首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tumor-associated-Ag MART-1 is expressed by most human melanomas. The genes encoding an alphabeta TCR from a MART-1-specific, HLA-A2-restricted, human T cell clone have been efficiently transferred and expressed in human PBL. These retrovirally transduced PBL cultures were MART-1 peptide reactive, and most cultures recognized HLA-A2+ melanoma lines. Limiting dilution clones were generated from three bulk transduced PBL cultures to investigate the function of individual clones within the transduced cultures. Twenty-nine of 29 CD8+ clones specifically secreted IFN-gamma in response to T2 cells pulsed with MART-1(27-35) peptide, and 23 of 29 specifically secreted IFN-gamma in response to HLA-A2+ melanoma lines. Additionally, 23 of 29 CD8+ clones lysed T2 cells pulsed with the MART-1(27-35) peptide and 15 of 29 lysed the HLA-A2+ melanoma line 888. CD4+ clones specifically secreted IFN-gamma in response to T2 cells pulsed with the MART-1(27-35) peptide. TCR gene transfer to patient PBL can produce CTL with anti-tumor reactivity in vitro and could potentially offer a treatment for patients with metastatic melanoma. This approach could also be applied to the treatment of other tumors and viral infections. Additionally, TCR gene transfer offers unique opportunities to study the fate of adoptively transferred T cells in vivo.  相似文献   

2.
Autologous melanoma-specific CTL recognize a common tumor-associated Ag (TAA) in the context of HLA class I antigens. We have demonstrated that HLA-A2 can be a restricting Ag and, in T cell lines homozygous for HLA-A2, that CTL can be generated by stimulation with HLA-A2 allogeneic melanomas. In the current study, we have investigated T cell lines from patients who are heterozygous at HLA-A region locus, to determine the relative importance of each A-region allele in this MHC-restricted recognition of tumor. We have shown that HLA-A1 can be a restricting Ag, and that allogeneic melanomas expressing HLA-A1 can substitute for the autologous tumor in the generation of HLA-A1-restricted CTL. However, when T cell lines express both HLA-A1 and HLA-A2, the HLA-A2 allele governed restriction of the melanoma TAA. Three autologous-stimulated HLA-A1, A2 CTL lines all demonstrated restriction by the HLA-A2 allele, when examined in cytotoxicity assays, cold-competition assays, and proliferation assays. There was no evidence of restriction by the second HLA-allele, HLA-A1. Although the autologous-stimulated CTL use a single A-region allele for tumor recognition, the autologous HLA-A1, A2 tumors are lysed by both HLA-A1-restricted and HLA-A2-restricted CTL. The dominance of restricting alleles was further demonstrated when HLA-matched allogeneic melanomas were used as the stimulating tumor to generate tumor-specific CTL. Stimulation of the heterozygous (HLA-A1, A2) lymphocytes with HLA-A2-matched allogeneic melanomas resulted in CTL specific for the autologous tumor, and restricted by the HLA-A2 Ag. However, stimulation with an HLA-A1-matched allogeneic melanoma failed to induce tumor-specific CTL restricted by the HLA-A1 Ag. The data suggest there is a dominance of HLA-A region Ag at the level of the T cell, such that only one is restricting in the recognition of the autologous melanoma. At the level of the tumor, however, the TAA is expressed in the context of both HLA-A region alleles. We can generate specific CTL from lymph node cells or PBL and HLA-A region matched allogeneic melanomas; however, because most patients are heterozygous at the HLA-A region locus, an understanding of the dominant restricting alleles must be obtained so that an appropriately matched allogeneic melanoma can be selected.  相似文献   

