首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The receptor for mouse hepatitis virus strain A59 (MHV-A59) is a 110- to 120-kilodalton (kDa) glycoprotein which is expressed in MHV-susceptible mouse strains on the membranes of hepatocytes, intestinal epithelial cells, and macrophages. SJL/J mice, which are highly resistant to MHV-A59, were previously shown to lack detectable levels of receptor by using either solid-phase virus receptor assays or binding of a monoclonal anti-receptor antibody (MAb) which blocks infection of MHV-susceptible mouse cells. This MAb was used for affinity purification of the receptor glycoprotein from livers of MHV-susceptible Swiss Webster mice. The MHV receptor and an antigenically related protein of 48 to 58 kDa were copurified and then separated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The first 15 amino acids of the receptor were sequenced, and a synthetic peptide of this amino acid sequence was prepared. Rabbit antiserum made against this peptide bound to the MHV receptor glycoprotein and the 48- to 58-kDa protein from livers of MHV-susceptible BALB/c mice and Swiss Webster mice and from the intestinal brush border of BALB/c mice. In immunoblots of intestinal brush border and hepatocyte membranes of MHV-resistant SJL/J mice, the antibody against the amino terminus of the receptor identified proteins that are 5 to 10 kDa smaller than the MHV receptor and the 48- to 58-kDa related protein from Swiss Webster or BALB/c mice. Thus, SJL/J mice express a protein which shares some sequence homology with the MHV receptor but which lacks virus-binding activity and is not recognized by the blocking anti-receptor MAb. These results suggest that resistance of SJL/J mice to MHV-A59 may be due to absence or mutation of the virus-binding domain in the nonfunctional receptor homolog in SJL/J mice.  相似文献   

2.
3.
Mice infected with mouse hepatitis virus A59 (MHV-A59) develop hepatitis and autoantibodies (autoAb) to liver and kidney fumarylacetoacetate hydrolase (FAH), a fact closely related to the release of alarmins such as uric acid and/or high-mobility group box protein 1 (HMGB1). We studied the effect of neutralizing monoclonal antibodies (MAb) against IL-17A in our model of mouse MHV-A59-infection. MAb anti-IL-17F and anti-IFNγ were used to complement the study. Results showed that transaminase levels markedly decreased in MHV-A59-infected mice treated with MAb anti-IL-17A whereas plasmatic Ig concentration sharply increased. Conversely, MAb anti-IL-17F enhanced transaminase liberation and did not affect Ig levels. Serum IFNγ was detected in mice infected with MHV-A59 and its concentration increased after MAb anti-IL-17A administration. Besides, MAb anti-IFNγ greatly augmented transaminase plasmatic levels. IL-17A neutralization did not affect MHV-A59-induction of HMGB1 liberation and slightly augmented plasmatic uric acid concentration. However, mice treated with the MAb failed to produce autoAb to FAH. The above results suggest a reciprocal regulation of Th1 and Th17 cells acting on the different MHV-A59 effects. In addition, it is proposed that IL-17A is involved in alarmins adjuvant effects leading to autoAb expression.  相似文献   

4.
Rabbit polyclonal antiidiotypic antibodies were generated against a neutralizing mAb specific for a conformational epitope on the S glycoprotein of murine hepatitis virus, strain A59 (MHV-A59). These anti-Id were directed predominantly against an Id that was undetectable in rabbit and rat anti-MHV-A59 sera and weakly represented in syngeneic and allogeneic antiviral sera. However, some partial idiotypic sharing was observed between the Id-bearing antibody and a mAb with a similar antigenic site specificity. The anti-Id inhibited the virus-binding and neutralizing activities of the immunizing antibody, demonstrating that they recognize paratope-associated idiotopes. Mice immunized with affinity-purified anti-Id developed MHV-A59-specific antibodies that neutralized viral infectivity to high titers. Moreover, these animals survived an otherwise lethal challenge with viral murine hepatitis virus, unlike control mice immunized with normal rabbit Ig. These results indicate that at least a subpopulation of the polyclonal anti-Id could induce a protective immune response directed toward a biologically important MHV-A59 epitope, and demonstrate the feasibility of antiidiotypic vaccination against a coronavirus infection.  相似文献   

