首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A PCR assay has been developed for the detection of Campylobacter jejuni and Camp. coli in water samples. The sample is filtered through a membrane which is subjected to sonication to release the impacted cells. After removal of the filter from the cell suspension and a freeze/thaw cell lysis step, a semi-nested PCR is carried out on the filtrate using the primers CF02, CF03 and CF04 ( Camp. jejuni fla and flaB gene sequences). Incorporation of a sonication stage allows removal of the filter membrane since they have been shown to inhibit the PCR. In experiments with spiked water samples (20 ml) a theoretical sensitivity of 10–20 Campylobacter cells ml-1 was achieved. Using a sample volume of 100 ml this sensitivity can be increased to approximately 2 Campylobacter cells ml-1.  相似文献   

2.
The rapid detection of food-borne bacterial pathogens as part of a quality control program is necessary for the maintenance of a safe food supply. In this report, we present our findings for an immunocapture PCR method for the detection of Campylobacter jejuni in foods. The method permits direct detection of the pathogen without an enrichment step and can be performed in approximately 8 h. Assay results are quantitative, and one cell in a milliliter sample can be detected. Application of the method to spiked milk samples and chicken skin washes did not affect the sensitivity of the assay.  相似文献   

3.
Campylobacter jejuni is a leading human food-borne pathogen. The rapid and sensitive detection of C. jejuni is necessary for the maintenance of a safe food/water supply. In this article, we present a real-time polymerase chain reaction (PCR) assay for quantitative detection of C. jejuni in naturally contaminated poultry, milk and environmental samples without an enrichment step. The whole assay can be completed in 60 min with a detection limit of approximately 1 CFU. The standard curve correlation coefficient for the threshold cycle versus the copy number of initial C. jejuni cells was 0.988. To test the PCR system, a set of 300 frozen chicken meat samples, 300 milk samples and 300 water samples were screened for the presence of C. jejuni. 30.6% (92/300) of chicken meat samples, 27.3% (82/300) of milk samples, and 13.6% (41/300) of water samples tested positive for C. jejuni. This result indicated that the real-time PCR assay provides a specific, sensitive and rapid method for quantitative detection of C. jejuni. Moreover, it is concluded that retail chicken meat, raw milk and environmental water are commonly contaminated with C. jejuni and could serve as a potential risk for consumers in eastern China, especially if proper hygienic and cooking conditions are not maintained.  相似文献   

4.
A real-time PCR assay was developed for the quantitative detection of Campylobacter jejuni in foods after enrichment culture. The specificity of the assay for C. jejuni was demonstrated with a diverse range of Campylobacter species, related organisms, and unrelated genera. The assay had a linear range of quantification over six orders of magnitude, and the limit of detection was approximately 12 genome equivalents. The assay was used to detect C. jejuni in both naturally and artificially contaminated food samples. Ninety-seven foods, including raw poultry meat, offal, raw shellfish, and milk samples, were enriched in blood-free Campylobacter enrichment broth at 37 degrees C for 24 h, followed by 42 degrees C for 24 h. Enrichment cultures were subcultured to Campylobacter charcoal-cefoperazone-deoxycholate blood-free selective agar, and presumptive Campylobacter isolates were identified with phenotypic methods. DNA was extracted from enrichment cultures with a rapid lysis method and used as the template in the real-time PCR assay. A total of 66 samples were positive for C. jejuni by either method, with 57 samples positive for C. jejuni by subculture to selective agar medium and 63 samples positive in the real-time PCR assay. The results of both methods were concordant for 84 of the samples. The total time taken for detection from enrichment broth samples was approximately 3 h for the real-time PCR assay, with the results being available immediately at the end of PCR cycling, compared to 48 h for subculture to selective agar. This assay significantly reduces the total time taken for the detection of C. jejuni in foods and is an important model for other food-borne pathogens.  相似文献   