3.
Specificity of peptide binding by the HLA-A2.1 molecule   总被引:6,自引:0,他引:6  
The HLA-A2 molecule contains a putative peptide binding site that is bounded by two alpha-helices and a beta-pleated sheet floor. Previous studies have demonstrated that the influenza virus matrix peptide M1 55-73 can sensitize target cells for lysis by HLA-A2.1-restricted virus-immune CTL and can induce CTL that can lyse virus-infected target cells. To assess the specificity of peptide binding by the HLA-A2.1 molecule, we examined the ability of seven variant M1 peptides to be recognized by a panel of M1 55-73 peptide-specific HLA-A2.1-restricted CTL lines. The results demonstrate that five out of the seven variant M1 55-73 peptides could be recognized by A2.1-restricted M1 55-73 peptide-specific CTL lines. The two variant peptides that were not recognized by any CTL could bind to HLA-A2.1 as indicated by their ability to compete for presentation of the M1 55-73 peptide. In addition, 5 of a panel of 24 unrelated peptides tested could also compete for M1 55-73 presentation by HLA-A2.1. One peptide derived from the sequence of a rotavirus protein could sensitize HLA-A2.1+ targets for lysis by M1 55-73 peptide-specific CTL. We conclude from these studies that: 1) the HLA-A2.1 molecule can bind a broad spectrum of peptides; 2) T cells selected for the ability to recognize one peptide plus a class I molecule can actually recognize an unrelated peptide presented by that same class I molecule; and 3) a stretch of three adjacent hydrophobic amino acids may be an important common feature of peptides that can bind to HLA-A2.1.  相似文献   

4.
Multiple amino acid sequence differences distinguish individual HLA antigens. Those residues important in immune recognition events have not been defined. Recent studies have identified HLA-A2 structural variants that, although serologically indistinguishable from other HLA-A2 antigens, are recognized poorly, if at all, by HLA-A2-restricted, influenza virus-immune, or HLA-A2-specific alloimmune CTL. In this study we utilize double-label tryptic peptide comparisons performed by both reverse-phase HPLC and cation exchange chromatography, in conjunction with conventional and microsequence analysis, to characterize the HLA-A2 heavy chains derived from variant DK1. We detect a single tryptic peptide that distinguishes DK1 HLA-A2 from the predominant HLA-A2 heavy chain species. This peptide spans residues 147 to 157 in the second heavy chain domain, and carries substitutions at positions 149, 152, and 156. Residues in this segment of the polypeptide are also altered in another HLA-A2 variant, as well as one H-2Kb mutant. Thus, this segment appears to be critical in forming determinants important in CTL recognition of class I antigens in general. On the basis of these and other results, we suggest that in contrast to recognition by alloantibodies, a discrete region of class I antigens may be crucial for CTL recognition.  相似文献   

5.
Prostate-specific antigen (PSA) is a potentially useful antigen for targeted T-cell immunotherapy of prostate cancer (CaP). Our laboratory has identified a synthetic nonamer peptide (PSA 146-154) homologue of PSA, which binds to the prevalent human leukocyte antigen, HLA-A2, and elicits specific cytotoxic T-lymphocyte (CTL) responses from normal individuals of the HLA-A2 phenotype. In the present study, we report on the induction of CTL from peripheral blood mononuclear cells (PBMC) of patients with hormone-refractory CaP, which exhibit the same specificity. T-cell lines were established from two patients by stimulation of PBMC with PSA 146-154 peptide in vitro. The T-cell lines exhibited specific cytolytic activity against T2 cells pulsed with PSA 146-154 peptide, but not a control HLA-A2 binding peptide (HIV-RT 476-484) via chromium release assay (CRA). The T-cell lines also showed PSA 146-154 peptide-specific IL-4 responses, but no detectable interferon-gamma (IFN-gamma) responses via enzyme-linked immuno-spot assays. Magnetic immuno-selection studies of one of the T-cell lines demonstrated that both cytolytic and interleukin-4 (IL-4) responses were mediated by CD8(+), but not by CD4(+) T cells. This Tc2 line was further characterized for the ability to recognize endogenously processed PSA epitopes. The line specifically secreted IL-4 in response to HLA-A2(+) target cells transfected to express PSA and specifically lysed the PSA(+) target cells, but not control transfected cells. The results indicate that the PSA 146-154 peptide emulates a naturally processed and presented peptide epitope of PSA that is within the T-cell repertoire of HLA-A2(+)patients with CaP.  相似文献   

