首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex formation of hairpin-producing heptadeoxynucleotide 5'-d(GCGAAGC) with aromatic molecules: acridine dye proflavine and anthracycline antibiotic daunomycin was studied by one-dimensional 1H NMR and two-dimensional correlation 1H-1H (2M-TOCSY, 2M-NOESY), 1H-31P (2M-HMBC) NMR spectroscopy (500 and 600 MHz) in aqueous solution. Concentration and temperature dependences for the chemical shifts of ligand protons were measured, molecular models of equilibrium in solution were developed, and equilibrium thermodynamic parameters for the formation of intercalation complexes were calculated. Spatial structures of dye and antibiotic complexes with the heptamer hairpin were constructed on the basis of 2M-NOE data and the calculated values of limiting chemical shifts of ligand protons.  相似文献   

2.
Self-association of hexadeoxynucleotide 5'-d(TpApCpGpTpA) and its complexation with antitumor antibiotic daunomycin were studied by one- and two-dimensional homonuclear 1H NMR spectroscopy and heteronuclear 1H-31P NMR spectroscopy in water-salt solution. The concentration and temperature dependences of proton chemical shifts of the hexadeoxynucleotide and the ligand were measured, and equilibrium constants and thermodynamic parameters of corresponding reactions were calculated on this basis using models for the formation of hexadeoxynucleotide duplex and its complex with the antibiotic. The spatial structure of daunomycin-d(TACGTA)2 complex in solution was calculated using X-PLOR software on the basis of 2D NOE spectral data and the limit values of proton chemical shifts of the ligand. Comparative analysis of different intermolecular interactions in sequence-specific binding of the antibiotic to the DNA fragment was carried out.  相似文献   

3.
Complex formation between acridine dye proflavine and self-complementary deoxytetraribonucleoside triphosphate 5'-d(ApGpCpT) in water-salt solution was studied by the method of one- and two-dimensional 1H-NMR spectroscopy (500 MHz). Two-dimensional homonuclear 1H-NMR spectroscopy (2D-COSY and 2D-NOESY) was used for complete assignments of proton signals of molecules in solution and for qualitative analysis of the nature of interactions between proflavine and tetranucleotide. Concentration dependences of proton chemical shifts of the molecules were measured at 293 K. Equilibrium reaction constants and limiting chemical shifts of dye protons in the complexes were determined using suggested schemes of complex formation. Based on the obtained data possible types of complexes were considered. Analysis of relative content of different types of complexes was made and special features of dynamic equilibrium were revealed as a function of correlation of dye and tetranucleotide concentrations. The most favourable structure of 1:2 complex of dye with tetranucleotide was constructed using the calculated values of induced chemical shifts of proflavine protons and 2D-NOESY spectra.  相似文献   

4.
It has been suggested that carbonate radical anions are biologically important because they may be produced during the inflammatory response. The carbonate radicals can selectively oxidize guanine in DNA and RNA by one-electron transfer mechanisms and the guanine radicals thus formed decay by diverse competing pathways with other free radicals or nucleophiles. Using a photochemical method to generate CO(3)(-) radicals in vitro, we compare the distributions of products initiated by the one-electron oxidation of guanine in the trinucleotides 5'-r(GpCpU) and 5'-d(GpCpU) in aqueous buffer solutions (pH 7.5). Similar distributions of stable end products identified by LC-MS/MS methods were found in both cases. The guanine oxidation products include the diastereomeric pair of spiroiminodihydantoin (Sp) and 2,5-diamino-4H-imidazolone (Iz). In addition, intrastrand cross-linked products involving covalent bonds between the G and the U bases (GCU) were also found, although with different relative yields in the 2'-deoxy- and the ribotrinucleotides. The positive-ion MS/MS spectra of the 5'-r(GpCpU) and 5'-d(GpCpU) products clearly indicate the presence of covalently linked G-U products that have a mass smaller by 2 Da than the sum of the G and U bases in both types of trinucleotides. The 5'-d(GCU) cross-linked product was further characterized by 1D and 2D NMR methods that confirm its cyclic structure in which the guanine C8 atom is covalently linked to the uracil N3 atom.  相似文献   

