首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The young multinucleate oogonium in Albugo is double-walled with an outer layer exhibiting a negative staining reaction for insoluble polysaccharides and an inner layer which is strongly PAS-positive. The oogonial nuclei exhibit an unusual staining behaviour with aniline blue showing an outer dark blue sheath of proteins surrounding a central hyaline nuclear core. Various histochemical localizations were performed for tracing the chronological sequence of development of the wall layers of the oospore. The first wall of the fertilized oospore was laid at the interphase of the periplasm and the ooplasm. Subsequent wall layers were formed both on the inner and outer side of the first oosporic wall. The second oosporic wall was formed just internal to the first one and exhibited faint PAS positivity. The third wall of the oospore was formed external to the first one and the PAS-negative material for this was apparently contributed by the periplasm. This wall layer at later stages acquired a ridged appearance and these ridges in a mature oospore appear as distinct “pegs”. The last wall to be formed is the innermost one and it completely surrounds the central ooplasm. This wall layer is callosic in nature.  相似文献   

2.
Fischerella ambigua is a branching blue-green alga, the filamentous nature of which is maintained almost entirely by sheath material. Cell division in this organism most closely resembles the septal division found in most unicellular organisms. In all filamentous blue-green algae previously examined with the electron microscope, cell division has resulted from the imagination of the plasma membrane and inner wall layer only; both the middle wall and the outer wall layers remain continuous throughout the length of the filament. In Fischerella, by contrast, the plasma membrane and the inner wall layer invaginate to produce initially 2 cells. However, the middle wall layer, outer wall layer, and sheath also invaginate to separate the daughter cells. The sheath alone remains continuous throughout the length of the filament.  相似文献   

3.
The ultrastructure of the cyanobionts of the greenhouse-grown cycads Cycas circinalis, Ceratozamia mexicana, and Encephalartos villosus was studied. In addition to heterocysts with the typical ultrastructure, the cyanobiont microcolonies also contained altered heterocysts with reduced cell walls, which might dominate in all regions of the coralloid roots. The altered heterocysts represented a protoplast enclosed in a heterocyst-specific envelope with additional layers. Some heterocysts contained an additional reticular protoplast-enclosing sheath below the heterocyst-specific envelope, whereas the other heterocysts contained an additional electron-opaque outer layer. The substance of the inner sheath of the former heterocysts resembled the polysaccharides of mucilage, which fills the intercellular space, whereas the electron-opaque outer layer of the latter heterocysts probably had a protein nature. The substances that constitute the sheath and the outer layer are likely to be synthesized intracellularly and then released with the aid of membrane-bounded vesicles or by ruptures in the cytoplasmic membrane.  相似文献   

4.
Differences in the relative growth rules of the inherently slow-growing Deschampsia flexuosa L. and the inherently fast-growing Holcus lanatus L. were reflected in cell wall synthesis in the elongation zone of the leaves. Leaf elongation rates depended on the size of the plant and ranged from 6 to 14 mm d?1 in Deschampsia and from 12 to 42 mm d?1 in Holcus. Anatomical data showed that the epidermis and vascular tissue are the important tissues controlling leaf extension. The cell wall polysaccharides of fully expanded leaves of the two species were identical in sugar composition. Enzymatic hydrolysis of polymeric sugars in the cell walls of the sheath and the lamina gave glucose (85%), arabinose (3.5%), fucose (0.5%), xylose (5.0%), mannose (0.5%), galaclose (0.8%) and galacturonic acid (3–4%). This composition applied throughout the blade and the sheath and did not change with ageing. Polysaccharides in the meristems of the two species showed identical sugar compositions with 51–55% glucose, 13–15% galactoronic acid and 13–14% arabinose as the main components. The extension zone was marked by a gradual increase of driselase-digestable polymers (per mm tissue) and a concurrent shift in sugar composition. The massive increase of glucose in the cell wall polymers of the elongation zone is probably caused by cellulose synthesis. The rate of synthesis of cell wall polysaccharides in Holcus was twice as high as that in Deschampsia. The slower-growing Deschampsia has more ferulic acid esterified with cell walls, which might contribute to the slowing of leaf growth. Lignin is not significantly deposited until growth has essentially ceased and is not responsible for the difference in growth rate.  相似文献   