6.
Influenza-specific cytotoxic T cells restricted by HLA-A3 recognize differences between HLA-A3 antigens that are serologically indistinguishable. To examine whether this differential recognition had a structural basis, we have compared the structures of HLA-A3 molecules from Epstein Barr virus-transformed peripheral blood lymphocytes of two individuals, E1 and M17. M17 was representative of the majority of HLA-A3-bearing individuals, whereas E1 was a variant distinguished by cytotoxic T cells. Peptide map comparisons revealed a small number of differences when particular amino acids were used to radiolabel the A3 molecules. Sequence analysis and comparison of the results with the prototypic HLA-A3 sequence localized the variability to a tryptic peptide spanning residues 147-157. To obtain the complete amino acid sequence for the E1 and M17 A3 molecules in the 147-157 region, the CNBr fragments beginning at residue 139 were isolated and sequenced. Two amino acid differences were detected between the HLA-A3 molecule of the CTL-defined variant E1 and that of M17. At position 152, Glu in donor M17 had changed to Va1 in donor E1, and at position 156, Leu in donor M17 had changed to Gln in donor E1. The finding that A3 molecules from E1 are altered in the region between residues 147 and 157 is consistent with studies on HLA-A2 variants and Kb mutants showing that this region of class I molecules is important for CTL recognition but not for recognition by serologic reagents.  相似文献   

7.
ASP is the only bacterial protease in the kexin group of the subtilisin family. Previous studies have revealed that the ORF2 protein encoded at the 3′ end of the asp operon is required for ASP to change from a nascent form into an active form in the periplasm. However, the mechanism by which ORF2 makes contact and interacts with ASP in the maturation process remains unknown. The present study examined the effect of mutations in the carboxy‐terminal region of ASP on the ASP maturation process. Both deletion‐mutation and amino acid‐substitution studies have demonstrated that the histidine residue at position 595 (His‐595), the sixth residue from the carboxyl terminus of ASP, is highly involved in the generation of active ASP molecules. An analysis by pull‐down assay revealed that mutation at His‐595 reduces the efficacy of nascent ASP to transition into active ASP by reducing the ability of ASP to make contact and interact with ORF2. Thus, it appears likely that nascent ASP in the periplasm interacts with ORF2 via the carboxy‐terminal region, and His‐595 of ASP appears to be an indispensable residue in this interaction.  相似文献   

8.
T cells of two donors, JR (HLA-A23, 29; B7,7; G; DRw5) and HG (HLA-A2, 23; B40, w44; Cw4), were stimulated with cells from an HLA homozygous lymphoblastoid cell line JY (HLA-A2, 2; B7,7, C-, DRw4, 6) and cloned by limiting dilution after the third stimulation. Two cytotoxic T-cell (CTL) clones, JR-2-16 (from donor JR) and HG-31 (from donor HG), were used for detailed studies. The results of a panel study using lymphocytes from HLA-typed individuals and a study with two HLA recombinant families indicate that the antigens recognized by the CTL clones JR-2-16 and HG-31 were highly associated with HLA-A2 and HLA-B7, respectively. Blocking studies with a monoclonal antibody recognizing a framework determinant on HLA-A, -B and-C antigens and a monoclonal antibody reacting with HLA-A2 support the notion that JR-2-16 and HG-31 interact with the HLA-A2 and the HLA-B7 antigens per se. However, these clones did not recognize the HLA-A2 and HLA-B7 of all donors typed for these antigens, suggesting that the HLA-A2 and HLA-B7 antigens of these particular donors are variants of the serologically defined HLA antigens. These results indicate that in vitro-derived human CTL clones detect variations in the serologically defined allospecificities and can be used as reagents to elucidate the polymorphism of HLA antigens further.Abbreviations used in this paper: CTL cytotoxic - T lymphocytes - BSA bovine serum albumin - PHA phytohemagglutinin - Con A concanavalin A.  相似文献   