5.
Neutralizing and nonneutralizing monoclonal antibodies to the peplomer glycoprotein and nucleocapsid protein of a mouse hepatitis virus (MHV), MHV-NuU, protected mice against lethal MHV-2 challenge. Histopathologically, livers of mice receiving protective antibodies showed some focal necrotic lesions with remarkable cellular infiltration instead of fulminant hepatitis caused by MHV-2.  相似文献   

6.
Recombinant mouse hepatitis viruses (MHV) differing only in the spike gene, containing A59, MHV-4, and MHV-2 spike genes in the background of the A59 genome, were compared for their ability to replicate in the liver and induce hepatitis in weanling C57BL/6 mice infected with 500 PFU of each virus by intrahepatic injection. Penn98-1, expressing the MHV-2 spike gene, replicated to high titer in the liver, similar to MHV-2, and induced severe hepatitis with extensive hepatocellular necrosis. S(A59)R13, expressing the A59 spike gene, replicated to a somewhat lower titer and induced moderate to severe hepatitis with zonal necrosis, similar to MHV-A59. S4R21, expressing the MHV-4 spike gene, replicated to a minimal extent and induced few if any pathological changes, similar to MHV-4. Thus, the extent of replication and the degree of hepatitis in the liver induced by these recombinant viruses were determined largely by the spike protein.  相似文献   

7.
Like most coronaviruses, the coronavirus mouse hepatitis virus (MHV) exhibits strong species specificity, causing natural infection only in mice. MHV-A59 virions use as a receptor a 110- to 120-kDa glycoprotein (MHVR) in the carcinoembryonic antigen (CEA) family of glycoproteins (G. S. Dveksler, M. N. Pensiero, C. B. Cardellichio, R. K. Williams, G. S. Jiang, K. V. Holmes, and C. W. Dieffenbach, J. Virol. 65:6881-6891, 1991; and R. K. Williams, G. S. Jiang, and K. V. Holmes, Proc. Natl. Acad. Sci. USA 88:5533-5536, 1991). The role of virus-receptor interactions in determining the species specificity of MHV-A59 was examined by comparing the binding of virus and antireceptor antibodies to cell lines and intestinal brush border membranes (BBM) from many species. Polyclonal antireceptor antiserum (anti-MHVR) raised by immunization of SJL/J mice with BALB/c BBM recognized MHVR specifically in immunoblots of BALB/c BBM but not in BBM from adult SJL/J mice that are resistant to infection with MHV-A59, indicating a major difference in epitopes between MHVR and its SJL/J homolog which does not bind MHV (7). Anti-MHVR bound to plasma membranes of MHV-susceptible murine cell lines but not to membranes of human, cat, dog, monkey, or hamster cell lines. Cell lines from these species were resistant to MHV-A59 infection, and only the murine cell lines tested were susceptible. Pretreatment of murine fibroblasts with anti-MHVR prevented binding of radiolabeled virions to murine cells and prevented virus infection. Solid-phase virus-binding assays and virus overlay protein blot assays showed that MHV-A59 virions bound to MHVR on intestinal BBM from MHV-susceptible mouse strains but not to proteins on intestinal BBM from humans, cats, dogs, pigs, cows, rabbits, rats, cotton rats, or chickens. In immunoblots of BBM from these species, both polyclonal and monoclonal antireceptor antibodies that block MHV-A59 infection of murine cells recognized only the murine CEA-related glycoprotein and not homologous CEA-related glycoproteins of other species. These results suggest that MHV-A59 binds to a mouse-specific epitope of MHVR, and they support the hypothesis that the species specificity of MHV-A59 infection may be due to the specificity of the virus-receptor interaction.  相似文献   

