首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocytes and is believed to be responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also assemble actin filaments and tether them to lipid bilayers through electrostatic interactions. Here we investigate the effect of increased negative charge of the lipid bilayer due to phosphorylation of phosphatidylinositol (PI) on MBP-mediated binding of actin to the lipid bilayer, by substituting phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate for PI in phosphatidylcholine/phosphatidylglycerol lipid vesicles. Phosphorylation of PI caused dissociation of the MBP/actin complex from the lipid vesicles due to repulsion of the negatively charged complex from the negatively charged membrane surface. An effect of phosphorylation could be detected even if the inositol lipid was only 2mol% of the total lipid. Calcium-calmodulin dissociated actin from the MBP-lipid vesicles and phosphorylation of PI increased the amount dissociated. These results show that changes to the lipid composition of myelin, which could occur during signaling or other physiological events, could regulate the ability of MBP to act as a scaffolding protein and bind actin filaments to the lipid bilayer.  相似文献   

2.
Boggs JM  Rangaraj G  Gao W  Heng YM 《Biochemistry》2006,45(2):391-401
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is most likely responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also polymerize actin, bundle F-actin filaments, and bind actin filaments to lipid bilayers through electrostatic interactions. MBP consists of a number of posttranslationally modified isomers of varying charge, some resulting from phosphorylation at several sites by different kinases, including mitogen-activated protein kinase (MAPK). Phosphorylation of MBP in oligodendrocytes occurs in response to various extracellular stimuli. Phosphorylation/dephosphorylation of MBP also occurs in the myelin sheath in response to electrical activity in the brain. Here we investigate the effect of phosphorylation of MBP on its interaction with actin in vitro by phosphorylating the most highly charged unmodified isomer, C1, at two sites with MAPK. Phosphorylation decreased the ability of MBP to polymerize actin and to bundle actin filaments but had no effect on the dissociation constant of the MBP-actin complex or on the ability of Ca2+-calmodulin to dissociate the complex. The most significant effect of phosphorylation on the MBP-actin complex was a dramatic reduction in its ability to bind to negatively charged lipid bilayers. The effect was much greater than that reported earlier for another charge isomer of MBP, C8, in which six arginines were deiminated to citrulline, resulting in a reduction of net positive charge of 6. These results indicate that although average electrostatic forces are the primary determinant of the interaction of MBP with actin, phosphorylation may have an additional effect due to a site-specific electrostatic effect or to a conformational change. Thus, phosphorylation of MBP, which occurs in response to various extracellular signals in both myelin and oligodendrocytes, attenuates the ability of MBP to polymerize and bundle actin and to bind it to a negatively charged membrane.  相似文献   

3.
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is most likely responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also polymerize actin, bundle F-actin filaments, and bind actin filaments to lipid bilayers through electrostatic interactions. MBP consists of a number of posttranslationally modified isoforms of varying charge, including C8, in which six arginines are deiminated to the uncharged residue citrulline. The deiminated form decreases with development, but is increased in patients with the demyelinating disease multiple sclerosis. Here we investigate the effect of decreased net positive charge of MBP on its interaction with actin in vitro by comparing a recombinant murine form, rmC1, of the most highly charged unmodified isoform, C1, and a recombinant analogue of C8 in which six basic residues are converted to glutamine, rmC8. The dissociation constant of the less charged isoform rmC8 for actin was a little greater than that of rmC1, and rmC8 had somewhat reduced ability to polymerize actin and bundle F-actin filaments than rmC1. Moreover, rmC8 was more readily dissociated from actin by Ca(2+)-calmodulin than rmC1, and the ability of the deiminated isoform to bind actin to lipid bilayers was reduced. These results indicate that electrostatic forces are the primary determinant of the interaction of MBP with actin. The spin labeled side chains of a series of rmC1 and rmC8 variants containing single Cys substitutions at seven sites throughout the sequence all became motionally restricted to a similar degree on binding F-actin, indicating that the entire sequence is involved in interacting with actin filaments or is otherwise structurally constrained in actin bundles. Thus, this posttranslational modification of MBP, which occurs early in life and is increased in multiple sclerosis, attenuates the ability of MBP to polymerize and bundle actin, and to bind it to a negatively charged membrane.  相似文献   