9.
Cross-reactivity of T cells is defined as recognition of two or more peptide-MHC complexes by the same T cell. Although examples of cross-reactivity have been reported, a detailed examination of cross-reactivity has not been performed. In this study, we took advantage of the high degree of polyclonality in the BV19 T cell repertoire responding to influenza M1(58-66) in HLA-A2 individuals to obtain a measure of simple cross-reactivity. We used substitutions that incrementally change the structure of the M1(58-66) peptide to measure how the HLA-A2-restricted response adapts to these changes. In three HLA-A2 adult subjects, we identified the BV19 clonotypes in the recall response to the influenza epitope M1(58-66) and 12 M1 peptides substituted at TCR contact position 63 or 65. The fraction of cross-reactive clonotypes in the M1(58-66) repertoire varied from 45-58% in the three donors. The extent of cross-reactivity, which is the additional number of peptides recognized by a single clonotype, is as high as six. We summarized the data using graph theory, with the cross-reactive clonotypes connecting the different HLA-A2 peptides recognized. The cross-reactive clonotypes form a well-connected network that could provide protection from virus-escape variants. We predict that any new pathogen with an epitope whose shape corresponds to that of the peptides that we studied would find a pre-existing repertoire ready to respond to it. We propose that in adult memory repertoires, previously encountered epitopes may have generated similar cross-reactive repertoires.  相似文献   

10.
HLA-A2 specific human cytotoxic T lymphocytes (CTL) cell lines have been developed using T cell growth factor and coculture of peripheral blood lymphocytes with selected allogeneic target cell lines. The CTL-8 line showed specificity for human leukocyte antigens (HLA)-A2 bearing target cells after 5 weeks in culture when tested against a panel of 14 lymphoblastoid cell lines in a 51Chromium (51Cr) release assay. Purified anti-human leukocyte antigens (HLA) monoclonal antibodies W6/32 and PA2.1 inhibited cytolysis by 85% and 60%, respectively. The CTL-8 line lysed non-HLA-A2 target cells in the presence of lectins concanavalin A (Con A) or phytohemagglutinin-P lectin (PHA-P) indicating the specificity of cytolysis was not due to nonspecific resistance of target cells to the CTL-lytic mechanism. The T5-1 HLA-A2 mutant cell series were tested as targets for the CTL-8 line. Cell clones 8.18.1, 8.21.1 and 8.6.1, which express altered HLA-A2 molecules as determined by their decreased reactivity with allospecific monoclonal antibodies, were lysed by the CTL-8 line as efficiently as the T5-1 wild type. These cell lines also acted as efficient cold target competitors for a normal HLA-A2 target cell. The 8.14.1 cell clone expressed a lower amount of HLA-A2 alloantigen and showed a corresponding decreased reactivity with CTL-8 in direct cytolytic and cold target competitive inhibition assays. In contrast, the M7 and DK1 HLA-A2 variant cell lines, which express normal HLA-A2 serological determinants, were inefficiently lysed by CTL-8 and did not act as competitive inhibitors of normal HLA-A2 target cells. These results support the concept that the alloantigenic determinant(s) recognized by T cells and antibodies occur at separate regions on the HLA-A2 molecule.  相似文献   