8.
E C Bos  W Luytjes    W J Spaan 《Journal of virology》1997,71(12):9427-9433
The spike protein (S) of the murine coronavirus mouse hepatitis virus strain A59 (MHV-A59) induces both virus-to-cell fusion during infection and syncytium formation. Thus far, only syncytium formation could be studied after transient expression of S. We have recently described a system in which viral infectivity is mimicked by using virus-like particles (VLPs) and reporter defective-interfering (DI) RNAs (E. C. W. Bos, W. Luytjes, H. Van der Meulen, H. K. Koerten, and W. J. M. Spaan, Virology 218:52-60, 1996). Production of VLPs of MHV-A59 was shown to be dependent on the expression of M and E. We now show in several ways that the infectivity of VLPs is dependent on S. Infectivity was lost when spikeless VLPs were produced. Infectivity was blocked upon treatment of the VLPs with MHV-A59-neutralizing anti-S monoclonal antibody (MAb) A2.3 but not with nonneutralizing anti-S MAb A1.4. When the target cells were incubated with antireceptor MAb CC1, which blocks MHV-A59 infection, VLPs did not infect the target cells. Thus, S-mediated VLP infectivity resembles MHV-A59 infectivity. The system can be used to identify domains in S that are essential for infectivity. As a first application, we investigated the requirements of cleavage of S for the infectivity of MHV-A59. We inserted three mutant S proteins that were previously shown to be uncleaved (E. C. W. Bos, L. Heijnen, W. Luytjes, and W. J. M. Spaan, Virology 214:453-463, 1995) into the VLPs. Here we show that cleavage of the spike protein of MHV-A59 is not required for infectivity.  相似文献   

9.
Wang Y  Xu H  Wu N  Shi H  Wang X  Wang T 《The new microbiologica》2010,33(4):311-317
The proton channels of influenza A virus (A/M2) and influenza B virus (BM2) are essential for viral replication. Previously we have shown that monoclonal antibodies targeting the ectodomain of the A/M2 proton channel have antiviral activity in vitro. In this study, we generated both monoclonal antibody and phage displayed peptide against the eight amino acids comprising the ectodomain of the BM2 proton channel and investigated their antiviral activities in vitro. A cytopathic assay showed that the monoclonal antibody potently protected MDCK cells from homologous, but not heterologous, virus infections. A plaque forming assay showed that viral replication was not completely neutralized, but greatly inhibited, by the monoclonal antibody. In contrast, no antiviral activity was observed for the synthetic native or engineered peptides. These results indicate that antibody targeting the M2 proton channel is a promising therapeutic candidate for treating influenza virus infections, and that antibody structure is important for antiviral activity.  相似文献   

10.
M W Steward 《Biologicals》2001,29(3-4):215-219
Respiratory syncytial virus (RSV) is the most important cause of bronchiolitis and pneumonia in infants and young children worldwide and the development of a synthetic peptide epitope-based vaccine to induce virus-neutralising antibodies against RSV would seem to be a valid approach to the production of an effective vaccine against infection.A combinatorial solid-phase peptide library has been screened with a virus-neutralising, protective monoclonal antibody (MAb19) directed towards a conserved and conformationally-determined epitope of the Fusion (F) protein of the virus. Two of the sequences identified from the peptide library using MAb19 reacted specifically with the antibody and amino acid substitution experiments identified four sequences from one of the mimotopes which showed increased reactivity with MAb19.Immunisation of BALB/c mice with these mimotopes, presented as MAPs, resulted in the induction of anti-peptide antibodies that inhibited the binding of MAb19 to the virus and neutralised viral infection in vitro, with titres equivalent to those in sera from RSV-infected animals. Following RSV challenge of mimotope-immunised mice, a significant reduction in the titre of virus and a greatly reduced cell infiltration into the lungs of immunised mice compared to that in controls was observed.The induction of virus-specific cytotoxic T-lymphocyte responses as well as virus-specific antibodies are likely to be necessary in an effective vaccine. The incorporation of a peptide representing a CTL epitope from the M2 protein of the virus together with peptides inducing T-helper and anti-mimotope responses in a peptide cocktail vaccine resulted in a more effective clearance of the virus from immunised, challenged mice than peptide-induced humoral or cellular immunity alone.  相似文献   

11.
Rabies virus antigen-specific human monoclonal antibodies (MAbs) that recognized either viral glycoprotein, ribonucleoprotein, or matrix proteins were generated. Only glycoprotein-specific MAb neutralized a variety of rabies viruses and protected laboratory rodents against lethal rabies virus infection. The determinant recognized by this MAb does not appear to reside in previously defined antigenic sites of the viral glycoprotein.  相似文献   