5.
Campylobacter jejuni is recognized as a leading human food-borne pathogen. Traditional biochemical identification for C. jejuni is not reliable due to special growth requirements and the possibility that this bacterium can enter a viable but nonculturable (VNC) state. Nucleic acid-based tests have emerged as a useful alternative to traditional testing. In this article, we present fluorescent quantitative PCR assay for quantitative detection of C. jejuni, the assay was carried out using a LightCycler instrument and product formation was monitored continuously with the fluorescent double-stranded DNA binding dye SYBR Green I. When this assay was applied, the assay positive for all of the isolates of C. jejuni tested (11 isolates, including type strain ATCC33560) and negative for all other Campylobacter spp. (three isolates) and several other bacteria (five species tested). The total assay could be completed in 60 min with a detection limit of approximately 1 CFU, and a correlation coefficient was 1.000. Result indicated that fluorescent quantitative detection methods provided a special, sensitive, rapid, reproducible and accurate method for quantitative detection of C. jejuni.  相似文献   

6.
A PCR enzyme-linked immunosorbent assay (ELISA) assay was applied to the detection of Campylobacter jejuni and Campylobacter coli in environmental water samples after enrichment culture. Bacterial cells were concentrated from 69 environmental water samples by using filtration, and the filtrates were cultured in Campylobacter blood-free broth. After enrichment culture, DNA was extracted from the samples by using a rapid-boiling method, and the DNA extracts were used as a template in a PCR ELISA assay. A total of 51 samples were positive by either PCR ELISA or culture; of these, 43 were found to be positive by PCR ELISA and 43 were found to be positive by culture. Overall, including positive and negative results, 59 samples were concordant in both methods. Several samples were positive in the PCR ELISA assay but were culture negative; therefore, this assay may be able to detect sublethally damaged or viable nonculturable forms of campylobacters. The method is rapid and sensitive, and it significantly reduces the time needed for the detection of these important pathogens by 2 to 3 days.  相似文献   

7.
Campylobacter species are fastidious to culture, and the ability to directly quantify biomass in microbiologically complex substrates using real-time quantitative (RTQ) PCR may enhance our understanding of their biology and facilitate the development of efficacious mitigation strategies. This study reports the use of nested RTQ-PCR to directly quantify Campylobacter jejuni and Campylobacter lanienae in cattle feces. For C. jejuni, the single-copy mapA gene was selected. For C. lanienae, the three-copy 16S rRNA gene was targeted. RTQ-PCR primers were tested alone or they were nested with species-specific primers, and amplification products were detected using the intercalating dye SYBR Green. Nesting did not increase the specificity or sensitivity of C. jejuni quantification, and the limit of quantification was 19 to 25 genome copies ( approximately 3 x 10(3) CFU/g of feces). In contrast, nested RTQ-PCR was necessary to confer specificity on C. lanienae by targeting the 16S rRNA gene. The limit of quantification was 1.8 genome copies ( approximately 250 CFU/g of feces), and there was no discernible difference between the two C. lanienae secondary primer sets evaluated. Detection and quantification of C. jejuni in naturally infested cattle feces by RTQ-PCR were comparable to the results of culture-based methods. In contrast, culturing did not detect C. lanienae in 6 of 10 fecal samples positive for the bacterium and substantially underestimated cell densities relative to nested RTQ-PCR. The results of this study illustrate that RTQ-PCR can be used to directly quantify campylobacters, including very fastidious species, in a microbiologically and chemically complex substrate. Furthermore, targeting of a multicopy universal gene provided highly sensitive quantification of C. lanienae, but nested RTQ-PCR was necessary to confer specificity. This method will facilitate subsequent studies to elucidate the impact of this group of bacteria within the gastrointestinal tracts of livestock and studies of the factors that influence colonization success and shedding.  相似文献   

8.
Shively L  Chang L  LeBon JM  Liu Q  Riggs AD  Singer-Sam J 《BioTechniques》2003,34(3):498-502, 504
We describe here a quantitative real-time PCR assay for the detection of single-base-pair differences that does not require fluorescently labeled gene-specific probes or complicated primer combinations. Following PCR or RT-PCR of a gene segment that may contain allele-specific differences, 100 pg amplified product are used for a real-time PCR with allele-specific primers and SYBR Green. The use of HEPES buffer at a pH of 6.95 together with AmpliTaq DNA polymerase results in a threshold difference between the correct template and the mismatched template of as many as 20 cycles, depending on the mismatch. Correct matches can be detected in an excess of mismatched template at least at the 0.01 level for the six primer-template matches versus mismatches tested: GC vs. A.C, AT vs. G.T, GC vs. C.C, GC vs. G.G, AT vs. C.T, and GC vs. G.A. Because the initial amplification is separate from real-time detection, conditions can be independently optimized for each step, making the assay particularly suitable for the detection of allele-specific expression in single cells.  相似文献   

