首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 678 毫秒
1.
Transgenic lines of subterranean clover were constructed that contained three different Bean yellow mosaic virus (BYMV) coat protein (CP) gene constructs; full-length CP, the core region of the CP, and full-length CP plus the 3′ untranslated region of the viral genome. Transgenic plants containing the full-length and core CP gene constructs showed high and moderate levels of BYMV resistance. Resistance was measured as a lack or amelioration of viral disease symptoms, which was correlated with a reduction in virus levels and yield loss. A range of different resistance phenotypes was observed. They included reduced infection rates, delay and reduction in local lesion development, and delay and reduction in severity of systemic symptom development. Resistance levels were not correlated with transgene mRNA levels and no transgene-encoded protein was detected in any of the transgenic lines. This is the first example of genetically engineered virus resistance in a clover.  相似文献   

2.
转不可翻译PVY^N CP基因烟草的抗病性分析   总被引:3,自引:0,他引:3  
我们曾报道表达不可翻译PVY^N CP基因的转基因烟草抗病性是由RNA介导的,其抗病性类似于转录后的基因沉默(PTGS)。本研究以这类不同抗性的T0代转基因烟草植株为材料,对自交后的T1代转基因植株的遗传和抗病性进行了分析,并选取部分T1代抗病株系自交留种。对T2代RNA介导抗病性转基因植株进行了分子分析和一系列抗病性研究。结果表明,含1—2个转基因拷贝的T0代感病植株,在T1代中的Km抗性分离符合单位点插入的3:1的遗传规律;含3个或3个以上转基因拷贝的T0代中抗或高抗植株,在T1代中的Km抗性分离符合多位点插入的15:1或63:1的遗传规律。大多数T1、T2代转基因植株的抗病性与转基因拷贝数成正相关,转基因在T1、T2代植株中能够转录表达,且转基因植株之间转基因mRNA在细胞质中的积累水平与转基因植株的抗病性成负相关。转基因植株的抗病性能够在T1、T2代中遗传,且T2代转基因植株的抗病性具有以下特征:1)既抗病毒粒体又抗病毒RNA的侵染,且这种抗病性不受接种物剂量的影响;2)抗病谱较窄,只对PVY的某些株系具有高度抗病性;3)与传毒方式无关,既抗摩擦接种又抗带毒蚜虫接种;4)与植株的发育阶段没有关系。  相似文献   

3.
我们曾报道表达不可翻译PVY~N CP基因的转基因烟草抗病性是由RNA介导的,其抗病性类似于转录后的基因沉默(PTGS)。本研究以这类不同抗性的Tn代转基因烟草植株为材料,对自交后的T1代转基因植株的遗传和抗病性进行了分析,并选取部分T_1代抗病株系自交留种。对T_2代RNA介导抗病性转基因植株进行了分子分析和一系列抗病性研究。结果表明,含1-2个转基因拷贝的T_0代感病植株,在T_1代中的Km抗性分离符合单位点插入的3∶1的遗传规律;含3个或3个以上转基因拷贝的T_0代中抗或高抗植株,在T_1代中的Km抗性分离符合多位点插入的15∶1或63∶1的遗传规律。大多数T_1、T_2代转基因植株的抗病性与转基因拷贝数成正相关,转基因在T_1、T_2代植株中能够转录表达,且转基因植株之间转基因mRNA在细胞质中的积累水平与转基因植株的抗病性成负相关。转基因植株的抗病性能够在T_1、T_2代中遗传,且T_2代转基因植株的抗病性具有以下特征:1)既抗病毒粒体又抗病毒RNA的侵染,且这种抗病性不受接种物剂量的影响;2)抗病谱较窄,只对PVY的某些株系具有高度抗病性;3)与传毒方式无关,既抗摩擦接种又抗带毒蚜虫接种;4)与植株的发育阶段没有关系。  相似文献   

4.
5.
以前曾报道用RNA介导的抗病毒策略,获得了高度抗病的表达马铃薯Y病毒坏死株系外壳蛋白基因(PVY^N CP)的转基因烟草,并对T1、T2代转基因植株进行了遗传和抗病性分析。此次以T,代转基因植株为试验材料,在筛选高度抗病植株并证明其抗病性是基于转基因沉默的基础上,采用Northern杂交的方法,证明CMV侵染抑制了转基因植株中PVY^N CP基因的沉默,而且CMV对PVY^N CP基因沉默的抑制部位是发生在接种后的新生叶上,接种叶及其下部叶片中PVY^N CP基因沉默则未受到影响。采用ELISA方法对CMV PVY^N复合接种的转基因植株进行PVY^N检测,结果表明,接种叶及下部叶没有检测到PVY^N,植株叶片对PVY^N表现为抗病。而在CMV接种后植株新生叶中则检测出了高滴度的PVY^N,植株叶片对PVY^N表现为感病。该文报道了在表达PVY^N CP基因的RNA介导抗性转基因植株中,异源病毒侵染抑制了转基因的沉默,并导致转基因植株的抗病性丧失。  相似文献   