12.
Demyelination is the pathologic hallmark of the human immune-mediated neurologic disease multiple sclerosis, which may be triggered or exacerbated by viral infections. Several experimental animal models have been developed to study the mechanism of virus-induced demyelination, including coronavirus mouse hepatitis virus (MHV) infection in mice. The envelope spike (S) glycoprotein of MHV contains determinants of properties essential for virus-host interactions. However, the molecular determinants of MHV-induced demyelination are still unknown. To investigate the mechanism of MHV-induced demyelination, we examined whether the S gene of MHV contains determinants of demyelination and whether demyelination is linked to viral persistence. Using targeted RNA recombination, we replaced the S gene of a demyelinating virus (MHV-A59) with the S gene of a closely related, nondemyelinating virus (MHV-2). Recombinant viruses containing an S gene derived from MHV-2 in an MHV-A59 background (Penn98-1 and Penn98-2) exhibited a persistence-positive, demyelination-negative phenotype. Thus, determinants of demyelination map to the S gene of MHV. Furthermore, viral persistence is insufficient to induce demyelination, although it may be a prerequisite for the development of demyelination.  相似文献   

13.
The primary cellular receptor for mouse hepatitis virus (MHV), a murine coronavirus, is MHVR (also referred to as Bgp1a or C-CAM), a transmembrane glycoprotein with four immunoglobulin-like domains in the murine biliary glycoprotein (Bgp) subfamily of the carcinoembryonic antigen (CEA) family. Other murine glycoproteins in the Bgp subfamily, including Bgp1b and Bgp2, also can serve as MHV receptors when transfected into MHV-resistant cells. Previous studies have shown that the 108-amino-acid N-terminal domain of MHVR is essential for virus receptor activity and is the binding site for monoclonal antibody (MAb) CC1, an antireceptor MAb that blocks MHV infection in vivo and in vitro. To further elucidate the regions of MHVR required for virus receptor activity and MAb CC1 binding, we constructed chimeras between MHVR and other members of the CEA family and tested them for MHV strain A59 (MHV-A59) receptor activity and MAb CC1 binding activity. In addition, we used site-directed mutagenesis to introduce selected amino acid changes into the N-terminal domains of MHVR and these chimeras and tested the abilities of these mutant glycoproteins to bind MAb CC1 and to function as MHV receptors. Several recombinant glycoproteins exhibited virus receptor activity but did not bind MAb CC1, indicating that the virus and MAb binding sites on the N-terminal domain of MHVR are not identical. Analysis of the recombinant glycoproteins showed that a short region of MHVR, between amino acids 34 and 52, is critical for MHV-A59 receptor activity. Additional regions of the N-terminal variable domain and the constant domains, however, greatly affected receptor activity. Thus, the molecular context in which the amino acids critical for MHV-A59 receptor activity are found profoundly influences the virus receptor activity of the glycoprotein.Initial events in virus infection of a cell include attachment of the virus to the cell, entry, and disassembly of the virion. For most viruses, attachment is mediated through a specific interaction between the virus attachment protein and a cell surface receptor. Previous studies identified the murine biliary glycoprotein MHVR (also referred to as Bgp1a or C-CAM) as the primary cellular receptor for murine coronavirus mouse hepatitis virus strain A59 (MHV-A59) (20, 53). This glycoprotein, isolated from liver and intestinal brush border membranes of MHV-sensitive BALB/c mice, binds to MHV-A59 virions in a solid-phase viral overlay protein blot assay (9) and is recognized by an antireceptor monoclonal antibody (MAb CC1) that protects cells expressing MHVR from infection by MHV-A59 in vivo and in vitro (20, 52, 53). A cDNA encoding an allelic variant of MHVR, Bgp1b (also referred to as mmCGM2) (38), was isolated from cells of MHV-resistant SJL/J mice (18, 53), and a second murine biliary glycoprotein, Bgp2, which is expressed in the colons of both BALB/c and SJL/J mice, also has been characterized (38). MHVR and Bgp1b consist of an N-terminal immunoglobulin (Ig)-like variable domain, three Ig-like constant domains, a transmembrane domain, and a cytoplasmic tail. The Bgp2 glycoprotein exhibits a similar structure except that it contains only one constant domain. The Bgp1b and Bgp2 glycoproteins can serve as functional receptors for MHV-A59 when overexpressed in MHV-A59-resistant hamster cells in transient transfection assays, but these glycoproteins do not bind virus in solid-phase binding assays and are not recognized by MAb CC1 (18, 38). Natural splice variants of MHVR and Bgp1b yield glycoproteins containing the N-terminal and fourth Ig-like domains, the transmembrane domain, and the cytoplasmic tail (18, 21, 53).A secreted three Ig domain murine glycoprotein called bCEA, a pregnancy-specific glycoprotein in the murine carcinoembryonic antigen (CEA) family, is expressed in C57BL/6 mouse brain and placenta and exhibits a low level of MHV-A59 receptor activity when expressed in COS-7 cells (11). To date, the only murine CEA-related glycoprotein shown to have no MHV receptor activity in transient transfection assays in MHV-A59-resistant hamster cells is Cea10 (formerly referred to as mmCGM3), a secreted glycoprotein consisting of two variable Ig-like domains that does not bind MHV-A59 or MAb CC1 (26, 32).Deletion mutagenesis studies showed that MHV-A59 and MAb CC1 bind to the N-terminal Ig-like variable domain of MHVR (21). A recombinant chimeric glycoprotein containing the N-terminal domain of MHVR and the second, third, transmembrane, and cytoplasmic domains of the mouse poliovirus receptor (Pvr) homolog serves as a functional receptor for MHV-A59 when expressed in hamster cells (17). Furthermore, a soluble recombinant glycoprotein consisting of only the N-terminal domain of MHVR can inhibit MHV-A59 infectivity in a concentration-dependent manner (19). MAb CC1 recognizes both the MHVR/mph chimera and the soluble N-terminal domain of MHVR in immunoblot assays. A chimeric glycoprotein consisting of the N-terminal domain of Cea10, the three constant domains, transmembrane region, and cytoplasmic tail of MHVR, however, does not bind MHV-A59 or MAb CC1 (32).Sequence analysis of the various receptor-like glycoproteins in the murine CEA family shows that the 108-amino-acid N-terminal domains of MHVR, Bgp1b, and Cea10 are significantly different, with 29 amino acid differences between MHVR and Bgp1b and 43 amino acid differences between MHVR and Cea10 (18, 26, 32). These glycoproteins also differ significantly in their receptor activities. A detailed analysis of the virus and MAb binding sites in the N-terminal domain of MHVR was done to elucidate the molecular basis for these observed differences in the receptor activities of the murine CEA-related glycoproteins. We have constructed a series of recombinant chimeric glycoproteins and tested their abilities to serve as functional receptors for MHV-A59 in transient transfection assays. The abilities of MAb CC1 to protect transfected cells from infection by MHV-A59 and to bind the recombinant glycoproteins in an immunoblot assay also were examined. Results of these assays indicate that amino acids 34 to 52 of the glycoprotein are critical for receptor activity and that binding of the MAb is very sensitive to any changes in the tertiary structure of MHVR. Site-directed mutagenesis studies confirmed the importance of these residues. Thus, this small region of the N-terminal domain of MHVR is a critical determinant of MHV receptor activity. These residues alone, however, are not sufficient for optimal receptor activity. Additional amino acids within the N-terminal domain of MHVR and the three Ig-like constant domains of MHVR also profoundly affect receptor activity. The data suggest that these domains either influence the conformation of the virus-binding site or affect events subsequent to virus binding that are required for infection.  相似文献   