4.
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and other proteins. It assembles actin filaments and microtubules, can bind actin filaments and SH3-domains to a membrane surface, and may be able to tether them to the oligodendrocyte membrane and participate in signal transduction in oligodendrocytes/myelin. In the present study, we have shown that the 18.5 kDa MBP isoform can also bind microtubules to lipid vesicles in vitro. Phosphorylation of MBP at Thr94 and Thr97 (bovine sequence) by MAPK, and deimination of MBP (using a pseudo-deiminated recombinant form), had little detectable effect on its ability to polymerize and bundle microtubules, in contrast to the effect of these modifications on MBP-mediated assembly of actin. However, these modifications dramatically decreased the ability of MBP to tether microtubules to lipid vesicles. MBP and its phosphorylated and pseudo-deiminated variants were also able to bind microtubules to actin filaments. These results suggest that MBP may be able to tether microtubules to the cytoplasmic surface of the oligodendrocyte membrane, and that this binding can be regulated by post-translational modifications to MBP. We further show that MBP appears to be co-localized with actin filaments and microtubules in cultured oligodendrocytes, and also at the interface between actin filaments at the leading edge of membrane processes and microtubules behind them. Thus, MBP may also cross-link microtubules to actin filaments in vivo.  相似文献   

5.
The hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine([125I]TID) was used to label myelin basic protein or polylysine in aqueous solution and bound to lipid vesicles of different composition. Although myelin basic protein is a water soluble protein which binds electrostatically only to acidic lipids, unlike polylysine it has several short hydrophobic regions. Myelin basic protein was labeled to a significant extent by TID when in aqueous solution indicating that it has a hydrophobic site which can bind the reagent. However, myelin basic protein was labeled 2-4-times more when bound to the acidic lipids phosphatidylglycerol, phosphatidylserine, phosphatidic acid, and cerebroside sulfate than when bound to phosphatidylethanolamine, or when in solution in the presence of phosphatidylcholine vesicles. It was labeled 5-7-times more than polylysine bound to acidic lipids. These results suggest that when myelin basic protein is bound to acidic lipids, it is labeled from the lipid bilayer rather than from the aqueous phase. However, this conclusion is not unequivocal because of the possibility of changes in the protein conformation or degree of aggregation upon binding to lipid. Within this limitation the results are consistent with, but do not prove, the concept that some of its hydrophobic residues penetrate partway into the lipid bilayer. However, it is likely that most of the protein is on the surface of the bilayer with its basic residues bound electrostatically to the lipid head groups.  相似文献   

6.
H Mueller  H J Butt    E Bamberg 《Biophysical journal》1999,76(2):1072-1079
The mechanical and adhesion properties of myelin basic protein (MBP) are important for its function, namely the compaction of the myelin sheath. To get more information about these properties we used atomic force microscopy to study tip-sample interaction of mica and mixed dioleoylphosphatidylserine (DOPS) (20%)/egg phosphatidylcholine (EPC) (80%) lipid bilayer surfaces in the absence and presence of bovine MBP. On mica or DOPS/EPC bilayers a short-range repulsive force (decay length 1.0-1.3 nm) was observed during the approach. The presence of MBP always led to an attractive force between tip and sample. When retracting the tip again, force curves on mica and on lipid layers were different. While attached to the mica surface, the MBP molecules exhibited elastic stretching behavior that agreed with the worm-like chain model, yielding a persistence length of 0.5 +/- 0.25 nm and an average contour length of 53 +/- 19 nm. MBP attached to a lipid bilayer did not show elastic stretching behavior. This shows that the protein adopts a different conformation when in contact with lipids. The lipid bilayer is strongly modified by MBP attachment, indicating formation of MBP-lipid complexes and possibly disruption of the original bilayer structure.  相似文献   

7.
Phospholipid vesicles containing ponticulin have been used to form solid supported and tethered bilayer lipid membranes. The ponticulin serves as both a nucleation site for actin polymerization as well as a binding site for F-actin. Studies of F-actin binding to such bilayers have demonstrated the formation of an in vitro actin scaffold. The dissociation constant for the binding of F-actin filaments to a ponticulin-containing tethered bilayer was found to be 11 +/- 5 nM, indicative of high affinity binding.  相似文献   