5.
A 500 MHz 1H-n.m.r. study on two self-complementary alternating pyrimidine-purine oligodeoxyribonucleotides, 5'-d(C-G-T-A-C-G) and 5'-d(A-C-G-C-G-C-G-T), is presented. By using the proton-proton nuclear Overhauser effect virtually complete assignments are obtained and a large number of interproton distances [113 in the case of 5'-d(C-G-T-A-C-G) and 79 in the case of 5'-d(A-C-G-C-G-C-G-T)], both intra- and inter-nucleotide, are determined. The interproton-distance data are consistent with an overall right-handed B-DNA-type structure for both oligonucleotides, in agreement with their B-type c.d. spectra. However, whereas 5'-d(C-G-T-A-C-G) adopts a conventional B-type structure with a mononucleotide repeating unit, the interproton-distance data provide evidence that 5'-d(A-C-G-C-G-C-G-T) has a dinucleotide repeating unit consisting of alternation in glycosidic bond and sugar pucker conformations.  相似文献   

6.
Berberine, an isoquinoline plant alkaloid, belongs to the structural class of protoberberines. Recently, the ability of these compounds to act as Topoisomerase I or II poisons, was related to the antitumor activity. The binding of protoberberins to DNA has been studied and the partial intercalation into the double helix has been considered responsible for their activity. We have studied the interaction of berberine with the double helix oligonucleotides d(AAGAATTCTT)(2), d(GCGATCGC)(2), d(CGTATACG)(2), d(CGTACG)(2), 5'-d(ACCTTTTTGATGT)-3'/5(ACATCAAAAAGGT)-3' and with the single strand 5'-d(ACATCAAAAAGGT)-3', by 1H, 31P NMR and UV spectroscopy. Phosphorus resonance experiments were performed to detect small conformational changes of the phosphoribose backbone, in the case that an intercalation process occurs. Our data reveal that berberine does not intercalate into the duplexes studied, and binds preferentially to AT rich sequences. The structure of the complex with d(AAGAATTCTT)(2) was determined by using proton 2D NOESY spectra, which allowed to obtain several NOE contacts between the drug and the nucleotide. Structural models were built up by Molecular Mechanics (MM) and Molecular Dynamics (MD) calculations, by using the inter-proton distances derived from the NOE values. Berberine results to be located in the minor groove, lying with the convex side on the helix groove and presenting the positively charged nitrogen atom close to the negative ionic surface of the oligomer. The large 1H chemical shifts variation, observed for the drug when it is added to the above duplexes, as well as to the single strand oligomer, was interpreted with non-specific ionic interactions. The binding constants were measured by UV and NMR spectroscopy. They are strongly affected by the ionic strength and by the self-association process, which commonly occurs with this type of drugs. A dimerisation constant was measured and the value was included in the calculations of the binding constants. The results obtained show that the non-specific ionic interactions represent the major contribution to the values of the binding constants. These parameters, as well as the protons chemical shift variation of the ligand, are thus not diagnostic for the identification of a drug/DNA complex.  相似文献   

7.
The self-association of self-complementary deoxyhexanucleotide d(GCATGC) was investigated in aqueous salt solution. Homonuclear 1H NMR correlation spectroscopy (2D-TOCSY and 2D-NOESY) was used for complete assignments of nonexchangeable protons of the hexamer. The equilibrium reaction constants and thermodynamical parameters of duplex d(GCATGC)2 formation were determined from experimental concentration and temperature dependences of proton chemical shifts of the deoxyhexanucleotide. Distinctive features of the concentration dependences in the range of small concentrations at relatively low temperatures of solution enable one to assume that one single-stranded hexamer sequence forms a compact structure (similar to a hairpin) in aqueous solution. A possible spatial hairpin structure of the hexamer was proposed. Comparative analysis of the experimental and theoretical (using the "nearest neighbor" model) thermodynamical parameters of duplex formation was made.  相似文献   

8.
The complex formation of the antibiotic mitoxantrone (novantrone) with the deoxytetranucleotide 5'-d(TpGpCpA) in an aqueous salt solution was studied by one- and two-dimensional (2D-TOSCY and 2D-NOESY) 1H NMR spectroscopy (500 MHz). Concentration and temperature dependence of proton chemical shifts of molecules were measured. On the basis of these data, the equilibrium constants of the reaction, the relative content of various complexes as a function of concentration and temperature, the limiting values of chemical shifts of novantrone in complexes, and the thermodynamic parameters delta H and delta S of complex formation of molecules were calculated. It was concluded that the attachment sites for novantrone are pyrimidine-purine nucleotide sequences, sites d(TG) and d(CA) of the tetranucleotide duplex. The analysis of the thermodynamic parameters of the complex formation suggests that intermolecular hydrogen bonds and electrostatic interactions of the aminoalkyl chains of novantrone with the duplex d(TpGpCpA)2 play an important role in the stabilization of complexes 1:2 and 2:2. The results were compared with those obtained earlier for typical intercalators of ethidium bromide and daunomycin under identical experimental conditions.  相似文献   