14.
Neuroadapted Sindbis virus (NSV) causes acute encephalitis and paralyzes and kills adult mice unless they are treated with primary immune serum after infection. To study the nature and specificity of curative antibodies, we gave mice 30 different monoclonal antibodies (MAbs) against Sindbis virus (SV) 24 h after lethal intracerebral inoculation of NSV. By the time of MAb treatment, NSV replication in the brain had been well established (7.5 X 10(7) PFU/g). Seventeen MAbs directed against multiple biological domains on the NSV E1 and E2 envelope glycoproteins prevented paralysis and death. Anticapsid MAbs failed to protect. Altogether, 15 of 17 curative MAbs either neutralized NSV infectivity or lysed NSV-infected cells with complement, but neither ability was necessary or sufficient to guarantee recovery. All 5 protective anti-E2 MAbs neutralized NSV infectivity; 6 of 10 protective anti-E1 MAbs neutralized NSV; 4 did not. Plaque assay or immunohistochemical staining showed that neutralizing and nonneutralizing curative MAbs decreased NSV in the brain, brainstem, and spinal cord. Despite high neutralization titers, hyperimmune anti-SV and anti-NSV mouse sera prevented only 6 and 30% of deaths, respectively, while primary immune sera prevented 50 (SV) and 90% (NSV) of deaths. Secondary intravenous immunization with a live virus apparently diminished, obscured, or failed to boost a class of protective antibodies. When separate mouse groups were given these 30 MAbs 24 h before lethal intracerebral inoculation of NSV, a slightly different set of 17 neutralizing or nonneutralizing anti-E1 and anti-E2 antibodies protected. Two nonneutralizing MAbs and hyperimmune anti-SV serum, which had failed to promote recovery, prophylactically protected 100% of the mice. The antibody requirements or mechanisms of prophylaxis and recovery may differ.  相似文献   

