首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 738 毫秒
1.
Stomatal numbers of soybean and response to water stress   总被引:2,自引:0,他引:2  
The relationship among stomatal density, photosynthetic rate, leaf conductance, plant growth, bean yield and kaempferol triglucoside (K9) in the leaves of soybean (Glycine max (L.) Merr.) was examined in two field tests. K9 in the leaves was associated with reduced stomatal density, reduced photosynthetic rate, reduced stomatal conductance, reduced plant weight and lower bean yield. Plants with high stomatal frequency (lacking K9) were better able to take advantage of increased water supply by increasing stomatal conductance (upper surface), transpiration and bean yield. Plants with low stomatal frequency (with K9) were unresponsive to irrigation and in this sense were more tolerant of water stress, but their overall yield was low.  相似文献   

2.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

3.
Very few studies have attempted to disentangle the respective role of ontogeny and water stress on leaf photosynthetic attributes. The relative significance of both effects on photosynthetic attributes has been investigated in leaves of field‐grown almond trees [Prunus dulcis (Mill.) D. A. Webb] during four growth cycles. Leaf ontogeny resulted in enhanced leaf dry weight per unit area (Wa), greater leaf dry‐to‐fresh weight ratio and lower N content per unit of leaf dry weight (Nw). Concomitantly, area‐based maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), mesophyll conductance to CO2 diffusion (gm)′ and light‐saturated net photosynthesis (Amax) declined in both well‐watered and water‐stressed almond leaves. Although gm and stomatal conductance (gs) seemed to be co‐ordinated, a much stronger coordination in response to ontogeny and prolonged water stress was observed between gm and the leaf photosynthetic capacity. Under unrestricted water supply, the leaf age‐related decline of Amax was equally driven by diffusional and biochemical limitations. Under restricted soil water availability, Amax was mainly limited by gs and, to a lesser extent, by photosynthetic capacity and gm. When both ontogeny and water stress effects were combined, diffusional limitations was the main determinant of photosynthesis limitation, while stomatal and biochemical limitations contributed similarly.  相似文献   

4.
Salinity significantly limits leaf photosynthesis but the factors causing the limitation in salt‐stressed leaves remain unclear. In the present work, photosynthetic and biochemical traits were investigated in four rice genotypes under two NaCl concentration (0 and 150 mM) to assess the stomatal, mesophyll and biochemical contributions to reduced photosynthetic rate (A) in salt‐stressed leaves. Our results indicated that salinity led to a decrease in A, leaf osmotic potential, electron transport rate and CO2 concentrations in the chloroplasts (Cc) of rice leaves. Decreased A in salt‐stressed leaves was mainly attributable to low Cc, which was determined by stomatal and mesophyll conductance. The increased stomatal limitation was mainly related to the low leaf osmotic potential caused by soil salinity. However, the increased mesophyll limitation in salt‐stressed leaves was related to both osmotic stress and ion stress. These findings highlight the importance of considering mesophyll conductance when developing salinity‐tolerant rice cultivars.  相似文献   

5.
Recent soil pressurization experiments have shown that stomatal closure in response to high leaf–air humidity gradients can be explained by direct feedback from leaf water potential. The more complex temperature‐by‐humidity interactive effects on stomatal conductance have not yet been explained fully. Measurements of the change in shoot conductance with temperature were made on Phaseolus vulgaris (common bean) to test whether temperature‐induced changes in the liquid‐phase transport capacity could explain these temperature‐ by‐humidity effects. In addition, shoot hydraulic resistances were partitioned within the stem and leaves to determine whether or not leaves exhibit a greater resistance. Changes in hydraulic conductance were calculated based on an Ohm’s law analogy. Whole‐plant gas exchange was used to determine steady‐ state transpiration rates. A combination of in situ psychrometer measurements, Scholander pressure chamber measurements and psychrometric measurements of leaf punches was used to determine water potential differences within the shoot. Hydraulic conductance for each portion of the pathway was estimated as the total flow divided by the water potential difference. Temperature‐induced changes in stomatal conductance were correlated linearly with temperature‐induced changes in hydraulic conductance. The magnitude of the temperature‐induced changes in whole‐plant hydraulic conductance was sufficient to account for the interactive effects of temperature and humidity on stomatal conductance.  相似文献   