8.
Several groups have observed that phosphorylation causes the MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) protein to move off cell membranes and phospholipid vesicles. Our working hypothesis is that significant membrane binding of MARCKS requires both hydrophobic insertion of the N-terminal myristate into the bilayer and electrostatic association of the single cluster of basic residues in the protein with acidic lipids and that phosphorylation reverses this electrostatic association. Membrane binding measurements with myristoylated peptides and phospholipid vesicles show this hydrophobic moiety could, at best, barely attach proteins to plasma membranes. We report here membrane binding measurements with basic peptides that correspond to the phosphorylation domains of MARCKS and neuromodulin. Binding of these peptides increases sigmoidally with the percent acidic lipid in the phospholipid vesicle and can be described by a Gouy-Chapman/mass action theory that explains how electrostatics and reduction of dimensionality produce apparent cooperativity. The electrostatic affinity of the MARCKS peptide for membranes containing 10% acidic phospholipids (10(4) M-1 = chi/[P], where chi is the mole ratio of peptide bound to the outer monolayer of the vesicles and [P] is the concentration of peptide in the aqueous phase) is the same as the hydrophobic affinity of the myristate moiety for bilayer membranes. Phosphorylation decreases the affinity of the MARCKS peptide for membranes containing 15% acidic lipid about 1000-fold and produces a rapid (t1/2 < 30 s) dissociation of the peptide from phospholipid vesicles.  相似文献   

9.
Myelin basic protein (MBP) is thought to be responsible for adhesion of the intracellular surfaces of compact myelin to give the major dense line. The 17 and 21.5 kDa isoforms containing exon II have been reported by others to localize to the cytoplasm and nucleus of murine oligodendrocytes and HeLa cells while the 14 and 18.5 kDa isoforms lacking exon II are confined to the plasma membrane. However, we show that the exon II(-) 18.5 kDa form and a recombinant exon II(+) 21.5 kDa isoform both caused similar aggregation of acidic lipid vesicles, indicating that they should have similar abilities to bind to the intracellular lipid surface of the plasma membrane and to cause adhesion of those surfaces to each other. The circular dichroism spectra of the two isoforms indicated that both had a similar secondary structure. Thus, both isoforms should be able to bind to and cause adhesion of the cytosolic surfaces of compact myelin. The fact that they do not could be due to differences in post-translational modification in vivo, trafficking through the cell and/or subcellular location of synthesis, but it is not due to differences in their lipid binding.  相似文献   

10.
Myelin basic protein is a water soluble membrane protein which interacts with acidic lipids through some type of hydrophobic interaction in addition to electrostatic interactions. Here we show that it can be labeled from within the lipid bilayer when bound to acidic lipids with the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID) and by two lipid photolabels. The latter included one with the reactive group near the apolar/polar interface and one with the reactive group linked to an acyl chain to position it deeper in the bilayer. The regions of the protein which interact hydrophobically with lipid to the greatest extent were determined by cleaving the TID-labeled myelin basic protein (MBP) with cathepsin D into peptides 1-43, 44-89, and 90-170. All three peptides from lipid-bound protein were labeled much more than peptides from the protein labeled in solution. However, the peptide labeling pattern was similar for both environments. The two peptides in the N-terminal half were labeled similarly and about twice as much as the C-terminal peptide indicating that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half. MBP can be modified post-translationally in vivo, including by deamidation, which may alter its interactions with lipid. However, deamidation had no effect on the TID labeling of MBP or on the labeling pattern of the cathepsin D peptides. The site of deamidation has been reported to be in the C-terminal half, and its lack of effect on hydrophobic interactions of MBP with lipid are consistent with the conclusion that the N-terminal half interacts hydrophobically more than the C-terminal half. Since other studies of the interaction of isolated N-terminal and C-terminal peptides with lipid also indicate that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half, these results from photolabeling of the intact protein suggest that the N-terminal half of the intact protein interacts with lipid in a similar way as the isolated peptide. The similar behavior of the intact protein to that of its isolated peptides suggests that when the purified protein binds to acidic lipids, it is in a conformation which allows both halves of the protein to interact independently with the lipid bilayer. That is, it does not form a hydrophobic domain made up from different parts of the protein.  相似文献   