15.
Several proteins of Porphyromonas gingivalis contain multiple copies of a 47 amino acid conserved repeated sequence. A fusion protein was constructed in which the P. gingivalis peptide was fused to the carboxy terminus of the hepatitis B core protein. This fusion protein was expressed in Escherichia coli, purified, and used to vaccinate mice that were later challenged with P. gingivalis W83 using the mouse abscess model. Although the mice were not protected against bacterial challenge, Western blot analysis showed that sera from the mice and from rabbits immunized with the fusion protein reacted with a number of vesicle proteins from P. gingivalis W83. These data suggested that this peptide is recognized by the host's immune system but that the antibodies are not protective.  相似文献   

16.
Most strains of murine coronavirus mouse hepatitis virus (MHV) express a cleavable spike glycoprotein that mediates viral entry and pH-independent cell-cell fusion. The MHV type 2 (MHV-2) strain of murine coronavirus differs from other strains in that it expresses an uncleaved spike and cannot induce cell-cell fusion at neutral pH values. We show here that while infection of the prototype MHV-A59 strain is not sensitive to pretreatment with lysosomotropic agents, MHV-2 replication is significantly inhibited by these agents. By use of an A59/MHV-2 chimeric virus, the susceptibility to lysosomotropic agents is mapped to the MHV-2 spike, suggesting a requirement of acidification of endosomes for MHV-2 spike-mediated entry. However, acidification is likely not a direct trigger for MHV-2 spike-mediated membrane fusion, as low-pH treatment is unable to overcome ammonium chloride inhibition, and it also cannot induce cell-cell fusion between MHV-2-infected cells. In contrast, trypsin treatment can both overcome ammonium chloride inhibition and promote cell-cell fusion. Inhibitors of the endosomal cysteine proteases cathepsin B and cathepsin L greatly reduce MHV-2 spike-mediated entry, while they have little effect on A59 entry, suggesting that there is a proteolytic step in MHV-2 entry. Finally, a recombinant virus expressing a cleaved MHV-2 spike has the ability to induce cell-cell fusion at neutral pH values and does not require low pH and endosomal cathepsins during infection. These studies demonstrate that endosomal proteolysis by cathepsins is necessary for MHV-2 spike-mediated entry; this is similar to the entry pathway recently described for severe acute respiratory syndrome coronavirus and indicates that coronaviruses may use multiple pathways for entry.  相似文献   

17.
We identified the binding site of monoclonal antibody 19.2, which cross-neutralizes several mouse hepatitis virus (MHV) strains, inhibits fusion of MHV-infected cells, and protects against lethal infection (P. J. Talbot and M. J. Buchmeier, Virus Res. 2:317-328, 1985). We used fusion proteins, generated by expression of fragments of the MHV A59 E2 gene in pEX plasmids, and synthetic peptides in a PEPSCAN.  相似文献   