6.
In this study it has been shown that increased diffusional resistances caused by salt stress may be fully overcome by exposing attached leaves to very low [CO2] (~ 50 µmol mol?1), and, thus a non‐destructive‐in vivo method to correctly estimate photosynthetic capacity in stressed plants is reported. Diffusional (i.e. stomatal conductance, gs, and mesophyll conductance to CO2, gm) and biochemical limitations to photosynthesis (A) were measured in two 1‐year‐old Greek olive cultivars (Chalkidikis and Kerkiras) subjected to salt stress by adding 200 mm NaCl to the irrigation water. Two sets of ACi curves were measured. A first set of standard ACi curves (i.e. without pre‐conditioning plants at low [CO2]), were generated for salt‐stressed plants. A second set of ACi curves were measured, on both control and salt‐stressed plants, after pre‐conditioning leaves at [CO2] of ~ 50 µmol mol?1 for about 1.5 h to force stomatal opening. This forced stomata to be wide open, and gs increased to similar values in control and salt‐stressed plants of both cultivars. After gs had approached the maximum value, the ACi response was again measured. The analysis of the photosynthetic capacity of the salt‐stressed plants based on the standard ACi curves, showed low values of the Jmax (maximum rate of electron transport) to Vcmax (RuBP‐saturated rate of Rubisco) ratio (1.06), that would implicate a reduced rate of RuBP regeneration, and, thus, a metabolic impairment. However, the analysis of the ACi curves made on pre‐conditioned leaves, showed that the estimates of the photosynthetic capacity parameters were much higher than in the standard ACi responses. Moreover, these values were similar in magnitude to the average values reported by Wullschleger (Journal of Experimental Botany 44, 907–920, 1993) in a survey of 109 C3 species. These findings clearly indicates that: (1) salt stress did affect gs and gm but not the biochemical capacity to assimilate CO2 and therefore, in these conditions, the sum of the diffusional resistances set the limit to photosynthesis rates; (2) there was a linear relationship (r2 = 0.68) between gm and gs, and, thus, changes of gm can be as fast as those of gs; (3) the estimates of photosynthetic capacity based on ACi curves made without removing diffusional limitations are artificially low and lead to incorrect interpretations of the actual limitations of photosynthesis; and (4) the analysis of the photosynthetic properties in terms of stomatal and non‐stomatal limitations should be replaced by the analysis of diffusional and non‐diffusional limitations of photosynthesis. Finally, the C3 photosynthesis model parameterization using in vitro‐measured and in vivo‐measured kinetics parameters was compared. Applying the in vivo‐measured Rubisco kinetics parameters resulted in a better parameterization of the photosynthesis model.  相似文献   

7.
Twin Cays (Belize) is a highly oligotrophic mangrove archipelago dominated by Rhizophora mangle L. Ocean‐fringing trees are 3–7 m tall with a leaf area index (LAI) of 2.3, whereas in the interior, dwarf zone, trees are 1.5 m or less, and the LAI is 0.7. P‐fertilization of dwarf trees dramatically increases growth. As a partial explanation of these characteristics, it was hypothesized that differences in stature and growth rates would reflect differences in leaf photosynthetic capacity, as determined by the photochemical and biochemical characteristics at the chloroplast level. Gas exchange and chlorophyll fluorescence were used to compare photosynthesis of dwarf, fringe and fertilized trees. Regardless of zonation or treatment, net CO2 exchange (A) and photosynthetic electron transport were light saturated at less than 500 µmol photons m?2 s?1, and low‐light quantum efficiencies were typical for healthy C3 plants. On the other hand, light‐saturated A was linearly related to stomatal conductance (gs), with seasonal, zonal and treatment differences in photosynthesis corresponding linearly to differences in the mean gs. Overall, photosynthetic capacity appeared to be co‐regulated with stomatal conductance, minimizing the variability of Ci at ambient CO2 (and hence, Ci/Ca). Based on the results of in vitro assays, regulation of photosynthesis in R. mangle appeared to be accomplished, at least in part, by regulation of Rubisco activity.  相似文献   