11.
It has been shown that the alpha 4 beta 1 integrin is the lymphocyte receptor for the carboxy terminal cell-binding domain of fibronectin which comprises adhesion sites in Hep 2 and a high affinity site, CS-1, in the type III connecting segment or V (for variable) region. In the present studies, using a series of peptides derived from CS-1, we identify the tripeptide leu-asp-val (LDV), as the minimal peptide capable of supporting stable lymphocyte or melanoma cell adhesion. However, only cells which expressed an active form of the alpha 4 beta 1 complex were capable of attaching to and spreading on LDV peptide. On a molar basis, LDV minimal peptides were either not active or 10-20 times less active than intact CS-1 in promoting the adhesion of lymphocytes expressing the resting form of the receptor. In cells which express the high avidity form of the receptor, LDV and CS-1 were equally effective in promoting cell adhesion and spreading. The avidity of the alpha 4 beta 1 complex could be altered with mAbs to beta 1 which specifically activate beta 1 dependent function. The high avidity form of the alpha 4 beta 1 complex could be induced on U937 cells, T, and B lymphoblastoid cell lines, or PHA-stimulated T cell blasts. Resting PBL could not be induced to bind LDV peptide conjugates by activating antibodies to beta 1 implying that two signals are required for LDV recognition by T cells. In conclusion, these data show clearly that the minimal peptide for the alpha 4 beta 1 complex in CS-1 is the LDV sequence. Although numerous cell populations can interact with intact CS-1 only cells which express an active alpha 4 beta 1 complex can bind the LDV sequence. This implies that cell interaction with the carboxy terminal cell-binding domain of fibronectin can be regulated at several levels: (a) alpha 4 beta 1 expression; (b) activation of the alpha 4 beta 1 complex; and (c) alternate splicing of CS-1 into V+ isoforms of fibronectin.  相似文献   

12.
Three mouse hybridomas secreting antibodies against the undecapeptide Lys-Pro-Pro-Thr-Pro-Pro-Pro-Glu-Pro-Glu-Thr, corresponding to the carboxy terminus of simian virus 40 large T antigen, were isolated and cloned. A sensitive enzyme-linked immunosorbent assay was used to characterize the properties of the monoclonal antibodies. All three hybridomas, designated KT1, KT3, and KT4, produced antibodies that immunoprecipitated large T. The antibodies differed in their affinities for the peptide and for the native protein. Antibodies from KT3 precipitated large T better than those from KT1 or KT4. KT3 antibodies also had the highest affinity for the free peptide (5.2 X 10(6) M-1) as determined by radioimmunoassay; KT1 and KT4 antibodies had ca. 5- and 1,000-fold lower affinities, respectively. Inhibition studies with shorter peptides, overlapping the undecapeptide, revealed the approximate regions recognized by the different monoclonal antibodies. KT3 antibodies bound to a region within the carboxy-terminal six amino acids of large T. Antibodies from KT1 and KT4 reacted with sequences located further towards the amino terminus of the undecapeptide. Surprising results were obtained with KT4 antibodies. Their binding to the undecapeptide was completely inhibited by the undecapeptide itself or the carboxy-terminal hexapeptide. The carboxy-terminal pentamer, on the other hand, slightly enhanced binding, and the carboxy-terminal tetramer, Glu-Pro-Glu-Thr, was strongly stimulatory. A model for this effect is proposed. Using the enzyme-linked immunosorbent assay, we confirmed previous studies (W. Deppert and G. Walter, Virology 122:56-70, 1982) which found that antiserum against sodium dodecyl sulfate-denatured large T reacts strongly with the carboxy terminus of large T. By inhibition studies, we identified the approximate region within the undecapeptide recognized by anti-sodium dodecyl sulfate-denatured large T and compared this region with the region identified by antipeptide serum.  相似文献   