5.
Chlamydomonas monoica Strehlow is being developed as a model for genetic analysis of zygospore morphogenesis, and many relevant mutant strains are available. To provide the basis for interpreting the ultrastructural phenotypes of zygospore mutants, an analysis of wall morphogenesis in wildtype zygospores of C. monoica was undertaken. Following synthesis of a thick, fibrous, primary zygote wall, granular material accumulated between the plasma membrane and the primary zygote wall and aggregated into a repetitive array of electron-opaque fibrous stripes. A new wall layer, the outer layer of the secondary zygospore wall, first appeared as segments with a fibrous outer surface overlying a well-defined band of electron-translucent material. These segments gave rise to an intact sheath adjacent to the plasma membrane. Beneath this sheath, electron-opaque material (forming the inner layer of the secondary zygospore wall) accumulated unevenly and forced the surface sheath to undulate, creating a pattern of peaks and valleys that was exposed to the external environment 4 rupture and release of the primary zygote wall. The zygospore wall included material resistant to degradation by potassium hydroxide, 2-aminoethanol, and acetolysis, but it was destroyed by exposure to chromic acid. These characteristics, in combination with the autofluorescence of untreated zygospore walls and their failure to stain with phloroglucinol, suggest that sporopollenin may be responsible for many of the resistant properties associated with the mature zygospore of Chlamydomonas.  相似文献   

6.
Changes in the ultrastructure and chemistry of the cell wall of the unicellular volvocalean green alga Haematococcus pluvialis were investigated during the transformation of flagellates into aplanospores. The motile biflagellated state exhibited a distinct gelatinous extracellular matrix. Its ultrastructure resembled the typical volvocalean multilayered architecture with a median tripartite crystalline layer. The transformation into the non-motile cell state was characterized by formation of a new layer, a primary wall, within the extracellular matrix. During this process, the initial extracellular matrix remained intact except for the outer layers of the tripartite crystalline layer, which decomposed. Further morphogenesis of the aplanospore resulted in the formation of a voluminous multilayered cell wall. A trilaminar sheath was formed inside the primary wall and the innermost and thickest part was an amorphous secondary wall, consisting mostly of a mannan. Results obtained by staining with the fluorescent dye primuline as well as by acetolysis suggest the occurrence of sporopollenin-like material (algaenan) within the trilaminar sheath of the aplanospore cell wall. The primary wall and the outer remnants of the extracellular matrix disintegrated as the aplanospores aged, and were completely absent in the resting cell state.  相似文献   