8.
Xylella fastidiosa is a xylem‐limited bacterial plant pathogen that causes bacterial leaf scorch in its hosts. Our previous work showed that water stress enhances leaf scorch symptom severity and progression along the stem of a liana, Parthenocissus quinquefolia, infected by X. fastidiosa. This paper explores the photosynthetic gas exchange responses of P. quinquefolia, with the aim to elucidate mechanisms behind disease expression and its interaction with water stress. We used a 2 × 2‐complete factorial design, repeated over two growing seasons, with high and low soil moisture levels and infected and non‐infected plants. In both years, low soil moisture levels reduced leaf water potentials, net photosynthesis and stomatal conductance at all leaf positions, while X. fastidiosa‐infection reduced these parameters at basally located leaves only. Intercellular CO2 concentrations were reduced in apical leaves, but increased at the most basal leaf location, implicating a non‐stomatal reduction of photosynthesis in leaves showing the greatest disease development. This result was supported by measured reductions in photosynthetic rates of basal leaves at high CO2 concentrations, where stomatal limitation was eliminated. Repeated measurements over the summer of 2000 showed that the effects of water stress and infection were progressive over time, reaching their greatest extent in September. By reducing stomatal conductances at moderate levels of water stress, P. quinquefolia maintained relatively high leaf water potentials and delayed the onset of photosynthetic damage due to pathogen and drought‐induced water stress. In addition, chlorophyll fluorescence measurements showed that P. quinquefolia has an efficient means of dissipating excess light energy that protects the photosynthetic machinery of leaves from irreversible photoinhibitory damage that may occur during stress‐induced stomatal limitation of photosynthesis. However, severe stress induced by disease and drought eventually led to non‐stomatal decreases in photosynthesis associated with leaf senescence.  相似文献   

9.
Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel‐based fitting tool (EFT) that will be of use to specialists and non‐specialists alike. We use data acquired in concurrent variable fluorescence–gas exchange experiments, where A/Ci and light–response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5‐bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis–Menten constant, and Rubisco CO2‐saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models.  相似文献   

10.
Stomatal closure and metabolic impairment under drought stress limits photosynthesis. The objective of this study was to determine major stomatal and metabolic factors involved in photosynthetic responses to drought and recovery upon re‐watering in a C3 perennial grass species, Kentucky bluegrass (Poa pratensis L.). Two genotypes differing in drought resistance, ‘Midnight’ (tolerant) and ‘Brilliant’ (sensitive), were subjected to drought stress for 15 days and then re‐watered for 10 days in growth chambers. Single‐leaf net photosynthetic rate (A), stomatal conductance (gs) and transpiration rate (Tr) decreased during drought, with a less rapid decline in ‘Midnight’ than in ‘Brilliant’. Photochemical efficiency, Rubisco activity and activation state declined during drought, but were significantly higher in ‘Midnight’ than in ‘Brilliant’. The relationship between A and internal leaf CO2 concentration (A/Ci curve) during drought and re‐watering was analyzed to estimate the relative influence of stomatal and non‐stomatal components on photosynthesis. Stomatal limitation (Ls %), non‐stomatal limitation (Lns %), CO2 compensation point (CP) and dark respiration (Rd) increased with stress duration in both genotypes, but to a lesser extent in ‘Midnight’. Maximum CO2 assimilation rate (Amax), carboxylation efficiency (CE) and mesophyll conductance (gm) declined, but ‘Midnight’ had significantly higher levels of Amax, CE and gm than ‘Brilliant’. Maximum carboxylation rate of Rubisco (Vcmax) and ribulose‐1,5‐bisphospate (RuBP) regeneration capacity mediated by maximum electron transport rate (Jmax) decreased from moderate to severe drought stress in both genotypes, but to a greater extent in ‘Brilliant’ than in ‘Midnight’. After re‐watering, RWC restored to about 90% of the control levels in both genotypes, whereas A, gs, Tr and Fv/Fm was only partially recovered, with a higher recovery level in ‘Midnight’ than in ‘Brilliant’. Rubisco activity and activation state restored to the control level after re‐watering, with more rapid increase in ‘Midnight’ than in ‘Brilliant’. The values of Ls, Lns, CP and Rd declined, and Amax, CE, Vcmax, Jmax and gm increased after re‐watering, with more rapid change in all parameters in ‘Midnight’ than in ‘Brilliant’. These results indicated that the maintenance of higher A and Amax under drought stress in drought‐tolerant Kentucky bluegrass could be attributed to higher Rubico activation state, higher CE and less stomatal limitation. The ability to resume metabolic activity (Amax, CE, Fv/Fm and Rubisco) was observed in the drought‐tolerant genotype and is the most likely cause for the increased recuperative ability of photosynthesis. Incomplete recovery of photosynthesis upon re‐watering could be attributable to lasting stomatal limitations caused by severe drought damage in both genotypes. Promoting rapid stomatal recovery from drought stress may be critical for plants to resume full photosynthetic capacity in C3 perennial grass species.  相似文献   