13.
Gene MAGE-A3 encodes tumor-specific antigenic peptides recognized by T cells on many tumors. MAGE-A3 peptides presented by HLA class I molecules have been identified using CD8 lymphocytes stimulated with cells that either expressed gene MAGE-A3 or were pulsed with candidate peptides. One antigen identified with the latter method is peptide MAGE-A3(195-203) IMPKAGLLI, presented by HLA-A24 molecules. It has been used to vaccinate advanced cancer patients. Here, we have used HLA/peptide tetramers to detect T cells recognizing this peptide. Their frequency was estimated to be 2 x 10(-8) of the blood CD8 cells in non-cancerous HLA-A24(+) individuals, which is tenfold lower than the reported frequencies of T cells against other MAGE peptides. In the blood of a patient vaccinated with MAGE-A3, the estimated frequency was 5 x 10(-7). Anti-MAGE-3.A24 cytolytic T cell clones were derived, that lysed peptide-pulsed cells with half-maximal effect at the low concentration of 500 pM. However, these CTL did not recognize a panel of HLA-A24(+) tumor cells that expressed MAGE-A3 at levels similar to those found in HLA-A1(+) tumor cells recognized by anti-MAGE-3.A1 CTLs. Furthermore, 293-EBNA cells transfected with MAGE-A3 and HLA-A24 constructs were hardly recognized by the anti-MAGE-3.A24 CTL clones. These results suggest that peptide MAGE-A3(195-203) is poorly processed and is not an appropriate target for cancer immunotherapy.  相似文献   

14.
Biosynthesis of HLA class I antigens has been studied in a variant B-LCLxT-LCL hybrid, 174XCEM.T2. This cell line encodes HLA-A2 and -B5, but expresses only small amounts of A2 antigen and undetectable B5 antigen at the cell surface due to a mutation inactivating a trans-acting regulatory gene encoded within the class II region of the human major histocompatibility complex. Northern blot analysis with HLA-A- and HLA-B-specific probes shows that 174XCEM.T2 synthesizes quantities of A and B locus mRNA comparable with its class I antigen-positive parent cell line. Immune precipitation studies indicate that 174XCEM.T2 synthesizes normal HLA heavy chains and beta 2-microglobulin which fail to form dimers. The heavy chains are N-glycosylated normally, but processing of the glycan to the complex form does not occur. In addition, free heavy chains in this cell line are not phosphorylated. Thus, the majority of class I heavy chains in 174XCEM.T2 do not combine with beta 2-microglobulin, and are not processed or transported to the cell surface. As both subunits are synthesized in normal amounts, we propose that an additional molecule absent from 174XCEM.T2 and encoded by an HLA-linked gene is necessary for efficient assembly of class I antigen subunits.  相似文献   

15.
16.
Serologic and immunochemical assays have shown that the monoclonal antibody (MoAb) CR11-351 recognizes a determinant expressed by HLA-A2 and A28 alloantigens. The MoAb CR11-351 blocks the cytotoxicity of some, but not all, anti-HLA-A2 and anti-HLA-A28 alloantisera tested. These findings suggest that each allospecificity consists of several determinants, only some of which are spatially close to the determinant defined by the MoAb CR11-351. The binding of the MoAb CR11-351 to HLA-A2 lymphoid cells is not effected by their precoating with the HLA-A, B-specific MoAb CR10-214, Q6/64, and 6/31 but is enhanced by at least 20% by the MoAb CR10-131, CR10-402 and by the beta 2-m-specific MoAb NAMB-1. The MoAb CR11-351 did not react with one of four HLA-A2 variants which are indistinguishable with conventional anti-HLA-A2 sera, but are not recognized by "normal" HLA-A2-restricted cytotoxic T cells and possess structurally distinct HLA-A2 heavy chains. Therefore the MoAb CR11-351 provides the first evidence of a serologically detectable difference between the four HLA-A2 variants and "normal" HLA-A2 antigens.  相似文献   