9.
The objectives of this study were the development of a real-time NASBA assay for the detection of Campylobacter jejuni mRNA and the evaluation of its potential to determine the viability of the detected C. jejuni cells. A set of specific primers and probes was chosen to amplify the mRNA of the tuf-gene and the GTPase-gene. Only the tuf-assay was able to detect as low as 10(2) cells per NASBA reaction and was specific for Campylobacter. However, as the assay was able to detect dead cells, it cannot be used to demonstrate the viability of C. jejuni cells. The tuf-gene mRNA is no good viability indicator due to its stability.  相似文献   

10.
A cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for the detection of cdtA, cdtB or cdtC gene of Campylobacter jejuni, Campylobacter coli or Campylobacter fetus, respectively, was developed and evaluated with 76 Campylobacter strains belonging to seven different species and 131 other bacterial strains of eight different genera. The cdtA, cdtB or cdtC gene of C. jejuni, C. coli or C. fetus, respectively, could be successfully amplified using the corresponding set of primers in a highly species-specific manner. Furthermore, the specific primer set for the cdtA, cdtB or cdtC gene of a particular species could amplify the desired gene from a mixture of DNA templates of any of two or all three species. The detection limit of C. jejuni, C. coli or C. fetus was 10-100 CFU tube(-1) by the multiplex PCR assay on the basis of the presence of the cdtA, cdtB or cdtC gene. These data indicate that the cdt gene-based multiplex PCR assay may be useful for rapid and accurate detection as well as identification of Campylobacter strains in a species-specific manner.  相似文献   

11.
PCR techniques have significantly improved the detection and identification of bacterial pathogens. Countless adaptations and applications have been described, including quantitative PCR and the latest innovation, real-time PCR. In real-time PCR, e.g., the 5'-nuclease chemistry renders the automated and direct detection and quantification of PCR products possible (P. M. Holland et al., Proc. Natl. Acad. Sci. USA 88:7276-7280, 1991). We present an assay for the quantitative detection of Listeria monocytogenes based on the 5'-nuclease PCR using a 113-bp amplicon from the listeriolysin O gene (hlyA) as the target. The assay was positive for all isolates of L. monocytogenes tested (65 isolates including the type strain) and negative for all other Listeria strains (16 isolates from five species tested) and several other bacteria (18 species tested). The application of 5'-nuclease PCR in diagnostics requires a quantitative sample preparation step. Several magnetic bead-based strategies were evaluated, since these systems are simple and relatively easy to automate. The combination of nonspecific binding of bacteria to paramagnetic beads, with subsequent DNA purification by use of the same beads, gave the most satisfactory result. The detection limit was approximately 6 to 60 CFU, quantification was linear over at least 7 log units, and the method could be completed within 3 h. In conclusion, a complete quantitative method for L. monocytogenes in water and in skimmed and raw milk was developed.  相似文献   

12.
Bdellovibrio-and-like-organisms (BALOs) are small, Gram-negative predatory bacteria with the ability to prey on a wide variety of Gram-negative bacteria, and which may have a significant ecological role. Detection and quantification of BALOs by culture-dependent methods are complicated, as their reproduction is dependent upon the use of appropriate prey. For this reason, a sensitive and specific molecular detection method was developed. This paper describes a SYBR Green-based real-time PCR (quantitative PCR) assay that combines the use of a specific 16S rDNA primer with a universal primer for quantitative detection of halophilic Bacteriovorax. 16S rDNA sequences from 174 BALO strains, including both halophilic and freshwater, were aligned and a consensus region was identified that is unique to the halophilic Bacteriovorax strains. A specific primer was designed and analysed for specificity. The PCR conditions were optimized to obtain high specificity and sensitivity. The specificity was evaluated by testing a series of halophilic Bacteriovorax samples and prey specimens, including both pure cultures and environmental saltwater samples. A linear and reproducible standard curve was obtained over a range of 10(1)-10(6) gene copies and the detection limit was determined to be 10 copies of 16S rRNA gene per reaction. The results presented in this study validate the procedure as a rapid, sensitive and accurate method for the detection and quantification of halophilic Bacteriovorax in environmental saltwater samples. It is anticipated that this culture-independent method will facilitate future investigations of the distribution and population dynamics of these interesting predatory bacteria, leading to a better understanding of their ecological role.  相似文献   