7.
The fine structure of the heart and connective tissue sheath surrounding the stomach of the brachiopod Rhynchonella psittacea has been studied. The stomach wall is lined externally with peritoneal epithelium. Between the bases of the peritoneal epithelial cells and those of the stomach epithelial cells is an extracellular amorphous matrix. The exterior part of the matrix is occupied by smooth muscle cells and the interior part by fibroblasts. The heart wall shows continuity with the peritoneal epithelium covering the stomach wall and consists of three layers: an outer layer of smooth myoepithelial and epithelial cells, an intermediate thick layer of extracellular matrix, and an inner discontinuous layer of fibroblasts. In myoepithelial cells, nucleated heads protruding freely into the coelom and contractile parts embedded in the extracellular matrix can easily be distinguished. These cells contain no sarcoplasmic reticulum or any elements of a T system. The epithelial cells are non-muscular mononucleated cells scattered among the myoepithelial cells and closely associated with these basally. They possess a well-developed rough endoplasmic reticulum. In rare cases, a small amount of myofibrils occurs basally in the epithelial cells. Morphologically the epithelial cells in the myocardium are very similar to the peritoneal epithelial cells covering the stomach wall. Both epithelial and myoepithelial cells are ciliated. No nerve elements have been found in the brachiopod heart. The structure of the brachiopod heart is compared with that of other invertebrates; similarity of cellular composition of the brachiopod heart and stomach cover is considered evidence of origin of the heart cells from the cells of the connective tissue sheath of the stomach. The myogenic role of the peritoneal cells and epithelial cells of the myocardium is suggested. J. Morphol. 234:69–77, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Interactions between an isolate of the ectomycorrhizal fungus Pisolithus sp. and Afzelia africana Sm. seedlings were studied at the structural and ultrastructural levels. Several different conditions were tested with or without sugar and in a sterile or nonsterile medium. In the growth cabinet, the A. africana/Pisolithus sp. interactions did not produce ectomycorrhizas. A fungal sheath was formed but no Hartig net, and an unusual host epidermal cell wall was observed. Hyphae of Pisolithus sp. induced modifications of epidermal cells of 15-day-old A. africana seedlings indicative of non-mycorrhizal interactions, such as wall thickening, wall ingrowth, papillae formation, degraded host wall material and the presence of intracellular hyphae. Wall ingrowth consisted of depositions of host cell wall materials giving a positive reaction for polysaccharides; however, wall thickenings and papillae showed no homogeneous reactions for polysaccharides. In glasshouse conditions, inocula of Pisolithus sp. in the form of spores or mycelia entrapped in peat-vermiculite added to sterilized soil produced typical ectomycorrhizae only with 6-month-old A. africana seedlings. Under these conditions, no conspicuous cell wall reactions occurred on A. africana roots. The results demonstrate that the establishment of an association between an ectomycorrhizal fungus and a potential host plant is strongly influenced by seedling age and/or environmental conditions. Therefore, in vitro synthesis is not a conclusive demonstration of a symbiotic relationship.  相似文献   

9.
The tetrasporangial initial in Palmaria palmata (L.) O. Kuntze (formerly Rhodymenia palmata (L.) Greville) arises from a cortex cell which enlarges and deposits a protein-rich wall layer. This cell undergoes mitosis to form a tetrasporocyte and a stalk cell. Synaptonemal complexes are formed in the sporocyte nucleus while in the cytoplasm floridean starch is deposited in association with ER or with particles presumed to be ribosomes. Microbody-like structures become numerous between the nuclear envelope and perinuclear ER, and clusters of non-membranous, spherical structures also are associated with the nucleus. Chromatin condensation is reversed following pachytene and a prolonged diffuse stage ensues, when dictyosomes and ER produce vesicles which deposit mucilage rich in sulfated and acidic polysaccharides around the tetrasporocyte. A conspicuous lenticular thickening of the mucilage sheath develops at the apical end of the sporangium. Dictyosomes are frequently associated with mitochondria which may be associated with chloroplasts. Following nuclear divisions the tetrasporocyte is cleaved into four spores by sequentially initiated, but simultaneously completed periclinal and anticlinal furrows. When mucilage deposition ceases, the dictyosomes begin to produce vesicles with glycoprotein-rich contents. These vesicles are abundant in released tetraspores, and they probably contain adhesive material aiding in the attachment of the liberated spores.  相似文献   

10.
Summary Late stages of oogenesis in Acerentomon gallicum Jonescu have been studied by means of light and electron microscopy. Each of the two ovaries of this species consists of a single panoistic ovariole. Late previtellogenic and early vitellogenic oocytes are enclosed in an electron opaque layer, the so-called primary sheath. The precursors for this sheath are most likely synthesized by follicle cells. The yolk develops through autosynthesis, with free ribosomes, dictyosomes and lamellar bodies being involved in the process. Mature yolk spheres contain proteins and polysaccharides. Besides the organelles that take part in vitellogenesis, mitochondria and cisternal stacks of the rough endoplasmic reticulum occur in the ooplasm.This work was supported by Government Problem Grant ii-1.3.13  相似文献   