11.
The effect of glycosphingolipids (GSLs) with oligosaccharide chains of different length and charge on membrane-membrane interactions induced by myelin basic protein (MBP) or melittin (Mel) was comparatively investigated with small unilamellar vesicles. MBP induces a fast vesicle aggregation and close membrane apposition. Merging of lipid bilayers and vesicle fusion induced by MBP are slower and less extensive processes compared to membrane apposition. The changes of membrane permeability concomitant to these phenomena are small. The Trp region of MBP remains in a rather polar environment when interacting with vesicles; its accessibility to NO3- or acrylamide quenching depends on the type of GSLs in the membrane. The Trp region of Mel is inserted more deeply into the lipid bilayer and its accessibility to the aqueous quenchers is less dependent on variations of the oligosaccharide chain of the GSLs. Mel induces a faster and more extensive membrane apposition and bilayer merging than does MBP. Extensive vesicle disruption occurs in the presence of Mel. Negatively charged GSLs facilitate membrane proximity and vesicle aggregation but an increase of the oligosaccharide chain length of either neutral or acidic GSLs decreases the interaction among vesicles that are induced by either protein. This effect is independent of the different mode of insertion of MBP and Mel into the membrane. Our results suggest that the modulation by the oligosaccharide chain on the protein-induced interactions between bilayers containing GSLs is probably exerted beyond the level of local molecular interactions between the basic proteins and the lipids.  相似文献   

12.
According to the original Holmes model of F-actin structure, the hydrophobic loop 262-274 stabilizes the actin filament by inserting into a pocket formed at the interface between two protomers on the opposing strand. Using a yeast actin triple mutant, L180C/L269C/C374A [(LC)(2)CA], we showed previously that locking the hydrophobic loop to the G-actin surface by a disulfide bridge prevents filament formation. We report here that the hydrophobic loop is mobile in F- as well as in G-actin, fluctuating between the extended and parked conformations. Copper-catalyzed, brief air oxidation of (LC)(2)CA F-actin on electron microscopy grids resulted in the severing of thin filaments and their conversion to amorphous aggregates. Disulfide, bis(methanethiosulfonate) (MTS), and dibromobimane (DBB) cross-linking reactions proceeded in solution at a faster rate with G- than with F-actin. Cross-linking of C180 to C269 by DBB (4.4 A) in either G- or F-actin resulted in shorter and less stable filaments. The cross-linking with a longer MTS-6 reagent (9.6 A) did not impair actin polymerization or filament structure. Myosin subfragment 1 (S1) and tropomyosin inhibited the disulfide cross-linking of phalloidin-stabilized F-actin. Electron paramagnetic resonance measurements with nitroxide spin-labeled actin revealed strong spin-spin coupling and a similar mean interspin distance ( approximately 10 A) in G- and in F-actin, with a broader distance distribution in G-actin. These results show loop 262-274 fluctuations in G- and F-actin and correlate loop dynamics with actin filament formation and stability.  相似文献   

13.
Myelin basic proteins (MBP) interacts with F-actin resulting in the precipitation of a complex of both proteins. Electron microscope observations of this complex reveal the presence of ordered bundles of F-actin filaments similar to those obtained from F-actin and troponin I. In addition to the bundles, there also appear short fragments of F-actin filaments. In the presence of Ca2+ calmodulin causes a release of MBP from its complex with F-actin, accompanied by dissociation of F-actin bundles into separate filaments. Parallel to the binding of MBP to F-actin the ATPase activity of actomyosin is progressively reduced. This inhibition is reversed by calmodulin but only in the presence of Ca2+. Studies of the binding of S-1 to F-actin and to the F-actin-MBP complex indicate that the interaction sites for MBP and S-1 on the actin molecule are different.  相似文献   