17.
18.
The androgen receptor (AR) is a hormone receptor that plays a critical role in prostate cancer, and depletion of its ligand has long been the cornerstone of treatment for metastatic disease. Here, we evaluate the AR ligand-binding domain (LBD) as an immunological target, seeking to identify HLA-A2-restricted epitopes recognized by T cells in prostate cancer patients. Ten AR LBD-derived, HLA-A2-binding peptides were identified and ranked with respect to HLA-A2 affinity and were used to culture peptide-specific T cells from HLA-A2+ prostate cancer patients. These T-cell cultures identified peptide-specific T cells specific for all ten peptides in at least one patient, and T cells specific for peptides AR805 and AR811 were detected in over half of patients. Peptide-specific CD8+ T-cell clones were then isolated and characterized for prostate cancer cytotoxicity and cytokine expression, identifying that AR805 and AR811 CD8+ T-cell clones could lyse prostate cancer cells in an HLA-A2-restricted fashion, but only AR811 CTL had polyfunctional cytokine expression. Epitopes were confirmed using immunization studies in HLA-A2 transgenic mice, in which the AR LBD is an autologous antigen with an identical protein sequence, which showed that mice immunized with AR811 developed peptide-specific CTL that lyse HLA-A2+ prostate cancer cells. These data show that AR805 and AR811 are HLA-A2-restricted epitopes for which CTL can be commonly detected in prostate cancer patients. Moreover, CTL responses specific for AR811 can be elicited by direct immunization of A2/DR1 mice. These findings suggest that it may be possible to elicit an anti-prostate tumor immune response by augmenting CTL populations using AR LBD-based vaccines.  相似文献   

19.
Mice immunized with syngeneic cells transfected with cloned genes coding for HLA class I molecules could recognize the human MHC Ag in the context of their own H-2 molecules. We obtained CTL clones from DBA/2 mice (H-2d) which had been immunized with P815 cells (a mastocytoma of DBA/2 origin) expressing either HLA-A2 or HLA-A3 or two different molecules containing recombined sequences of HLA-A2 and HLA-A3. Fourteen of these clones recognized a synthetic peptide corresponding to the region 170-185 of HLA-A2 in the context of H-2Kd. Moreover, from their activity on P815 cells expressing HLA-Cw3, two subpatterns could be distinguished: subpattern Cw3+, defined by those clones which lysed P815-Cw3, and subpattern Cw3- defined by those clones which did not lyse P815-Cw3. By testing the activity of clones of each subpattern on a series of modified synthetic peptides, we were able to define two epitopes on the same 170-185 peptide of HLA-A2. One of them was dependent on amino acids at positions 173 and 177, whereas the other was dependent on amino acid 177 alone. By using competition experiments, we were also able to define an agretopic region strongly dependent on the amino acid at position 178. Furthermore, experiments with L cells expressing molecules containing recombined sequences between H-2Kd and H-2Dd demonstrated the determinant role of residues 152, 155, and 156 from H-2Kd in the presentation to murine T cells of the 170-185 peptide of HLA-A2.  相似文献   

20.
The influenza virus hemagglutinin (HA) glycoprotein synthesized from cloned DNA in a simian virus 40 vector is expressed on the surface of infected primate cells. Previously, it has been demonstrated that mutant HAs lacking the hydrophobic carboxy terminus fail to anchor on the cell surface and therefore are secreted extracellularly. During analysis of additional HA deletion mutants derived from an HA-simian virus 40 recombinant, we found a mutant with an altered hydrophobic carboxy terminus that exhibited another phenotype. This deletion mutant, dl-12, produced HA that was neither secreted nor expressed on the infected cell surface. The mutant HA was similar to the wild-type HA in apparent molecular weight and extent of glycosylation as assayed by endoglycosidase H sensitivity. The mutant HA localized near the perinuclear region of infected cells as indicated by an indirect immunofluorescence assay. Sequence analysis showed that a 5-base-pair deletion had occurred before the region encoding the hydrophobic carboxy terminus. Nevertheless, the physicochemical properties of the wild-type HA carboxy terminus were maintained in that the truncated HA carboxy terminus consisted of predominantly hydrophobic amino acids followed by several charged amino acids residues. This similarity in the carboxy terminus between the wild-type and mutant HAs may be responsible for the functional similarities observed. In spite of these similarities, the mutant HA failed to mature at the surface. These results suggest that the maturation of the mutant HA is blocked during a late stage in the transit to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号