9.
Temperature relationships of chemical shifts of protons of proflavin mixed with deoxytetraribonucleoside triphosphate 5'-d(ApGpCpT) in water solution were investigated on impulse NMR spectrometer (500 MHz). Procedure is suggested for calculating values of mole fractions of various associates in solution as a function against temperature. Free energies of Gibbs, entalpy and entropy were determined in the reactions of complex formation 1:1, 1:2, 2:1 of proflavin with tetranucleotide. The results point to a significant role of hydrophobic interactions during the formation of dye--tetramere duplex complexes.  相似文献   

10.
The conformational states of the self-complementary deoxyhexanucleotides d(GCATGC) and d(GCTAGC) capable of forming hairpin structures in aqueous solution have been studied by one- and two-dimensional 1H NMR spectroscopy and molecular dynamics simulations. The equilibrium thermodynamic parameters of the formation of duplex and hairpin forms have been determined, and the spatial structures of the d(GCATGC) and d(GCTAGC) conformers have been calculated. A comparative analysis of the thermodynamic and conformational parameters of self-association has been made. The molecular dynamics of the hexamer forms in the nanosecond time scale has been studied, and the mobility of their structural constituents has been evaluated. Possible reasons for the observed distinction in the thermodynamic stability of duplex and hairpin forms of the deoxyhexanucleotide sequences are discussed.  相似文献   

11.
The concentration dependence of the chemical shifts of the protons H-2, H-8 and H-1' for 2'-, 3'- and 5'-AMP2- and of the protons H-2, H-7, H-8 and H-1' for tubercidin 5'-monophosphate (= 7-deaza-AMP2-; TuMP2-) has been measured in D2O at 27 degrees C to elucidate the self-association of the nucleoside monophosphates (NMPs). The results are consistent with the isodesmic model of indefinite non-cooperative stacking; the association constants for all four NMPs are very similar: K approximately 2 M-1. These 1H-NMR measurements and those on the dependence of the chemical shifts on the pD of the solutions indicate that the NMP2- species exist predominately in the anti conformation. Comparison of the shift data for 5'-TuMP and 5'-AMP shows that no hydrogen bonding between N-7 and -PO3H- occurs; hence, the previously observed and confirmed 'wrongway' chemical shift [Martin, R. B. (1985) Acc. Chem. Res 18, 32] connected with the deprotonation of the -PO3H- group most probably results from the anisotropic properties of the phosphate group which is in the anti conformation close to N-7. From the dependence between the chemical shift and the pD of the solutions the acidity constants were calculated for the four protonated NMPs, and for adenosine and D-ribose 5'-monophosphate. The measurements also allow an estimation of the first acidity constant of H3(5'-AMP)+ (pKDD3(AMP) = 0.9 and pKHH3(AMP) = 0.4). The values for pKHH2(NMP) and pKHH(NMP) were also determined from potentiometric pH titrations in aqueous solution (I = 0.1 M, NaNO3; 25 degrees C). The agreement of the results obtained by the two methods is excellent. The position of the phosphate group at the ribose moiety and the presence of N-7 in the base moiety influence somewhat the acid-base properties of the mentioned NMPs. Measurements with 5'-AMP in 50% (v/v) aqueous dioxane show that lowering of the solvent polarity facilitates removal of the proton from the H+(N-1) site while the -PO2-3 group becomes more basic; this increases the pH range in which the monoprotonated H(5'-AMP)- species is stable and which is now also extended into the physiological pH region. Some consequences of this observation for biological systems are indicated.  相似文献   