14.
Interaction of glycosylated human myelin basic protein with lipid bilayers   总被引:1,自引:0,他引:1  
Myelin basic protein (MBP), isolated from normal human myelin, was glycosylated with UDP-N-acetyl-D-galactosamine and a glycosyltransferase isolated from porcine submaxillary glands. MBP containing 0.85 mol of N-acetyl-D-galactosamine per mole of protein was oxidized at carbon 6 by galactose oxidase and complexed with a spin-label, Tempoamine, in order to study its interactions with lipids. When the spin-labeled MBP was reacted with lipid vesicles consisting of DSPG, DPPG, and DMPG, most of the spin-label was motionally restricted in the gel phase, with a correlation time greater than 10(-8)s. The motion increased with increasing temperature and was sensitive to the lipid phase transition. Interaction with the gel phase of DPPA caused much less motional restriction of the probe. However, melting of the lipid allowed increased interaction and motional restriction of the probe, which was only partially reversed on cooling back to the gel phase. The motional restriction of the probe in these lipids is attributed to its penetration partway into the lipid bilayer in both the gel and liquid-crystalline phases. The fact that the probe bound to the protein can penetrate partway into the bilayer suggests that other hydrophobic side chains and residues of the protein can similarly penetrate into the bilayer. Additional evidence for penetration was provided by digestion of the lipid-bound protein with endoproteinase Lys-C. When nonglycosylated and glycosylated MBP in solution was treated with Lys-C, extensive digestion occurred. A single radioactive peptide which eluted at 25 min was identified as residues 92-105.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Previously, we have shown that the V-ATPase holoenzyme as well as the V1 complex isolated from the midgut of the tobacco hornworm (Manduca sexta) exhibits the ability of binding to actin filaments via the V1 subunits B and C (Vitavska, O., Wieczorek, H., and Merzendorfer,H. (2003) J. Biol. Chem. 278, 18499-18505). Since the recombinant subunit C not only enhances actin binding of the V1 complex but also can bind separately to F-actin, we analyzed the interaction of recombinant subunit C with actin. We demonstrate that it binds not only to F-actin but also to monomeric G-actin. With dissociation constants of approximately 50 nm, the interaction exhibits a high affinity, and no difference could be observed between binding to ATP-G-actin or ADP-G-actin, respectively. Unlike other proteins such as members of the ADF/cofilin family, which also bind to G- as well as to F-actin, subunit C does not destabilize actin filaments. On the contrary, under conditions where the disassembly of F-actin into G-actin usually occurred, subunit C stabilized F-actin. In addition, it increased the initial rate of actin polymerization in a concentration-dependent manner and was shown to cross-link actin filaments to bundles of varying thickness. Apparently bundling is enabled by the existence of at least two actin-binding sites present in the N- and in the C-terminal halves of subunits C, respectively. Since subunit C has the possibility to dimerize or even to oligomerize, spacing between actin filaments could be variable in size.  相似文献   

16.
Ponticulin, an F-actin binding transmembrane glycoprotein in Dictyostelium plasma membranes, was isolated by detergent extraction from cytoskeletons and purified to homogeneity. Ponticulin is an abundant membrane protein, averaging approximately 10(6) copies/cell, with an estimated surface density of approximately 300 per microns2. Ponticulin solubilized in octylglucoside exhibited hydrodynamic properties consistent with a ponticulin monomer in a spherical or slightly ellipsoidal detergent micelle with a total molecular mass of 56 +/- 6 kD. Purified ponticulin nucleated actin polymerization when reconstituted into Dictyostelium lipid vesicles, but not when a number of commercially available lipids and lipid mixtures were substituted for the endogenous lipid. The specific activity was consistent with that expected for a protein comprising 0.7 +/- 0.4%, by mass, of the plasma membrane protein. Ponticulin in octylglucoside micelles bound F- actin but did not nucleate actin assembly. Thus, ponticulin-mediated nucleation activity was sensitive to the lipid environment, a result frequently observed with transmembrane proteins. At most concentrations of Dictyostelium lipid, nucleation activity increased linearly with increasing amounts of ponticulin, suggesting that the nucleating species is a ponticulin monomer. Consistent with previous observations of lateral interactions between actin filaments and Dictyostelium plasma membranes, both ends of ponticulin-nucleated actin filaments appeared to be free for monomer assembly and disassembly. Our results indicate that ponticulin is a major membrane protein in Dictyostelium and that, in the proper lipid matrix, it is sufficient for lateral nucleation of actin assembly. To date, ponticulin is the only integral membrane protein known to directly nucleate actin polymerization.  相似文献   