18.
Using isogenic recombinant murine coronaviruses expressing wild-type murine hepatitis virus strain 4 (MHV-4) or MHV-A59 spike glycoproteins or chimeric MHV-4/MHV-A59 spike glycoproteins, we have demonstrated the biological functionality of the N-terminus of the spike, encompassing the receptor binding domain (RBD). We have used two assays, one an in vitro liposome binding assay and the other a tissue culture replication assay. The liposome binding assay shows that interaction of the receptor with spikes on virions at 37 degrees C causes a conformational change that makes the virions hydrophobic so that they bind to liposomes (B. D. Zelus, J. H. Schickli, D. M. Blau, S. R. Weiss, and K. V. Holmes, J. Virol. 77: 830-840, 2003). Recombinant viruses with spikes containing the RBD of either MHV-A59 or MHV-4 readily associated with liposomes at 37 degrees C in the presence of soluble mCEACAM1(a), except for S(4)R, which expresses the entire wild-type MHV-4 spike and associated only inefficiently with liposomes following incubation with soluble mCEACAM1(a). In contrast, soluble mCEACAM1(b) allowed viruses with the MHV-A59 RBD to associate with liposomes more efficiently than did viruses with the MHV-4 RBD. In the second assay, which requires virus entry and replication, all recombinant viruses replicated efficiently in BHK cells expressing mCEACAM1(a). In BHK cells expressing mCEACAM1(b), only viruses expressing chimeric spikes with the MHV-A59 RBD could replicate, while replication of viruses expressing chimeric spikes with the MHV-4 RBD was undetectable. Despite having the MHV-4 RBD, S(4)R replicated in BHK cells expressing mCEACAM1(b); this is most probably due to spread via CEACAM1 receptor-independent cell-to-cell fusion, an activity displayed only by S(4)R among the recombinant viruses studied here. These data suggest that the RBD domain and the rest of the spike must coevolve to optimize function in viral entry and spread.  相似文献   

19.
We have developed idiotype-anti-idiotype monoclonal antibodies that provide evidence for rabies virus binding to the acetylcholine receptor (AChR). Hybridoma cell lines 7.12 and 7.25 resulted after fusion of NS-1 myeloma cells with spleen cells from a BALB/c mouse immunized with rabies virus strain CVS. Antibody 7.12 reacted with viral glycoprotein and neutralized virus infectivity in vivo. It also neutralized infectivity in vitro when PC12 cells, which express neuronal AChR, but not CER cells or neuroblastoma cells (clone N18), which have no AChR, were used. Antibody 7.25 reacted with nucleocapsid protein. Anti-idiotypic monoclonal antibody B9 was produced from fusion of NS-1 cells with spleen cells from a mouse immunized with 7.12 Fab. In an enzyme-linked immunosorbent assay and immunoprecipitation, B9 reacted with 7.12, polyclonal rabies virus immune dog serum, and purified AChR. The binding of B9 to 7.12 and immune dog serum was inhibited by AChR. B9 also inhibited the binding of 7.12 to rabies virus both in vitro and in vivo. Indirect immunofluorescence revealed that B9 reacted at neuromuscular junctions of mouse tissue. B9 also reacted in indirect immunofluorescence with distinct neurons in mouse and monkey brain tissue as well as with PC12 cells. B9 staining of neuronal elements in brain tissue of rabies virus-infected mice was greatly reduced. Rabies virus inhibited the binding of B9 to PC12 cells. Mice immunized with B9 developed low-titer rabies virus-neutralizing antibody. These mice were protected from lethal intramuscular rabies virus challenge. In contrast, anti-idiotypic antibody raised against nucleocapsid antibody 7.25 did not react with AChR.  相似文献   

20.
To identify the major antigenic determinant of native Salmonella flagella of antigenic type d, we constructed a series of mutated fliCd genes with deletions and amino acid alterations in hypervariable region IV and in region of putative epitopes as suggested by epitope mapping with synthetic octameric peptides (T.M. Joys and F. Schödel, Infect. Immun. 59:3330-3332, 1991). The expressed product of most of the mutant genes, with deletions of up to 92 amino acids in region IV, assembled into functional flagella and conferred motility on flagellin-deficient hosts. Serological analysis of these flagella with different anti-d antibodies revealed that the peptide sequence centered at amino acids 229 to 230 of flagellin was a dominant B-cell epitope at the surface of d flagella, because replacement of these two amino acids alone or together with their flanking sequence by a tripeptide specified by a linker sequence eliminated most reactivity with antisera against wild-type d flagella as tested by enzyme-linked immunosorbent assay or by Western immunoblot. Functional analysis of the mutated flagellin genes with or without an insert suggested that amino acids 180 to 214 in the 5' part of hypervariable region IV (residues 181 to 307 of the total of 505) is important to the function of flagella. The hybrid proteins formed by insertion of peptide sequence pre-S1 12-47 of hepatitis B virus surface antigen into the deleted flagellins assembled into functional flagella, and antibody to the pre-S1 sequence was detected after immunization of mice with the hybrid protein. This suggests that such mutant flagellins containing heterologous epitopes have potential as vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号