13.
Abstract Two extraction procedures were examined, and it was found that DNA recovered from Campylobacter jejuni lysed by the cetyltrimethylammonium bromide (CTAB) method was more suitable for use as a PCR template than DNA released by the boiling method. The region targeted for PCR amplification was a 1.73-kb portion of the flagellin A gene of C. jejuni . The detection limit was lower than 30 cells per 100 ml in artificially contaminated waters. PCR assay and conventional culturing method had the same sensitivity, but results of the PCR technique were available within 48 h and so shortened the time necessary for detection by 48 h.  相似文献   

14.
Our purpose was to establish a quick and accurate real-time PCR (rtPCR) method to detect Campylobacter jejuni directly from human diarrheal stool as an alternative to traditional culture methods. To determine the consistency of rtPCR and culture method, 256 clinical diarrheal stool samples and 50 normal stool samples from healthy individuals were examined, and the whole process was double-blinded. Our data showed that the sensitivity of rtPCR in pure cultures and stool was 102 CFU.mL-1 and 103 CFU.g-1, respectively. Of the 256 diarrheal samples, 10 specimens were successfully detected by both methods, whereas two specimens were PCR positive but culture negative. No positive results were found by these two methods in 50 normal specimens. Our data suggested that rtPCR was convenient in operation and time-saving (turnaround time 3.5-4 h), so it could be used for clinical diagnostic and epidemiological purposes.  相似文献   

15.
SYNOPSIS: Twenty Campylobacter jejuni and 16 Campylobacter coli strains isolated from humans and food/animals, including 17 isolates resistant to erythromycin, were analyzed. A combined mismatch amplification mutation assay-PCR technique was developed to detect the mutations A 2074 C and A 2075 G in the 23S rRNA gene associated with erythromycin resistance. All high-level erythromycin-resistant strains examined by DNA sequencing carried the transition mutation A 2075 G, whereas no isolate carried the A 2074 C mutation. No mutations were found among the susceptible and low-level erythromycin-resistant strains.  相似文献   

16.
Campylobacter species, primarily Campylobacter jejuni and Campylobacter coli, are regarded as a major cause of human gastrointestinal disease, commonly acquired by eating undercooked chicken. We describe a PCR-ELISA for the detection of Campylobacter species and the discrimination of C. jejuni and C. coli in poultry samples. The PCR assay targets the 16S/23S ribosomal RNA intergenic spacer region of Campylobacter species with DNA oligonucleotide probes designed for the specific detection of C. jejuni, C. coli, and Campylobacter species immobilized on Nucleo-Link wells and hybridized to PCR products modified with a 5' biotin moiety. The limit of detection of the PCR-ELISA was 100-300 fg (40-120 bacterial cells) for C. jejuni and C. coli with their respective species-specific oligonucleotide probes and 10 fg (4 bacterial cells) with the Campylobacter genus-specific probe. Testing of poultry samples, which were presumptive positive for Campylobacter following culture on the Malthus V analyzer, with the PCR-ELISA determined Campylobacter to be present in 100% of samples (n = 40) with mixed cultures of C. jejuni/C. coli in 55%. The PCR-ELISA when combined with culture pre-enrichment is able to detect the presence of Campylobacter and definitively identify C. jejuni and C. coli in culture-enriched poultry meat samples.  相似文献   