17.
To obtain insight into the potential role of the cytoskeleton on lipid mixing behavior in plasma membranes, the current study explores the influence of physisorbed actin filaments (F-actin) on lipid–lipid phase separations in planar model membrane systems containing raft-mimicking lipid mixtures of well-defined compositions using a complementary experimental approach of epifluorescence microscopy, fluorescence anisotropy, wide-field single molecule fluorescence microscopy, and interfacial rheometry. In particular, we have explored the impact of F-actin on cholesterol (CHOL)–phospholipid interactions, which are considered important for the formation of CHOL-enriched lipid raft domains. By using epifluorescence microscopy, we show that physisorbed filamentous actin (F-actin) alters the domain size of lipid–lipid phase separations in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) and cholesterol (CHOL). In contrast, no actin-induced modification in lipid–lipid phase separations is observed in the absence of POPS or when POPS is replaced by another anionic lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG). Wide-field single molecule fluorescence microscopy on binary lipid mixtures indicate that PS and PG lipids show similar electrostatic interactions with physisorbed actin filaments. Complementary fluorescence anisotropy experiments on binary PS lipid-containing lipid mixtures are provided to illustrate the actin-induced segregation of anionic lipids. The similarity of electrostatic interactions between actin and both anionic lipids suggests that the observed differences in actin-mediated perturbations of lipid phase separations are caused by distinct PS lipid–CHOL versus PG lipid–CHOL interactions. We hypothesize that the actin cytoskeleton and some peripheral membrane proteins may alter lipid–lipid phase separations in plasma membranes in a similar way by interacting with PS lipids.  相似文献   

18.
Living cells contain a very large amount of membrane surface area, which potentially influences the direction, the kinetics, and the localization of biochemical reactions. This paper quantitatively evaluates the possibility that a lipid monolayer can adsorb actin from a nonpolymerizing solution, induce its polymerization, and form a 2D network of individual actin filaments, in conditions that forbid bulk polymerization. G- and F-actin solutions were studied beneath saturated Langmuir monolayers containing phosphatidylcholine (PC, neutral) and stearylamine (SA, a positively charged surfactant) at PC:SA = 3:1 molar ratio. Ellipsometry, tensiometry, shear elastic measurements, electron microscopy, and dark-field light microscopy were used to characterize the adsorption kinetics and the interfacial polymerization of actin. In all cases studied, actin follows a monoexponential reaction-limited adsorption with similar time constants (approximately 10(3) s). At a longer time scale the shear elasticity of the monomeric actin adsorbate increases only in the presence of lipids, to a 2D shear elastic modulus of mu approximately 30 mN/m, indicating the formation of a structure coupled to the monolayer. Electron microscopy shows the formation of a 2D network of actin filaments at the PC:SA surface, and several arguments strongly suggest that this network is indeed causing the observed elasticity. Adsorption of F-actin to PC:SA leads more quickly to a slightly more rigid interface with a modulus of mu approximately 50 mN/m.  相似文献   

19.
Binding of F-actin to spectrin-actin-depleted erythrocyte membrane inside-out vesicles was measured using [3H]F-actin. F-actin binding to vesicles at 25 degrees C was stimulated 5-10 fold by addition of spectrin dimers or tetramers to vesicles. Spectrin tetramer was twice as effective as dimer in stimulating actin binding, but neither tetramer nor dimer stimulated binding at 4 degrees C. The addition of purified erythrocyte membrane protein band 4.1 to spectrin- reconstituted vesicles doubled their actin-binding capacity. Trypsinization of unreconstituted vesicles that contain < 10% of the spectrin but nearly all of the band 4.1, relative to ghosts, decreased their F-actin-binding capacity by 70%. Whereas little or none of the residual spectrin was affected by trypsinization, band 4.1 was significantly degraded. Our results show that spectrin can anchor actin filaments to the cytoplasmic surface of erythrocyte membranes and suggest that band 4.1 may be importantly involved in the association.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号