11.
Diurnal changes in photosynthetic gas exchange and chlorophyll fluorescence were measured under full sunlight to reveal diffusional and non‐diffusional limitations to diurnal assimilation in leaves of Arisaema heterophyllum Blume plants grown either in a riparian forest understorey (shade leaves) or in an adjacent deforested open site (sun leaves). Midday depressions of assimilation rate (A) and leaf conductance of water vapour were remarkably deeper in shade leaves than in sun leaves. To evaluate the diffusional (i.e. stomatal and leaf internal) limitation to assimilation, we used an index [1–A/A350], in which A350 is A at a chloroplast CO2 concentration of 350 μ mol mol ? 1. A350 was estimated from the electron transport rate (JT), determined fluorometrically, and the specificity factor of Rubisco (S), determined by gas exchange techniques. In sun leaves under saturating light, the index obtained after the ‘peak’ of diurnal assimilation was 70% greater than that obtained before the ‘peak’, but in shade leaves, it was only 20% greater. The photochemical efficiency of photosystem II ( Δ F/Fm ′ ) and thus JT was considerably lower in shade leaves than in sun leaves, especially after the ‘peak’. In shade leaves but not in sun leaves, A at a photosynthetically active photon flux density (PPFD) > 500 μ mol m ? 2 s ? 1 depended positively on JT throughout the day. Electron flows used by the carboxylation and oxygenation (JO) of RuBP were estimated from A and JT. In sun leaves, the JO/JT ratio was significantly higher after the ‘peak’, but little difference was found in shade leaves. Photorespiratory CO2 efflux in the absence of atmospheric CO2 was about three times higher in sun leaves than in shade leaves. We attribute the midday depression of assimilation in sun leaves to the increased rate of photorespiration caused by stomatal closure, and that in shade leaves to severe photoinhibition. Thus, for sun leaves, increased capacities for photorespiration and non‐photochemical quenching are essential to avoid photoinhibitory damage and to tolerate high leaf temperatures and water stress under excess light. The increased Rubisco content in sun leaves, which has been recognized as raising photosynthetic assimilation capacity, also contributes to increase in the capacity for photorespiration.  相似文献   

12.
A lower than theoretically expected increase in leaf photosynthesis with long‐term elevation of carbon dioxide concentration ([CO2]) is often attributed to limitations in the capacity of the plant to utilize the additional photosynthate, possibly resulting from restrictions in rooting volume, nitrogen supply or genetic constraints. Field‐grown, nitrogen‐fixing soybean with indeterminate flowering might therefore be expected to escape these limitations. Soybean was grown from emergence to grain maturity in ambient air (372 µmol mol?1[CO2]) and in air enriched with CO2 (552 µmol mol?1[CO2]) using Free‐Air CO2 Enrichment (FACE) technology. The diurnal courses of leaf CO2 uptake (A) and stomatal conductance (gs) for upper canopy leaves were followed throughout development from the appearance of the first true leaf to the completion of seed filling. Across the growing season the daily integrals of leaf photosynthetic CO2 uptake (A′) increased by 24.6% in elevated [CO2] and the average mid‐day gs decreased by 21.9%. The increase in A′ was about half the 44.5% theoretical maximum increase calculated from Rubisco kinetics. There was no evidence that the stimulation of A was affected by time of day, as expected if elevated [CO2] led to a large accumulation of leaf carbohydrates towards the end of the photoperiod. In general, the proportion of assimilated carbon that accumulated in the leaf as non‐structural carbohydrate over the photoperiod was small (< 10%) and independent of [CO2] treatment. By contrast to A′, daily integrals of PSII electron transport measured by modulated chlorophyll fluorescence were not significantly increased by elevated [CO2]. This indicates that A at elevated [CO2] in these field conditions was predominantly ribulose‐1,5‐bisphosphate (RubP) limited rather than Rubisco limited. There was no evidence of any loss of stimulation toward the end of the growing season; the largest stimulation of A′ occurred during late seed filling. The stimulation of photosynthesis was, however, transiently lost for a brief period just before seed fill. At this point, daytime accumulation of foliar carbohydrates was maximal, and the hexose:sucrose ratio in plants grown at elevated [CO2] was significantly larger than that in plants grown at current [CO2]. The results show that even for a crop lacking the constraints that have been considered to limit the responses of C3 plants to rising [CO2] in the long term, the actual increase in A over the growing season is considerably less than the increase predicted from theory.  相似文献   