17.
18.
AIMS: Campylobacter contamination in French chicken production from the farm to the consumer was determined using a PCR assay for bacteria detection and identification. METHODS AND RESULTS: Samples were bird droppings from poultry houses, neck skins, livers, hearts, gizzards, wings, legs and escalopes from slaughterhouses and gizzards, legs, drumstick, breast and escalopes from a supermarket. Bacterial DNA extraction was performed after an enrichment step in a broth and was followed by PCR. An internal control (IC) was used for both DNA extraction and PCR. Campylobacter were detected in 79.2% of poultry houses. Of the 303 samples, 201 were Campylobacter-positive (i.e. 66.3%) including 43.2% faecal samples, 5.6% slaughterhouse samples and 17.5% supermarket samples. There was no significant difference between the molecular method and the conventional culture technique for Campylobacter detection whatever the samples. The sensitivity was 5 UFC g(-1) of samples and 1.5 x 10(3) UFC ml(-1) of enrichment broth. The use of IC revealed PCR inhibition in 13 samples and problems in the DNA extraction in five samples. CONCLUSION: Significant Campylobacter contamination affects all stages of French chicken production. SIGNIFICANCE AND IMPACT OF THE STUDY: The understanding of Campylobacter contamination at different levels of chicken production and the determination of the best place(s) for intervention are important for significantly decreasing Campylobacteriosis. Our technique is rapid and can be used on different chicken samples for Campylobacter detection and identification.  相似文献   

19.
AIMS: To compare typeability, discriminatory ability, and inter-laboratory reproducibility of three flagellin PCR/RFLP (fla typing) methods previously described for Campylobacter. METHODS AND RESULTS: The sample set (n = 100) was diverse, including both C. jejuni (n = 85) and C. coli (n = 15). Two of the three flaA typing methods amplified flaA alone, whereas one, a multiplex assay, amplified flaB in addition to flaA. DdeI restriction enzyme was employed for all methods, but HinfI was also investigated. 98-100% typeability was obtained for flaA-based methods, but only 93% for the multiplex assay, due to inconsistent amplification of a non-specific product. In addition, there appeared to be selective amplification of flaA over flaB. More DdeI types were generated using a longer flaA PCR amplicon, whilst additional use of HinfI increased the number of types by ca 25%. Inter-laboratory reproducibility for both flaA-based methods was defined at 100%. CONCLUSIONS: Fla typing requires standardization with respect to PCR primers and restriction enzymes. This study identified an assay, employing the full flaA gene and DdeI digestion, as an appropriate method on which to standardize. 100% inter-laboratory reproducibility was demonstrated using that method. SIGNIFICANCE AND IMPACT OF THE STUDY: This work should facilitate progress towards inter-laboratory standardization of fla typing.  相似文献   

20.
Conventional detection and confirmation methods for Campylobacter jejuni are lengthy and tedious. A rapid hybridization protocol in which a 1,475-bp chromogen-labelled DNA probe (pDT1720) and Campylobacter strains filtered and grown on 0.22-micron-pore-size hydrophobic grid membrane filters (HGMFs) are used was developed. Among the environmental and clinical isolates of C. jejuni, Campylobacter coli, Campylobacter jejuni subsp. doylei, Campylobacter lari, and Arcobacter nitrofigilis and a panel of 310 unrelated bacterial strains tested, only C. jejuni and C. jejuni subsp. doylei isolates hybridized with the probe under stringent conditions. The specificity of the probe was confirmed when the protocol was applied to spiked skim milk and chicken rinse samples. Based on the nucleotide sequence of pDT1720, a pair of oligonucleotide primers was designed for PCR amplification of DNA from Campylobacter spp. and other food pathogens grown overnight in selective Mueller-Hinton broth with cefoperazone and growth supplements. All C. jejuni strains tested, including DNase-producing strains and C. jejuni subsp. doylei, produced a specific 402-bp amplicon, as confirmed by restriction and Southern blot analysis. The detection range of the assay was as low as 3 CFU per PCR to as high as 10(5) CFU per PCR for pure cultures. Overnight enrichment of chicken rinse samples spiked initially with as little as approximately 10 CFU/ml produced amplicons after the PCR. No amplicon was detected with any of the other bacterial strains tested or from the chicken background microflora. Since C. jejuni is responsible for 99% of Campylobacter contamination in poultry, PCR and HGMF hybridization were performed on naturally contaminated chicken rinse samples, and the results were compared with the results of conventional cultural isolation on Preston agar. All samples confirmed to be culture positive for C. jejuni were also identified by DNA hybridization and PCR amplification, thus confirming that these DNA-based technologies are suitable alternatives to time-consuming conventional detection methods. DNA hybridization, besides being sensitive, also has the potential to be used in direct enumeration of C. jejuni organisms in chicken samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号