11.
Summary. The distribution and ultrastructural features of idioblasts containing calcium oxalate crystals were studied in leaf tissues of mulberry, Morus alba L. In addition to the calcium carbonate crystals formed in epidermal idioblasts, large calcium oxalate crystals were deposited in cells adjacent to the veins and surrounded by a cell wall sheath which had immunoreactivity with an antibody recognizing a xyloglucan epitope. The wall sheath formation indicates exclusion of the mature crystal from the protoplast. Correspondence: Y. Sugimura, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.  相似文献   

12.
Summary Anthers ofBetula pendula were collected at regular intervals during the dormancy period until anthesis. Ultrathin sections of maturing pollen grains were especially stained for polysaccharides and proteins and examined with TEM to determine whether structural or/and chemical changes in the pollen wall occur during the dormancy period of the plant life cycle. At the beginning of the dormancy period, the microspore wall consists of a well developed tectum, columellae and a foot layer. Spinules and supratectal elements are prominent. Microchannels are present in the tectum but not obvious in the foot layer. Some of the columellae are not clearly connected with the foot layer, but some connections are evident. Pores are filled with a thick fibrillar network flocculent material. The cytoplasm is packed with starch grains and lipid globules. The stainability for acidic and neutral polysaccharides and protein was tested, and variations in the pollen wall are illustrated. As temperature increased towards the end of dormancy and before anthesis there is obvious differentiation in the morphology of the pollen wall. The granular fibrillar layer beneath the pore and the Zwischenkörper are the most variable part of the wall. Different histochemical reactions observed in different layers at the aperture sites indicate different functions of these layers.  相似文献   

13.
Summary The wall of the cyst of the metacercaria of the liver fluke (Fasciola hepatica L). is composed of four layers: an external tanned protein, two layers giving reactions of proteins and polysaccharides and an internal, finely laminated layer of keratinized protein. Each of the precursors of these layers is synthesised in a distinct kind of cystogenic cell in the cercaria, while it is still within the redia in the intermediate host, a snail.The cells forming the protein precursors are similar in cytoplasmic structures to secretory cells such as those of the exocrine pancreas. The cells producing protein and polysaccharides resemble mucinogenic cells.The keratin precursor is a rodlet formed by the rolling of a sheet into a scroll and all stages of this process can be recognised in the synthesising cells in the early cercaria.  相似文献   

14.
Redgwell RJ  Hansen CE 《Planta》2000,210(5):823-830
 Cell wall material (CWM) was prepared from sun-dried cocoa (Theobroma cacao L.) bean cotyledons before and after fermentation. The monosaccharide composition of the CWM was identical for unfermented and fermented beans. Polysaccharides of the CWM were solubilised by sequential extraction with 0.05 M trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), 0.05 M Na2CO3, and 1 M, 4 M and 8 M KOH. The non-cellulosic sugar composition for each fraction was similar for unfermented and fermented samples, indicating that fermentation caused no significant modification of the structural features of individual cell wall polysaccharides. Pectic polysaccharides accounted for 60% of the cell wall polysaccharides but only small amounts could be solubilised in solutions of CDTA, Na2CO3, and 1 M and 4 M KOH. The bulk of the pectic polysaccharides were solubilised in 8 M KOH and were characterised by a rhamnogalacturonan backbone heavily substituted with side-chains of 5-linked arabinose and 4-linked galactose. Linkage analysis indicated the presence of additional acidic polysaccharides, including a xylogalacturonan and a glucuronoxylan. Cellulose, xyloglucan and a galactoglucomannan accounted for 28%, 8% and 3% of the cell wall polysaccharides, respectively. It is concluded that the types and structural features of cell wall polysaccharides in cocoa beans resemble those found in the parenchymatous tissue of many fruits and vegetables rather than those reported for many seed storage polysaccharides. Received: 29 May 1999 / Accepted: 19 October 1999  相似文献   

