarities of hydrolysis of various substrates are described. The experimental results testify to the effect of substrate structure on the E2----E1 transition, rate of Na+ transport, K-dependent phosphatase activation and the quaternary structure of Na,K-ATPase. A conclusion is drawn that the proton-acceptor properties of the substrate play a role in the regulation of ion transport by Na,K-ATPase. 相似文献
11.
C.H. Pedemonte T.A. Pressley M.F. Lokhandwala A.R. Cinelli 《The Journal of membrane biology》1997,155(3):219-227
Considerable evidence indicates that the renal Na+,K+-ATPase is regulated through phosphorylation/dephosphorylation reactions by kinases and phosphatases stimulated by hormones
and second messengers. Recently, it has been reported that amino acids close to the NH2-terminal end of the Na+,K+-ATPase α-subunit are phosphorylated by protein kinase C (PKC) without apparent effect of this phosphorylation on Na+,K+-ATPase activity. To determine whether the α-subunit NH2-terminus is involved in the regulation of Na+,K+-ATPase activity by PKC, we have expressed the wild-type rodent Na+,K+-ATPase α-subunit and a mutant of this protein that lacks the first thirty-one amino acids at the NH2-terminal end in opossum kidney (OK) cells. Transfected cells expressed the ouabain-resistant phenotype characteristic of
rodent kidney cells. The presence of the α-subunit NH2-terminal segment was not necessary to express the maximal Na+,K+-ATPase activity in cell membranes, and the sensitivity to ouabain and level of ouabain-sensitive Rb+-transport in intact cells were the same in cells transfected with the wild-type rodent α1 and the NH2-deletion mutant cDNAs. Activation of PKC by phorbol 12-myristate 13-acetate increased the Na+,K+-ATPase mediated Rb+-uptake and reduced the intracellular Na+ concentration of cells transfected with wild-type α1 cDNA. In contrast, these effects were not observed in cells expressing
the NH2-deletion mutant of the α-subunit. Treatment with phorbol ester appears to affect specifically the Na+,K+-ATPase activity and no evidence was observed that other proteins involved in Na+-transport were affected. These results indicate that amino acid(s) located at the α-subunit NH2-terminus participate in the regulation of the Na+,K+-ATPase activity by PKC.
Received: 10 July 1996/Revised: 19 September 1996 相似文献
12.
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na+,K+- and H+,K+-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations. 相似文献
13.
The Na,K-ATPase 总被引:15,自引:0,他引:15
The energy dependent exchange of cytoplasmic Na+ for extracellular K+ in mammalian cells is due to a membrane bound enzyme system, the Na,K-ATPase. The exchange sustains a gradient for Na+ into and for K+ out of the cell, and this is used as an energy source for creation of the membrane potential, for its de- and repolarisation, for regulation of cytoplasmic ionic composition and for transepithelial transport. The Na,K-ATPase consists of two membrane spanning polypeptides, an -subunit of 112-kD and a -subunit, which is a glycoprotein of 35-kD. The catalytic properties are associated with the -subunit, which has the binding domain for ATP and the cations. In the review, attention will be given to the biochemical characterization of the reaction mechanism underlying the coupling between hydrolysis of the substate ATP and transport of Na+ and K+. 相似文献
14.
Na,K-ATPase: Isoform structure,function, and expression 总被引:6,自引:0,他引:6
Jerry B. Lingrel 《Journal of bioenergetics and biomembranes》1992,24(3):263-270
An interesting feature of the Na,K-ATPase is the multiplicity of and isoforms. Three isoforms exist for the subunit, 1, 2, and 3, as well for the subunit, 1, 2, and 3. The functional significance of these isoforms is unknown, but they are expressed in a tissue- and developmental-specific manner. For example, all three isoforms of the subunit are present in the brain, while only 1 is present in kidney and lung, and 2 represents the major isoform in skeletal muscle. Therefore, it is possible that each of these isoforms confers different properties on the Na,K-ATPase which allows effective coupling to the physiological process for which it provides energy in the form of an ion gradient. It is also possible that the multiple isoforms are the result of gene triplication and that each isoform exhibits similar enzymatic properties. In this case, the expression of the triplicated genes would be individually regulated to provide the appropriate amount of Na,K-ATPase to the particular tissue and at specific times of development. While differences are observed in such parameters as Na+ affinity and sensitivity to cardiac glycosides, it is not known if these properties play a functional role within the cell.Site-directed mutagenesis has identified amino acid residues in the first extracellular region of the subunit as major determinants in the differential sensitivity to cardiac glycosides. Similar studies have failed to identify residues in the second extracellular region involved in cardiac glycoside inhibition. Further analysis of the enzymatic properties of the enzyme, understanding the regulated expression of the genes, and structure-function studies utilizing site-directed mutagenesis should provide new insights into the enzymatic and physiological roles of the various subunit isoforms of the Na,K-ATPase. 相似文献
15.
Lakunina V. A. Burnysheva K. M. Mitkevich V. A. Makarov A. A. Petrushanko I. Y. 《Molecular Biology》2017,51(1):148-154
Molecular Biology - Na,K-ATPase maintains sodium and potassium homeostasis. It is the only known receptor for cardiotonic steroids such as ouabain. Binding of ouabain to Na,K-ATPase leads to the... 相似文献
16.