12.
An effective in vitro enzymatic synthesis is described for the production of nucleoside triphosphates (NTPs) which are stereo-specifically deuterated on the H5" position with high selectivity (>98%), and which can have a variety of different labels (13C, 15N, 2H) in other positions. The NTPs can subsequently be employed in the enzymatic synthesis of RNAs using T7 polymerase from a DNA template. The stereo-specific deuteration of the H5" immediately provides the stereo-specific assignment of H5' resonances in NMR spectra, giving access to important structural parameters. Stereo-chemical H-exchange was used to convert commercially available 1,2,3,4,5,6,6-2H-1,2,3,4,5,6-13C-D-glucose (d7-13C6-D-glucose) into [1,2,3,4,5,6(R)-2H-1,2,3,4,5,6-13C]-D-glucose (d6-13C6-D-glucose). [1',3',4',5"-2H-1',2',3',4',5'-13C]GTP (d4-13C5-GTP) was then produced from d6-13C6-D-glucose and guanine base via in vitro enzymatic synthesis employing enzymes from the pentose-phosphate, nucleotide biosynthesis and salvage pathways. The overall yield was approximately 60 mg NTP per 1 g glucose, comparable with the yield of NTPs isolated from Escherichia coli grown on enriched media. The d4-13C5-GTP, together with in vitro synthesised d5-UTP, d5-CTP and non-labelled ATP, were used in the synthesis of a 31 nt RNA derived from the primer binding site of hepatitis B virus genomic RNA. (13C,1H) hetero-nuclear multiple-quantum spectra of the specifically deuterated sample and of a non-deuterated uniformly 13C/15N-labelled sample demonstrates the reduced spectral crowding and line width narrowing compared with 13C-labelled non-deuterated RNA.  相似文献   

13.
Self-association of hexadeoxynucleotide 5"-d(TpApCpGpTpA) and its complexation with antitumor antibiotic daunomycin were studied by one- and two-dimensional homonuclear 1H NMR spectroscopy and heteronuclear 1H–31P NMR spectroscopy in water–salt solution. The concentration and temperature dependences of proton chemical shifts of the hexadeoxynucleotide and the ligand were measured, and equilibrium constants and thermodynamic parameters of corresponding reactions were calculated on this basis using models for the formation of hexadeoxynucleotide duplex and its complex with the antibiotic. The spatial structure of daunomycin–d(TACGTA)2complex in solution was calculated using X-PLOR software on the basis of 2D NOE spectral data and the limit values of proton chemical shifts of the ligand. Comparative analysis of different intermolecular interactions in sequence-specific binding of the antibiotic to the DNA fragment was carried out.  相似文献   

14.
The oligonucleotide 5'-d(TCTACGCGTTCT) reacts with trans-diamminedichloroplatinum(II) to yield primarily trans-[Pt(NH3)2[d(TCTACGCGTTCT)-N7-G(6),N7-G(8)]], containing the desired trans-[Pt(NH3)2[d(GCG)]] 1,3-cross-link. A key element of the platination reaction is the use of low pH to suppress coordination at A(4). The product was fully characterized by pH-dependent NMR titrations, enzymatic degradation analysis, and 195Pt NMR spectroscopy. Interestingly, the 1,3-cross-linked adduct is unstable at neutral pH, rearranging unexpectedly to form the linkage isomer trans-[Pt(NH3)2[d-(TCTACGCGTTCT)-N3-C(5),N7-G(8)]]. This rearrangement product is more stable than the initially formed isomer and could be characterized by pH-dependent NMR titrations, enzymatic degradation analysis, liquid secondary ion mass spectrometric analysis of an enzymatically digested fragment, 195Pt NMR spectroscopy, and modified Maxam-Gilbert footprinting experiments. By contrast, the 1,3-intrastrand cross-linked isomer rearranges during the course of both pH titration and enzymatic degradation experiments to form the 1,4-adduct. The equilibrium constant for this rearrangement is approximately 3, favoring the 1,4-adduct. Kinetic studies of the linkage isomerization reaction reveal t1/2 values for the first-order disappearance of the 1,3-intrastrand cross-linked isomer ranging from 129 (at 30 degrees C) to 3.6 h (at 62 degrees C), with activation parameters delta H not equal to = 91 +/- 2 kJ/mol and delta S not equal to = -58 +/- 8 J/(mol.K). Mechanistic implications of these kinetic results as well as the general relevance of this linkage isomerization reaction to platinum-DNA chemistry are briefly discussed.  相似文献   