15.
The taxonomy of freshwater pulmonates (Hygrophila) has been in a fluid state warranting the search for new morphological criteria that may show congruence with molecular phylogenetic data. We examined the muscle arrangement in the penial complex (penis and penis sheath) of most major groups of freshwater pulmonates to explore to which extent the copulatory musculature can serve as a source of phylogenetic information for Hygrophila. The penises of Acroloxus lacustris (Acroloxidae), Radix auricularia (Lymnaeidae), and Physella acuta (Physidae) posses inner and outer layers of circular muscles and an intermediate layer of longitudinal muscles. The inner and outer muscle layers in the penis of Biomphalaria glabrata consist of circular muscles, but this species has two intermediate longitudinal layers separated by a lacunar space, which is crossed by radial and transverse fibers. The muscular wall of the penis of Planorbella duryi is composed of transverse and longitudinal fibers, with circular muscles as the outer layer. In Planorbidae, the penial musculature consists of inner and outer layers of longitudinal muscles and an intermediate layer of radial muscles. The penis sheath shows more variation in muscle patterns: its muscular wall has two layers in A. lacustris, P. acuta, and P. duryi, three layers in R. auricularia and Planorbinae and four layers in B. glabrata. To trace the evolution of the penial musculature, we mapped the muscle characters on a molecular phylogeny constructed from the concatenated 18S and mtCOI data set. The most convincing synapomorphies were found for Planorbinae (inner and outer penis layers of longitudinal muscles, three-layered wall of the penis sheath). A larger clade coinciding with Planorbidae is defined by the presence of radial muscles and two longitudinal layers in the penis. The comparative analysis of the penial musculature appears to be a promising tool in unraveling the phylogeny of Hygrophila.  相似文献   

16.
During the development of a sterile male control method for Dermestes frischii Kugelann, testis follicles exposed to an X-ray dose of 3.0 krad were investigated using light and electron microscopy.

There was considerable variation in the radiation sensitivity of the various somatic and germ cells. The cyst wall cells seemed particularly resistant while the inner layer of the bilayered follicle sheath was destroyed. The general resistance and versatility of the outer sheath layer maintained the integrity of the follicles. The only outer sheath and apical cells observed to decay were those in close proximity to degenerating germ cells. In some follicles all primary spermatogonia were destroyed, in others their numbers were only depleted. The surviving cells all underwent mitotic delay for 7–14 days. Their subsequent offspring were frequently found to break down and sometimes were proliferated so that germarial polarity was lost. All secondary spermatogonia but only a few primary spermatocytes were destroyed. The decay of germ cells within the same cyst did not necessarily proceed synchronously.  相似文献   

17.
The cell wall polysaccharides of two species of red algae, which are adapted to both freshwater and marine environments, were analysed to determine the effect of these widely different environments on their commercially important agarocolloids and to investigate the possible role of the cell wall in environmental adaptation. Cell wall polymers of freshwater isolates of Bangia atropurpurea (Roth) C. Agardh and cultured freshwater and marine Bostrychia moritziana (Sonder ex Kützing) J. Agardh were isolated and the polysaccharides chemically fractionated and characterized. Wall polysaccharides of freshwater B. atropurpurea were similar to those previously reported for marine isolates with repeating disac-charide units of agarose and porphyran predominant in the hot water extracts. In the insoluble residues, 3-iinked galactosyl and 4-linked mannosyl residues were predominant. Bostrychia moritziana wall polysaccharides included agarocolloids with various patterns of methyl ether substitution similar to those previously described for other Ceramiales. Differences in the position of methyl ether substituents were detected in the hot water extracts of the freshwater and marine specimens. Polymers of freshwater ß. moritziana cultures were composed of a complex mixture of repeating disaccharide units including 2′-O-methyl agarose, 6-O-methyI agarose and 2′-O-methyl porphyran. Polymers of marine isolates of ß. moritziana differ in that they contain only trace amounts of 2-O-methyl saccharides and increased amounts of 6-O-amethyl saccharides. The hot water insoluble residues of both freshwater and marine isolates of ß. moritziana contain a mixture of 3-linked galactosyl and 4-linked glucosyl residues. These results indicate that the adaptive response of B. moritziana to changing osmotic and ionic conditions may include changes in cell wall chemistry: notably, the pattern of methyl ether substitution.  相似文献   