Shahidullah M Mandal A Beimgraben C Delamere NA 《Journal of cellular physiology》2012,227(4):1428-1437
Purinergic receptors in lens epithelium suggest lens function can be altered by chemical signals from aqueous humor or the lens itself. Here we show release of ATP by intact porcine lenses exposed to hyposmotic solution (200 mOsm). 18α-glycyrrhetinic acid (AGA) added together with probenecid eliminated the ATP increase. N-ethylmaleimide (200 μM), an exocytotic inhibitor, had no significant effect on ATP increase. Lenses exposed to hyposmotic solution displayed a ~400% increase of propidium iodide (PI) entry into the epithelium. The increased ability of PI (MW 668) to enter the epithelium suggests possible opening of connexin and/or pannexin hemichannels. This is consistent with detection of connexin 43, connexin 50, and pannexin 1 in the epithelium and the ability of AGA + probenecid to prevent ATP release. Na,K-ATPase activity doubled in the epithelium of lenses exposed to hyposmotic solution. The increase of Na,K-ATPase activity did not occur when apyrase was used to prevent extracellular ATP accumulation or when AGA + probenecid prevented ATP release. The increase of Na,K-ATPase activity was inhibited by the purinergic P2 antagonist reactive blue-2 and pertussis toxin, a G-protein inhibitor, but not by the P2X antagonist PPADS. Hyposmotic solution activated Src family kinase (SFK) in the epithelium, judged by Western blot. The SFK inhibitor PP2 abolished both SFK activation and the Na,K-ATPase activity increase. In summary, hyposmotic shock-induced ATP release is sufficient to activate a purinergic receptor- and SFK-dependent mechanism that stimulates Na,K-ATPase activity. The responses might signify an autoregulatory loop initiated by mechanical stress or osmotic swelling. 相似文献
17.
A possible existence of two functional states of Na,K-ATPase with different electrogenic coefficients has been experimentally proved. Regulation of electrogenicity is achieved by alteration in the number of K+ transport sites. A transition of Na,K-ATPase from one functional state to the other has been shown to occur during the binding of ATP free ions. 相似文献
18.
Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase 总被引:2,自引:0,他引:2
Cai T Wang H Chen Y Liu L Gunning WT Quintas LE Xie ZJ 《The Journal of cell biology》2008,182(6):1153-1169
Here, we show that the Na/K-ATPase interacts with caveolin-1 (Cav1) and regulates Cav1 trafficking. Graded knockdown of Na/K-ATPase decreases the plasma membrane pool of Cav1, which results in a significant reduction in the number of caveolae on the cell surface. These effects are independent of the pumping function of Na/K-ATPase, and instead depend on interaction between Na/K-ATPase and Cav1 mediated by an N-terminal caveolin-binding motif within the ATPase α1 subunit. Moreover, knockdown of the Na/K-ATPase increases basal levels of active Src and stimulates endocytosis of Cav1 from the plasma membrane. Microtubule-dependent long-range directional trafficking in Na/K-ATPase–depleted cells results in perinuclear accumulation of Cav1-positive vesicles. Finally, Na/K-ATPase knockdown has no effect on processing or exit of Cav1 from the Golgi. Thus, the Na/K-ATPase regulates Cav1 endocytic trafficking and stabilizes the Cav1 plasma membrane pool. 相似文献
19.
《生物化学与生物物理学报:生物膜》2015,1848(5):1212-1223
Urea interacts with the Na,K-ATPase, leading to reversible as well as irreversible inhibition of the hydrolytic activity. The enzyme purified from shark rectal glands is more sensitive to urea than Na,K-ATPase purified from pig kidney. An immediate and reversible inhibition under steady-state conditions of hydrolytic activity at 37 °C is demonstrated for the three reactions studied: the overall Na,K-ATPase activity, the Na-ATPase activity observed in the absence of K+ as well as the K+-dependent phosphatase reaction (K-pNPPase) seen in the absence of Na+. Half-maximal inhibition is seen with about 1 M urea for shark enzyme and about 2 M urea for pig enzyme. In the presence of substrates there is also an irreversible inhibition in addition to the reversible process, and we show that ATP protects against the irreversible inhibition for both the Na,K-ATPase and Na-ATPase reaction, whereas the substrate paranitrophenylphosphate leads to a slight increase in the rate of irreversible inhibition of the K-pNPPase. The rate of the irreversible inactivation in the absence of substrates is much more rapid for shark enzyme than for pig enzyme. The larger number of potentially urea-sensitive hydrogen bonds in shark enzyme compared to pig enzyme suggests that interference with the extensive hydrogen bonding network might account for the higher urea sensitivity of shark enzyme. The reversible inactivation is interpreted in terms of domain interactions and domain accessibilities using as templates the available crystal structures of Na,K-ATPase. It is suggested that a few interdomain hydrogen bonds are those mainly affected by urea during reversible inactivation. 相似文献
20.
We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol trafficking to the plasma membrane by compound U18666A had the same effect on α1 Na/K-ATPase. Similarly, the expression of α1, but not α2 and α3, Na/K-ATPase was significantly reduced in the target organs of Niemann-Pick type C mice where the intracellular cholesterol trafficking is blocked. Mechanistically, decreases in the plasma membrane cholesterol activated Src kinase and stimulated the endocytosis and degradation of α1 Na/K-ATPase through Src- and ubiquitination-dependent pathways. Thus, the new findings, taken together with what we have already reported, revealed a previously unrecognized feed-forward mechanism by which cells can utilize the Src-dependent interplay among Na/K-ATPase, caveolin-1, and cholesterol to effectively alter the structure and function of the plasma membrane. 相似文献