6.
7.
8.
9.
10.
11.
The relationship between transgene copy number, rearrangement levels, inheritance patterns, expression levels, transgene stability and plant fertility was analysed in a random population of 95 independently transformed rice plant lines. This analysis has been conducted for both the selectable marker gene ( aphIV) and the unselected reporter gene ( gusA), in the presence or absence of flanking Matrix Attachment Regions (MARs) in order to develop a better understanding of transgene behaviour in a population of transgenic rice plants created by particle bombardment. In the first generation (T(0)), all the independently transformed plant lines contained and expressed the aphIV gene conferring resistance to hygromycin, but only 87% of the lines were co-transformed with the unselected gusA marker gene. Both transgenes seemed to be expressed independently. Most lines exhibited complex transgene rearrangements as well as an intact transgene expression unit for both aphIV and gusA transgenes. Transgene copy number was proportional to the quantity of DNA used during bombardment. In T(0) plants, high gusA copy number significantly decreased GUS expression levels but there was no correlation between expression level and transgene copy number across the entire population of lines. Four main factors impaired transgene expression in primary transgenic plants (T(0)) and their progeny (T(1)): (1) absence of transgene expression in T(0) plants (41% of lines), (2) sterility of T(0) plants (28% of lines), (3) non-transmission of intact transgenes to some or all progenies (at least 14% of lines), and (4) silencing of transgene expression in progeny plants (10% of lines). Transgene stability was significantly related to differences in transgene structure and expression levels. The presence of Rb7 MARs flanking the gusA expression unit had no effect on plant fertility or non-transmission of transgenes, but provided copy number-dependent expression of the transgene and improved expression levels and stability over two generations. Overall, only 7% of the plant lines without MARs and 17% of the lines with MARs initially generated, exhibited stable transgene expression over two generations.  相似文献   

12.
13.
Plants can be protected against infection by potyviruses by expressing different portions of potyviral genomes as transgenes. This strategy has proven effective with several potyvirus genes, including the Nla, Nlb, and coat protein coding regions. Given the effectiveness of separate potyvirus coding regions as determinants of resistance, we tested the hypothesis that combinations of potyvirus coding regions would provide additively greater protection of plants against potyviruses. For this, we compared transgenic plant lines that expressed either the coat protein (CP) or the Nla+Nlb+coat protein (NNC) coding regions from tobacco vein mottling virus (TVMV). We found that plants that carry the NNC gene combination were invariably less resistant to TVMV than were lines that contain a CP gene alone. Additionally, we found that NNC lines displayed virtually no resistance to tobacco etch virus (TEV), in contrast to the CP lines. We conclude that combining more than one virus-derived resistance determinant in a single construct is detrimental to the production of virus-resistant plants.  相似文献   

14.
Yao J  Pang Y  Qi H  Wan B  Zhao X  Kong W  Sun X  Tang K 《Transgenic research》2003,12(6):715-722
Tobacco leaf discs were transformed with a plasmid, pBIPTA, containing the selectable marker neomycin phosphotransferase gene (nptII) and Pinellia ternata agglutinin gene (pta) via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic tobacco plants were regenerated. PCR and Southern blot analyses confirmed that the pta gene had integrated into the plant genome and northern blot analysis revealed transgene expression at various levels in transgenic plants. Genetic analysis confirmed Mendelian segregation of the transgene in T1 progeny. Insect bioassays showed that transgenic plants expressing PTA inhibited significantly the growth of peach potato aphid (Myzus persicae Sulzer). This is the first report that transgenic plants expressing pta confer enhanced resistance to aphids. Our study indicates that the pta gene can be used as a supplement to the snowdrop (Galanthus nivalis) lectin gene (gna) in the control of aphids, a sap-sucking insect pest causing significant yield losses of crops.  相似文献   

15.
The nucleocapsid protein (N) gene of the lettuce isolate of tomato spotted wilt virus (TSWV) was inserted into peanut (Arachis hypogaea L.) via microprojectile bombardment. Constructs containing the hph gene for resistance to the antibiotic hygromycin and the TSWV N gene were used for bombardment of peanut somatic embryos. High frequencies of transformation and regeneration of plants containing the N gene were obtained. Southern blot analysis of independent transgenic lines revealed that one to several copies of the N gene were integrated into the peanut genome. Northern blot, RT-PCR and ELISA analyses indicated that a gene silencing mechanism may be operating in primary transgenic lines containing multiple copy insertions of the N transgene. One transgenic plant which contained a single copy of the transgene expressed the N protein in the primary transformant, and the progeny segregated in a 3 :1 ratio based upon ELISA determination. Received: 24 October 1997 / Revision received: 9 February 1998 / Accepted: 21 February 1998  相似文献   

16.
17.
18.
19.
Tobacco plant lines transformed with the coat protein (CP) gene of the tobacco veinal necrosis strain of potato virus Y (PVYN), and previously shown to be protected against mechanical inoculation with the virus, have now been tested for specificity and protection against virus infection mediated by viruliferous aphids. To determine the specificity of virus protection, two transgenic tobacco lines, A30 and A80, were challenged with several isolates of distinct PVY strains (PVYN, PVYO and PVYC) by mechanical inoculation. Clear levels of protection against the PVYO-isolates tested were maintained in the transgenic plants, although these levels were slightly lower than the protection against the homologous PVYN strain from which the CP gene was derived. Interestingly, no protection against mechanical virus inoculation with the Gladblaadje isolate of PVYC could be observed. To assess the levels of protection against aphid-mediated virus infection, two transgenic plant lines, A30 and D25, showing respective levels of protection of 95 and 80% against mechanical virus inoculation, were challenged using PVYN viruliferousMyzus persicae. Virus inoculation using six aphids per plant, resulted in similar levels of protection in both transgenic lines as found previously for mechanical inoculation. Protection was maintained in both lines, even when as many as 60 viruliferous aphids were used per plant in the inoculation experiments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号