15.
The concentration dependence of the chemical shifts of the protons H-2, H-8, H-10, H-11, and H-1' of 1,N6-ethenoadenosine 5'-triphosphate (epsilon-ATP4-) has been measured in D2O at 27 degrees C to elucidate the self-association. The results are consistent with the isodesmic model of indefinite noncooperative stacking; the association constant, K = 1.9 +/- 0.2 M-1, is only slightly larger than the value for ATP4-, K = 1.3 +/- 0.2 M-1. The self-stacking tendency of epsilon-ATP4- is promoted by a factor of about 4 by (1:1) coordination of Mg2+ to the phosphate moieties, which probably links these together and also neutralizes part of the negative charge; Zn2+ is only about half as effective as Mg2+ in promoting the self-association. This result contrasts with the self-stacking properties of Mg(ATP)2- and Zn(ATP)2-, Zn2+ being considerably more effective in a 1:1 ATP system. It is assumed that due to the enhanced affinity of the N-6/N-7 site of the epsilon-adenine moiety towards Zn2+ repulsion of the bases occurs resulting thus in a lower stacking tendency; in addition, the simple isodesmic model is no longer applicable to the Zn(epsilon-ATP)2- system: to explain the experimental data, the formation of an intermolecular metal ion bridge in the dimeric stacks is proposed. The experimental conditions required for studies of the properties of monomeric epsilon-ATP systems are described. Care should be exercised in employing epsilon-ATP as a probe for ATP.  相似文献   

16.
The temperature dependence of the UV- and CD-spectra of the oligonucleotides 3'-d(A)10-L-(T)10-5' [anti(AT)], 3'-d(A)10-L-d(T)10-3' [par(AT)] and 3'-d(A)10-L-(dT)10-L-(dT)10-5' [tripl(ATT)] (L = -PO(CH2CH2O) 3p-) in the phosphate buffer at pH 7 under different concentrations of NaCL and in the presence or absence of 0.01 M MgCl2 was studied. All registered structural changes are the result of intramolecular processes if the concentrations of the oligonucleotides is low (about 2.2.10(-5) M). Par(AT) and anti(AT) exist in the only two forms, transforming into each other: under low temperatures they exist as hairpins with the parallel or antiparallel orientation of chains accordingly which transform into unfolded chains when the temperature increased. In contrast trip(ATT) exists in the three different forms depending on the temperature and ion conditions. They are: the three- stranded clip, the two-stranded hairpin with a single stranded "tail" and completely unfolded chain. For the first time this work presents thermodynamic parameters of the triplex formation from deoxyoligonucleotides depending on NaCl concentration. We have registered the CD spectra to one-, two-, and three-stranded forms. Ethidium bromide binding to three-stranded "clip" was investigated, and it was established that molecules of the dye may intercalate into the "clip" with formation of stable complexes (the constant of association 10(6) M-1). It is maximum three molecules of ethidium bromid which may bound to one molecule of the three-stranded clip. It has been shown that the suggested synthetic model (three oligonucleotide blocks combined by hydroxyalkyl chains) is the most convenient for physico-chemical investigations of triplexes today.  相似文献   

17.
The interactions of Et2SnCl2 with 5'-IMP and 5'-GMP have been studied in aqueous solutions by 1H- and 31P-NMR spectroscopy as a function of pH. At low pH values (< 4.0) Sn(IV) interacts with the pyrophosphate oxygens of these nucleotides. At intermediate pH values (4-9.5) no interaction of the metal with the nucleotides take place, while at pH > 9.5 the sugar O'2 and O'3 atoms are the preferred coordination sites. In addition, the solid adducts obtained from aqueous solutions at pH = 3-4 of the above interactions correspond to formulae; (Et2Sn)2(5'-IMP)2(H2O) and (Et2Sn)3(5'-GMP)2(OH)2(H2O)2 as their elemental analysis show. IR spectra and solid state 13C, 31P-NMR spectra 119Sn M?ssbauer and solution 119Sn-NMR spectra once more confirm the pyrophosphate involvement in bonding with Sn(IV) in oligomeric or polymeric structures and trigonal bipyramidal or octahedral geometries.  相似文献   