13.
Herbivory‐induced changes in photosynthesis have been documented in many plant species; however, the complexity of photosynthetic regulation and analysis has thwarted progress in understanding the mechanism involved, particularly those elicited by herbivore‐specific elicitors. Here, we analysed the early photosynthetic gas exchange responses in Nicotiana attenuata plants after wounding and elicitation with Manduca sexta oral secretions and the pathways regulating these responses. Elicitation with M. sexta oral secretions rapidly decreased photosynthetic carbon assimilation (AC) in treated and systemic (untreated, vascularly connected) leaves, which were associated with changes in stomatal conductance, rather than with changes in Rubisco activity and 1‐5 ribulose‐1,5‐bisphosphate turnover. Phytohormone profiling and gas exchange analysis of oral secretion‐elicited transgenic plants altered in phytohormone regulation, biosynthesis and perception, combined with micrografting techniques, revealed that the local photosynthetic responses were mediated by 12‐oxo‐phytodienoic acid, while the systemic responses involved interactions among jasmonates, cytokinins and abscisic acid signalling mediated by mitogen‐activated protein kinase 4. The analysis also revealed a role for cytokinins interacting with mitogen‐activated protein kinase 4 in CO2‐mediated stomatal regulation. Hence, oral secretions, while eliciting jasmonic acid‐mediated defence responses, also elicit 12‐oxo‐phytodienoic acid‐mediated changes in stomatal conductance and AC, an observation illustrating the complexity and economy of the signalling that regulates defence and carbon assimilation pathways in response to herbivore attack.  相似文献   

14.
A dynamic model of leaf CO2 assimilation was developed as an extension of the canonical steady‐state model, by adding the effects of energy‐dependent non‐photochemical quenching (qE), chloroplast movement, photoinhibition, regulation of enzyme activity in the Calvin cycle, metabolite concentrations, and dynamic CO2 diffusion. The model was calibrated and tested successfully using published measurements of gas exchange and chlorophyll fluorescence on Arabidopsis thaliana ecotype Col‐0 and several photosynthetic mutants and transformants affecting the regulation of Rubisco activity (rca‐2 and rwt43), non‐photochemical quenching (npq4‐1 and npq1‐2), and sucrose synthesis (spsa1). The potential improvements on CO2 assimilation under fluctuating irradiance that can be achieved by removing the kinetic limitations on the regulation of enzyme activities, electron transport, and stomatal conductance were calculated in silico for different scenarios. The model predicted that the rates of activation of enzymes in the Calvin cycle and stomatal opening were the most limiting (up to 17% improvement) and that effects varied with the frequency of fluctuations. On the other hand, relaxation of qE and chloroplast movement had a strong effect on average low‐irradiance CO2 assimilation (up to 10% improvement). Strong synergies among processes were found, such that removing all kinetic limitations simultaneously resulted in improvements of up to 32%.  相似文献   

15.
This study was initiated to investigate effects of damage by 0, 5 and 10 aphids/plant on the physiology of faba bean plants throughout different feeding periods and at two plant development stages. Immediately following removal of Aphis fabae, measurements showed 84–229% increase in transpiration rate. These changes were proportional to the number of aphids and infestation duration. Injury by A. fabae caused the stomatal conductance to be much higher in the leaves of infested plants. Leaf stomatal conductance of the infested plants increased significantly by 51–224% depending on initial aphid densities and feeding intervals. This increase was proportional to the infestation level for each date. Length of infestation period and plant growth stage seemed to have no clear effect on stomatal apertures. Aphid feeding caused a damage of about 7–33% of crude protein levels in the leaf tissue. This reduction increased with increasing infestation levels and time, except for 28‐day‐old plants on 28 days. The physiological effects of aphid feeding on water vapour and chemical composition of damaged leaves are particularly serious when the population is high.  相似文献   