18.
Summary An autolysin produced by young colonies ofPediastrum frees them from the vesicle in which they are formed within 12 hours of release of zoospores from the parent cell. The polysaccharide vesicle is derived from the inner wall layer of the parent cell. Refrigeration delays vesicle disintegration; boiling stops it completely. A purified, lyophilized extract of the vesicle fluid added to boiled vesicled colonies removes the vesicle in 2 hours with the release of reducing sugars and polysaccharides.Biogel P2 and P10 chromatography of the products following incubation of the enzyme preparation and wall showed no more than 1% oligosaccharides; the remaining carbohydrates had a molecular weight of several thousand daltons. Analyses of isolated vesicle wall material (70–85% of the dry weight) showed mannose accounting for approximately 50% of the dry weight, with none of the other neutral sugars present (fucose, xylose, galactose and glucose) representing more than 3%. Uronic acids account for 20–25% of the wall weight, and proteins less than 2%. Pediastrum colonies are thus freed from the vesicles in which they are formed by the action of an autolysin they produce. The autolysin acts on the vesicle wall material to generate reducing sugars and cause it to disintegrate into its constituent polysaccharides.  相似文献   

19.
The ultrastructure of T. mentagrophytes hyphal walls was studied after the use of a cytochemical reaction for polysaccharides. The sections showed a wall composed of 3 layers viz: an external, poorly reactive one with a microfibrillary structure; a medium, fairly reactive one, with a periodic structure and an internal, intensivly stained layer, not observed in old cells. Other observations suggested that the septal medium layer should be differentiated from those cited above. The results are compared with previous data and a synthetic scheme of the Trichophyton mentagrophytes hyphal wall is proposed.  相似文献   

20.
Kremer C  Pettolino F  Bacic A  Drinnan A 《Planta》2004,219(6):1023-1035
Spiral secondary walls are found in hyaline cells of Sphagnum, in the elaters of most liverworts, and in elaters of the hornwort Megaceros. Recent studies on these cells suggest that cytoskeletal and ultrastructural processes involved in cell differentiation and secondary wall formation are similar in bryophytes and vascular plant tracheary elements. To examine differences in wall structure, primary and secondary wall constituents of the hyaline cells of Sphagnum novo-zelandicum and elaters of the liverwort Radula buccinifera and the hornwort Megaceros gracilis were analyzed by immunohistochemical and chemical methods. Anti-arabinogalactan–protein antibodies, JIM8 and JIM13, labeled the central fibrillar secondary wall layer of Megaceros elaters and the walls of Sphagnum leaf cells, but did not label the walls of Radula elaters. The CCRC-M7 antibody, which detects an arabinosylated (16)-linked -galactan epitope, exclusively labeled hyaline cells in Sphagnum leaves and the secondary walls of Radula elaters. Anti-pectin antibodies, LM5 and JIM5, labeled the primary wall in Megaceros elaters. LM5 also labeled the central layer of the secondary wall but only during formation. In Radula elaters, JIM5 and another anti-pectin antibody, JIM7, labeled the primary wall. The distribution of arabinogalactan–proteins and pectic polysaccharides restricted to specific wall types and stages of development provides evidence for the developmental and functional regulation of cell wall composition in bryophytes. Monosaccharide-linkage analysis of Sphagnum leaf cell walls suggests they contain polysaccharides similar to those of higher plants. The most abundant linkage was 4-Glc, typical of cellulose, but there was also evidence for xyloglucans, 4-linked mannans, 4-linked xylans and rhamnogalacturonan-type polysaccharides.Abbreviations AGP Arabinogalactan–protein - Araf Arabinofuranose - Fucp Fucopyranose - GalAp Galacturonopyranose - Galp Galactopyranose - GlcAp Glucuronopyranose - HGA Homogalacturonan - Manp Mannopyranose - RG Rhamnogalacturonan - Rhap Rhamnopyranose - XG Xyloglucan - Xylp Xylopyranose  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号