18.
An investigation of the self-association behavior of 2'-deoxy[5'-phosphate-guanylyl-(3'-5')-guanosine] (d(pGpG)) in the presence of Na+ and K+ ions has been carried out by 1H and 31P NMR and FTIR spectroscopy. A comparison has been made of the self- association behavior of d(pGpG) with that of the related dinucleotide d(GpG), which has been shown to form extended structures based on stacked G-tetrads. Chemically, d(pGpG) monomer differs from d(GpG) only by the addition of a phosphate at the 5'-OH of the sugar residue. It was found that the addition of the second phosphate interferes with self-association. A suitable counterion is all that is required by d(GpG) to induce the formation of large super structures, but for d(pGpG) a large excess of salt is needed to produce the same effect. However, once self-association occurs, d(pGpG) forms similar structures to d(GpG) and has nearly the same properties. For both compounds, the K+ ion induces a more stable structure than the Na+ ion. The 31P NMR chemical shift ranges of d(pGpG) were consistent with the reported data for a phosphodiester and terminal phosphate. The small change in the chemical shift of the terminal phosphate with increasing temperature suggests that no major change in the terminal phosphate conformation occurred upon self-association. It was concluded that the terminal phosphate did not result in steric hindrance to self-association, but that interference to self-association was due to electrostatic repulsion effects.  相似文献   

19.
The hydration in the minor groove of double stranded DNA fragments containing the sequences 5'-dTTAAT, 5'-dTTAAC, 5'-dTTAAA and 5'-dTTAAG was investigated by studying the decanucleotide duplex d(GCATTAATGC)2 and the singly cross-linked decameric duplexes 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3' and 5'-d(GCCTTAAAGC)-3'-linker-5'-d(GCTTTAAGGC)-3' by NMR spectroscopy. The linker employed consisted of six ethyleneglycol units. The hydration water was detected by NOEs between water and DNA protons in NOESY and ROESY spectra. NOE-NOESY and ROE-NOESY experiments were used to filter out intense exchange cross-peaks and to observe water-DNA NOEs with sugar 1' protons. Positive NOESY cross-peaks corresponding to residence times longer than approximately 0.5 ns were observed for 2H resonances of the central adenine residues in the duplex containing the sequences 5'-dTTAAT and 5'-dTTAAC, but not in the duplex containing the sequences 5'-dTTAAA and 5'-dTTAAG. In all nucleotide sequences studied here, the hydration water in the minor groove is significantly more mobile at both ends of the AT-rich inner segments, as indicated by very weak or negative water-A 2H NOESY cross-peaks. No positive NOESY cross-peaks were detected with the G 1'H and C 1'H resonances, indicating that the minor groove hydration water near GC base pairs is kinetically less restrained than for AT-rich DNA segments. Kinetically stabilized minor groove hydration water was manifested by positive NOESY cross-peaks with both A 2H and 1'H signals of the 5'-dTTAA segment in d(GCATTAATGC)2. More rigid hydration water was detected near T4 in d(GCATTAATGC)2 as compared with 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3', although the sequences differ only in a single base pair. This illustrates the high sensitivity of water-DNA NOEs towards small conformational differences.  相似文献   

20.
NO-donating ability of nitrosyl [Fe-S] complexes, namely, mononuclear dinitrosyl complexes of anionic type [Fe(S2O3)2(NO)2]-(I) and neutral [Fe2(SL1)2(NO)2] with L1=1H-1,2,4-triazole-3-yl (II); tetranitrosyl binuclear neutral complexes [Fe2(SL2)2(NO)4] with L2=5-amino-1,2,4-triazole-3-yl (III); 1-methyl-1H-tetrazole-5-yl (IV); imidazole-2-yl (V) and 1-methyl-imidazole-2-yl (VI) has been studied. In addition, Roussin's "red salt" Na2[Fe2S2(NO)4] x 8H2O (VII) and Na2[Fe(CN)5NO] x H2O (VIII) have been investigated. The method for research has been based on the formation of Hb-NO adduct upon the interaction of hemoglobin with NO generated by complexes I-VIII in aqueous solutions. Kinetics of NO formation was studied by registration of absorption spectra of the reaction systems containing Hb and the complex under study. For determination of HbNO concentration, the experimental absorption spectra were processed during the reaction using standard program MATHCAD to determine the contribution of individual Hb and HbNO spectra in each spectrum. The reaction rate constants were obtained by analyzing kinetic dependence of Hb interaction with NO donors under study. All kinetic dependences for complexes I-VI were shown to be described well in the frame of formalism of pseudo first-order reactions. The effective first-order rate constants for the studied reactions have been determined. As follows from the values of rate constants, the rate of interaction of sulfur-nitrosyl iron complexes (I-VI) with Hb is limited by the stage of NO release in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号