16.
The effect of tree height on crown level stomatal conductance   总被引:19,自引:6,他引:13  
Variation in stomatal conductance is typically explained in relation to environmental conditions. However, tree height may also contribute to the variability in mean stomatal conductance. Mean canopy stomatal conductance of individual tree crowns (GSi) was estimated using sap flux measurements in Fagus sylvatica L., and the hypothesis that GSi decreases with tree height was tested. Over 13 d of the growing season during which soil moisture was not limiting, GSi decreased linearly with the natural logarithm of vapour pressure deficit (D), and increased exponentially to saturation with photosynthetic photon flux density (Qo). Under conditions of D = 1 kPa and saturating Qo, GSi decreased by approximately 60% with 30 m increase in tree height. Over the same range in height, sapwood‐to‐leaf area ratio (AS:AL) doubled. A simple hydraulic model explained the variation in GSi based on an inverse relationship with height, and a linear relationship with AS:AL. Thus, in F. sylvatica, adjustments in AS:AL partially compensate for the negative effect of increased flow‐path length on leaf conductance. Furthermore, because stomata with low conductance are less sensitive to D, gas exchange of tall trees is reduced less by high D. Despite these compensations, decreasing hydraulic conductance with tree height in F. sylvatica reduces carbon uptake through a corresponding decrease in stomatal conductance.  相似文献   

17.
刘英  雷少刚  程林森  程伟  卞正富 《生态学报》2018,38(9):3069-3077
采煤塌陷引起的土壤环境因子的变化对矿区植物生长的影响越来越受到人们的关注,气孔导度、蒸腾与光合作用作为环境变化响应的敏感因子,研究植物气孔导度、蒸腾与光合作用的变化是揭示荒漠矿区自然环境变化及其规律的重要手段之一。研究采煤塌陷条件下植物光合生理的变化是探究煤炭开采对植物叶片水分蒸腾散失和CO_2同化速率影响的关键环节,是探讨采煤塌陷影响下植物能量与水分交换动态的基础,而采煤矿区植物叶片气孔导度、蒸腾与光合作用速率对采煤塌陷影响下土壤含水量变化的响应如何尚不清楚。选取神东煤田大柳塔矿区52302工作面为实验场地,以生态修复物种柠条为研究对象,对采煤塌陷区和对照区柠条叶片气孔导度、蒸腾和光合作用速率以及土壤体积含水量进行监测,分析了采煤塌陷条件下土壤含水量的变化以及其对柠条叶片气孔导度、蒸腾与光合作用速率的影响。结果显示:(1)煤炭井工开采在地表形成大量裂缝,破坏了土体结构,潜水位埋深降低,土壤含水量均低于沉陷初期,相对于对照区,硬梁和风沙塌陷区土壤含水量分别降低了18.61%、21.12%;(2)柠条叶片气孔导度、蒸腾和光合作用速率均与土壤含水量呈正相关关系;煤炭开采沉陷增加了地表水分散失,加剧了土壤水分胁迫程度,为了减少蒸腾导致的水分散失,柠条叶片气孔阻力增加,从而气孔导度降低,阻碍了光合作用CO_2的供应,从而导致柠条叶片光合作用速率的降低,蒸腾速率也显著降低。  相似文献   

18.
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.  相似文献   

19.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

20.
Sunburn has become one of the major threats to apple fruit production in South Africa and other countries with Mediterranean climate. Some climate‐ameliorating measures have been developed to control sunburn in apples. Effects of the climate‐ameliorating measures, viz. evaporative cooling, Surround® WP and shade net, on leaf gas exchange of a 5‐year‐old orchard of ‘Cripps’ Pink’ apple were investigated during hot summer days in Stellenbosch, South Africa. Evaporative cooling increased net photosynthetic rate (A) and stomatal conductance (gs) because of its lowering of leaf temperature and leaf‐to‐air vapour pressure difference (VPD). Shade net also reduced leaf temperature because of reduction in photosynthetic photon flux density (PPFD). Quantum efficiency of photosynthesis was increased under shade net to compensate for reduced PPFD. Shade net also reduced transpiration rate more than A, resulting in increased midday water‐use efficiency. The diurnal trends of A and gs in the Surround WP and control treatments were similar, indicating limited ameliorative impact of Surround WP. Furthermore, Surround WP typically reduced maximum rate of carboxylation and the light‐saturated rate of electron transport. In all treatments, A decreased by 70% when leaf temperature increased from 35°C to 40°C. In conclusion, all treatments affected leaf photosynthetic gas exchange. Evaporative cooling enhanced leaf A and gs because of distinct ameliorative effects on leaf temperature and VPD. Shade net reduced leaf temperature with no consistent effects on leaf gas exchange attributes. Surround WP had limited or no impact on leaf temperature and negatively affected leaf gas exchange attributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号